
Cell-to-cell variation and single-cell functional 
proteomics analysis
Non-genetic cellular heterogeneity is a universal feature 
of any cell population [1,2]. Although this heterogeneity 
is often ascribed to some process (such as stochastic gene 
expression), it is also intrinsic to the fi nite nature of a 
single cell [3]. Th is heterogeneity is not without conse-
quences; for example, it can contribute to the diversity of 
an immune response or to the emergence of therapeutic 
resistance in cancers. However, the detailed role of 
cellular heterogeneity in such processes is not always 
easy to capture. If some parameter is measured on a 
statistical number of ‘identical’ single cells, that 

para meter can almost always be used to stratify those 
cells into multiple populations. Whether the variance in 
the assayed parameter is biologically relevant may be 
debatable. Parameters for which the variance is thought 
to have high biological relevance are the levels of 
functional proteins. Th ese include the signaling proteins 
(such as cytokines) that are secreted by immune cells, or 
the phosphorylated kinases and related eff ector proteins 
that comprise the heart of growth factor signaling 
networks within cells.

A single-cell functional proteomics assay is one that 
measures the quantity and functional state (such as 
phosphorylation) of a given protein or panel of proteins 
across many otherwise identical cells. A measurement of 
the average level of a protein requires many single-cell 
measurements. Such measurements, if compiled as a 
histogram of the frequency of observation versus the 
measured levels, refl ect the fl uctuations of that protein. 
Functional protein fl uctuations can refl ect changes in 
cellular activity, such as immune-cell activation or the 
activation or inhibition of protein signaling networks 
within, for example, tumor cells. However, the usefulness 
of fl uctuations signifi cantly expands with absolute 
quantifi cation and increased numbers of proteins assayed 
per cell (multiplexing).

When multiple proteins are assayed from single cells, 
protein-protein correlations and anti-correlations are 
directly recorded. For cell-surface markers, such measure-
ments provide a way to enumerate and sort highly 
defi ned cellular phenotypes. A multiplex analysis of 
secreted eff ector proteins from immune-cell pheno types 
can provide a powerful view of immune-system function. 
For intracellular signaling networks, such as those 
associated with growth factor signaling, correla tions and 
anti-correlations between phosphoproteins can indicate 
activating and inhibitory interactions, respec tively. With 
increased multiplexing, such measurements increasingly 
resolve the structure of signaling networks. If the 
measurements are truly quantitative, it becomes possible 
to assess how perturbations to cells infl uence changes in 
the chemical potential of the measured proteins. Th is, in 
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turn, allows the introduction of predictive models 
derived from physicochemical principles.

Single-cell functional proteomics can connect genomic 
information with biological context and biological func-
tion. For example, certain classes of genetically engi-
neered immune cells are increasingly used for certain 
anti-cancer therapies. This clonal population of cells can 
show great functional heterogeneity [4,5]. That hetero-
geneity, which can be characterized by single-cell proteo-
mics, arises from many epigenetic factors (biological 
context), such as exposure to specific cell types or to 
signaling proteins. This and other examples are discussed 
in detail below.

Here, we describe emerging technologies and their 
associated applications that are designed to characterize 
cellular heterogeneity by single-cell functional proteo-
mics. We first provide an overview of the rapid develop-
ment of single-cell proteomics tools that has occurred 
over the past half decade. We then discuss specific 
biological or clinical challenges that are either uniquely 
or most easily addressed by single-cell functional proteo-
mics. These challenges include basic biology studies, such 
as the kinetics of T-cell activation, or the identification of 
effector proteins associated with cellular motility. Clinical 
applications include advanced immune monitoring of 
patients with a variety of disease conditions, ranging 
from HIV to cancer. Cancer biology applications include 
experiments aimed at resolving how targeted therapeu-
tics alter the phosphoprotein signaling networks that 
are hyperactivated in many tumors. Each problem pro-
vides a venue for discussing platform advantages and 
limitations. We focus on multiplex microfluidics/nano-
technology-based platforms as these tools are proving 
uniquely suited for quantitative, single-cell functional 
proteomics.

Single-cell functional proteomics technologies
Single-cell functional proteomics tools range from flow 
cytometry to microfluidics-based platforms, many of 
which are listed and briefly characterized in Table 1. An 
ideal tool reports on the level of a given protein in copy 
numbers per cell, with a small uncertainty, a high level of 
sensitivity, and the capacity to analyze large numbers of 
cells quickly. The value of absolute quantification is that it 
enables direct comparisons across platforms, cell types, 
time points, clinical samples, and so on. However, many 
platforms enable quantification only in relative units, or 
allow for the identification of only the fraction of the cells 
that express a given protein. Other characteristics, such 
as the level of multiplexing, the types of proteins that can 
be assayed (such as cytoplasmic, membrane, or secreted), 
or the ability to integrate functional assays (such as cell 
motility) with proteomics assays, are also important 
attributes.

Single-cell functional proteomics tools may be 
classified into three classes (Table 1). The first class com-
prises cytometry methods (Figure  1b illustrates flow 
cytometry), which have evolved over 40 years. The basic 
idea is to label specific cellular proteins. The cells are then 
suspended in bulk, and then analyzed, one by one, for the 
presence of the label. For fluorescence flow cytometry 
(FFC) (or fluorescence activated cell sorting (FACS)), 
cellular proteins are labeled with fluorescent antibodies 
[6,7]. The degree of multiplexing is limited to around 15 
by the availability of spectrally distinct fluorophores. The 
recently developed mass cytometry [8] expands multi-
plexing to more than 30 by using transition metal mass 
labels, instead of fluorophores, followed by mass spectro-
metric analysis of individual cells. For these tools, most 
assayed proteins are cell surface markers, rather than 
functional proteins. Intracellular staining (ICS) [9], which 
requires blocking protein secretion and fixing the cells, 
can be coupled with cytometry to interrogate for the 
relative levels of functional proteins such as cytokines or 
phospho-kinases. Cytometry methods (particularly FFC 
and FACS) readily handle large numbers of cells, and so 
can be used to identify (and sort) relatively rare cell types. 
Cytometry tools capable of a high degree of multiplexing 
are very powerful, but are also expensive, and usually 
require a staffed facility for their operation.

Surface methods (Table  1) for single cell functional 
proteomics include the established and relatively simple 
and inexpensive ELISpot technique for detecting protein 
secretion from live cells [9]. Cells are immobilized on an 
antibody-coated surface, and sandwich-type immuno-
assays are utilized to detect secreted proteins in the 
vicinity of individual cells.

Microfluidics technologies constitute the third class of 
tools. Common advantages of microfluidics tools are that 
they can often be cheaply manufactured in large quanti-
ties, they can handle very small numbers of cells and 
require only tiny quantities of expensive reagents, and 
they may often be customized to allow for on chip 
incubation, cell lysis, and so on. For single cell proteo-
mics, microfluidics platforms fall into two groups - those 
in which the cells are stained to identify specific proteins, 
and those for which proteins are released from the cells 
and measured using surface immunoassays. The first 
group includes the image cytometry, cell-array, and 
micro-droplet techniques. Early variations of such tools 
detected proteins from single cells by imaging stained 
cells, or by flowing the labeled cells or cell-encapsulation 
droplets through a microfluidic channel designed to 
allow fluorescence detection. These were basically micro-
chip versions of FFC or FACS [10]. More recent 
approaches have significantly diverged to take advantage 
of some of the unique aspects of microfluidics. For 
example, cells can be spatially segregated into large arrays 
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(cell arrays [11-15]), or they can be entrained within 
arrays of drops [16-18]. Such manipulations are followed 
by immunostaining of membrane proteins, followed by 
automated imaging to quantify single-cell fluorescence 
signals. These approaches can offer control over the cell 
environment before analysis, which make them attractive 
screening tools. One disadvantage of these and other 
cell-staining approaches [19,20] is that they have limited 
multiplexing capacity.

The most advanced microfluidic single-cell proteomics 
tools use surface-immobilized antibodies for separating 
protein detection from cell manipulation (Figure  1c,d). 

This approach has several advantages: it can yield 
increased multiplexing capacity, it can be extended to 
assays for secreted, cytoplasmic, and membrane proteins, 
and measurements of cellular functions can be integrated 
with the proteomics assays. The experimental challenge 
is that a given cell may only produce between a few 
hundred and a few thousand copies of a protein of 
interest  - such numbers are typical for many phos pho-
proteins or secreted signaling proteins. The solution is to 
enclose the cell within a microenvironment with a 
volume of about 1  nl. In this way, the resultant protein 
concentration can be sufficiently high to allow detection 

Table 1. Single-cell functional proteomics tools

 Numbers and   Statistical accuracy   
 types of   and signal   
Technique proteins assayed Throughput Detection limit quantification Notes and features Literature

Flow cytometry methods

Fluorescence 
flow cytometry

Around 15 
proteins (mostly 
membrane proteins, 
a few cytoplasmic 
proteins)

104 cells s-1 500 copies per cell 90% phenotyping 
accuracy; relative 
protein abundance 

Standard for sorting and 
enumeration of cellular 
phenotypes. Secretion blocked 
and cells fixed for cytoplasmic 
proteins

[5,6]

Mass flow 
cytometry

Around 35 
membrane and 
intracellular proteins, 
likely expandable

103 cells s-1 >103 copies per cell Good cell counting 
statistics; relative 
protein abundance

Cells handled in bulk prior to 
analysis. Secretion blocked 
and cells fixed for cytoplasmic 
proteins

[8]

Surface methods

ELISpot 1-3 secreted 
proteins

6 spots per 105 cells Quantitative for 
percentage active 
cells

Cells secrete proteins onto 
antibody coated surfaces; 
secretion activity correlated with 
cell location

[9]

Microfluidics technologies

Image cytometry 3-4 membrane or 
intracellular proteins 
and cell size

103-104 cells per 
chip

105 fluoro-phores 
per μm2

Good cell counting 
statistics; relative 
protein abundance

Cells are fixed and stained (in 
bulk) with fluorescent antibodies; 
protein assay and cell location 
spatially correlated

[19,20]

Cell array 1 intracellular 
protein

<103 cells per 
chip

Good cell counting 
statistics; relative 
protein abundance

Single cells separated and 
imaged on chip; continuous 
monitoring of cell physiology

[12-15]

Micro-droplet 1 membrane or 
intracellular protein

102 μdrops s-1 Not defined Good cell sampling 
statistics

Cells entrained in microdroplets; 
microdroplet composition 
control permits screening cells

[16-18]

Micro-engraving 3 secreted plus 
3 membrane 
proteins

104-105 cells per 
chip

Not available Very good cell 
number statistics; 
relative protein 
abundance

Cells isolated in miocrowells; 
surface immunoassays; proteins 
colorimetrically detected; 
secretome kinetics from single 
cells; proteomeic and functional 
assays from same cell

[21-23, -37]

Single cell 
barcode chips 

About 20 secreted, 
membrane, or 
cytoplasmic 
proteins, 
expandable

103-105 cells per 
chip

102 copies Good cell counting 
statistics, absolute 
quantification, 10% 
measurement error 
per protein per cell

Cells isolated in microchambers, 
miniature antibody arrays yield 
spatial separation of specific 
protein assays; proteomeic and 
functional assays from same cell; 
single cells or defined small cell 
populations accessed.

[4,5, 26-30]
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with standard immunoassays. The beauty of micro fabri-
cation is that such tiny volume assays can be repeated 
many times, in parallel, on a single microchip. The micro-
engraving approach developed by Love’s group (Figure 1c) 

[21-23] uses small volume microwells in an array format 
to isolate and culture single cells. A ‘microengraved’ 
(antibody-coated) substrate is used to cap the microwell 
array and to capture secreted proteins. Proteins are 

Figure 1. Selected tools for single-cell functional proteomics. Three technology platforms are illustrated, along with data that highlight the 
unique strengths of each platform. (a) All platforms start with a single-cell suspension. (b)(i) Intracellular staining (ICS) flow cytometry for assaying 
for secreted (functional) proteins requires blocking cell secretion during an incubation step, fixing the cells, and then permeabilizing the cells to 
enable antibody staining. (b)(ii) Proteins are colorimetrically detected by streaming the cells, one at a time, through multicolor laser excitation. 
(b)(iii) A flow cytometry scatter plot showing the correlation of two effector proteins detected from stimulated CD8+ T cells. This plot reflects the 
excellent statistics achievable using this technique (adapted from [5] with permission). (c)(i) Microengraving assays start by isolating single cells into 
microwells, several thousand of which are patterned onto a single chip. A glass substrate that is microengraved with various capture antibodies 
covers the microwells. The substrate can be replaced at various times to reveal protein-specific secretion kinetics. The phenotype of the cells 
can also be determined by imaging, using fluorophore-labeled antibodies against specific cell-surface markers. (c)(ii) Secreted protein levels are 
measured by developing the microengraved slides with fluorophore-labeled, secondary antibodies and correlating the fluorescence signal with the 
microchamber address. (c)(iii) Assembled traces reveal the secretion kinetics for three proteins from a specific T-cell phenotype. The color coding 
key is provided in the colored circle at top left. Adapted from [37] with permission. (d)(i) Single-cell barcode chip (SCBC) assays also begin by 
isolating cells within small-volume microchambers. Flexibility of microfluidics design enables individual cells to be lyzed for analysis of cytoplasmic 
proteins and membrane and secreted proteins. Proteins are captured on miniature antibody barcode arrays. A full barcode representing the panel 
of proteins to be assayed is incorporated into each microchamber. (d)(ii) SCBC assays yield data on single cells and on small cell populations. Three 
developed barcodes are shown; the yellow number indicates the numbers of cells in the associated microchamber. (d)(iii) Statistical analysis of 
single-cell data collected from model brain cancer cells. Top: scatter plot showing the correlation of two phosphoproteins. The black or red dots 
represent data from microchambers containing 0 or 1 cells, respectively. Bottom: scatter plots show the statistical uniqueness of the 0-cell, 1-cell, 
and 2-cell datasets for p-EGFR. a.u., arbitrary units. Adapted from [28] with permission.
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on

detected using sandwich-type ELISA immunoassays. 
Different fluorophores colorimetrically distinguish 
between different detection antibodies to allow the 
simultaneous detection of about three secreted proteins. 
The microengraved substrate can be replaced multiple 
times in situ, thus enabling kinetic studies (Figure 1c(ii,iii)) 
at the single-cell level. The multiplexing capacity of the 
microengraving method can be increased using 
fluorophore-labeled antibody staining of membrane 
proteins; fluorescence imaging of the captured cells yields 
information on membrane protein levels (to identify 
cellular phenotypes), and the microengraved substrate 
assays for secreted proteins (to assess cellular function).

A related approach is the single-cell barcode chips 
(SCBCs). The basic concept is to pattern a many-element 
capture antibody array in each single-cell microwell so 
that different proteins are detected at different designated 
array spots. The key enabling technology of SCBCs is the 
miniature antibody arrays. A related challenge is that 
antibody arrays are not stable to the physical conditions 
of microfluidics device fabrication. The solution has been 
to couple the technique of DNA-encoded antibody 
libraries (DEAL) [24] with microfluidics-based flow 
patterning. Specifically, an elastomer film is molded so 
that it contains a series of long, serpentine channels. It is 
adhered to the top of a glass slide. Solutions containing a 
different single-stranded DNA (ssDNA) oligomer are 
flowed through each channel. Those solutions evaporate. 
The molded elastomer is then removed, leaving a series 
of 10 to 20 µm wide stripes of different ssDNA oligomers 
across the glass substrate. A second elastomer layer, 
patterned with between 300 and 10,000 microchambers 
for single-cell assays, is adhered to the glass slide. The 
design is such that each microchamber contains a full 
complement of ssDNA stripes. Just before use, these 
miniature ssDNA arrays are converted into antibody 
arrays using a cocktail of complementary ssDNA-labeled 
antibodies. The resultant antibody array (the barcode) 
[25] provides the detection technology for SCBCs 
(Figure  1d(ii)) [4,26]. Up to 20 functional proteins have 
been assayed per cell [5], and the limit is probably around 
100. Specific SCBC designs enable cell lysis, thus allowing 
cytoplasmic, membrane, and secreted proteins to be 
assayed from the same single cell. SCBC assays can yield 
absolute protein level quantification [27] and access to 
discrete cell populations (one cell, two cells, three cells 
and so on) [28] (Figure  1d(iii)). Both the SCBC and 
micro engraving platforms can be integrated with 
multicolor FACS to enable the integration of phenotype 
analysis with functional proteomics [28]. Quantitative 
data comparison across different SCBC assays [29] 
allows clinical studies or investigations in which statis-
tical cell behaviors are compared across a perturbation 
series.

Most microfluidics tools enable the single cells to be 
imaged. When integrated with proteomics measure ments, 
this can enable several interesting assays, such as 
correlating cell motility or cell-cell interactions [28,30] 
with specific protein levels. Unlike flow cytometry 
analyses, cells can remain in their native morphology so 
that cell size, spreading, or motility can be correlated 
with proteomic signature for each cell assayed [30]. The 
ability of a cytotoxic T  cell to kill the target cell can be 
directly visualized under an optical microscope. Once 
conducted in a microengraving device, this allows direct 
comparison of cytolic activity with the protein profile of 
the same T cell [31]. Finally, cells can be recovered from 
these types of assays for additional analysis, or for 
establishing clonal cell lines with desired properties [23]. 

microfluidics platforms.

Applications to immune monitoring and function
Immune cells are classified along the hematopoietic 
lineage, starting with myeloid and lymphoid lineages. A 
triumph of immune system biology has been the identi fi-
cation of cell surface markers that allow, by FACS, the 
enumeration and sorting of specific immune-cell pheno-
types from blood or tissues. For example, a cytotoxic 
T  cell is defined by the cell surface markers Cluster of 
Differentiation (CD)3, CD45, and CD8, with additional 
markers specifying the antigen specificity of the T  cell 
receptor (TCR) or providing further phenotypic classifi-
cation, such as effector memory. However, functional 
information requires assays of secreted effector proteins 
(such as cytokines and cytotoxic granules) that mediate 
the tasks of target killing, self-renewal, recruitment of 
other immune cell types, and inflammation. Because of 
the variety of potential pathogen targets, cellular immu-
nity is functionally heterogeneous. Recent studies using 
different single-cell proteomics platforms have begun to 
capture and characterize this heterogeneity.

The function of an immune cell is largely delineated by 
a range of proteins it produces. Early efforts to profile 
multiple immune effector functions of single immune cell 
function used ICS FFC. Betts et al. [32] measured five 
functions (degranulation and levels of interferon (IFN)-γ, 
macrophage inflammatory protein (MIP)-1b, tumor 
necrosis factor (TNF)-α, and interleukin (IL)-2) from 
single HIV-specific CD8+ T  cells collected from 
chronically HIV-infected individuals and people whose 
HIV infection has not progressed over a long term (called 
non-progressors or elite controllers). The number of 
effector functions displayed in T cells from people with 
chronic HIV was limited relative to those from non-pro-
gressors, and the number of functions (‘polyfunction-
ality’) was inversely correlated with viral load. Another 
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example of the use of ICS FFC was by Darrah et al. [33], 
who showed that the degree of protection against 
Leishmania major infection in mice is predicted by the 
frequency of CD4+ T  cells simultaneously producing 
IFN-γ, IL-2, and TNF-α. More recent studies have used 
ICS mass cytometry. For example, Newell and coworkers 
[34] used this approach to assay 17 membrane protein 
markers, 6  intracellular cytokines and 2  cytotoxic 
granules from stimulated CD8+ T  cells from healthy 
patients. They found that the cytokine secretion profiles 
were almost statistically distributed across the individual 
cells, but there were distinct niches occupied by virus-
specific cells.

Microfluidic functional proteomics has been used for 
longitudinal monitoring of patients undergoing adoptive 
cell transfer (ACT) trials, a form of immunotherapy for 
metastatic melanoma. Ma and coworkers [4] used SCBCs 
to compare the functional diversity of tumor antigen 
(MART-1)-specific CD8+ T cells collected from the blood 
of a melanoma cancer patient with CD8+ T cells collected 
from healthy donors. At the time of collection, the patient 
was participating in an ACT trial that used TCR-
engineered T cells specific for the MART-1 melanosomal 
antigen [35]. In this therapy, the TCR-engineered T cells 
are expanded ex vivo and infused into the patient with 
the aim that the T cells will drive an anti-tumor immune 
response. Ma’s team assayed a panel of 12 secreted 
proteins and found a large (albeit not statistically 
random) range of functional phenotypes within a tightly 
defined T-cell phenotype [4]. A follow-up kinetic study 
[5] helped define some of this functional diversity 
(Figure  2). The authors [5] studied three melanoma 
cancer patients participating in the same ACT trial and 
combined 19-plex SCBC functional (secreted) protein 
assays with 10-color FACS to measure the functional 
evolution of specific T-cell phenotypes at 5 to 10  time 
points over a 90-day trial (Figure  2a). These measure-
ments led to several conclusions. First, for a given patient 
and T-cell phenotype, if all single-cell data from all time 
points were co-analyzed, a level of functional co-
ordination was resolved, meaning that the T cells could 
be loosely classified according to biological behaviors, 
such as anti-tumor or pro-inflammatory. Second, the 
most polyfunctional cells dominated the immune res-
ponse (Figure  2b). Roughly 10% of the cells of a given 
phenotype secreted five or more different proteins. For 
any one of those proteins, those highly functional cells 
secreted, on average, 100-fold more protein copies than 
the less polyfunctional cells. Thus, for a given phenotype, 
10% of the cells dominated the overall immune response 
by 10-fold. This led to the defining of a polyfunctionality 
strength index (Figure  2c). Interestingly, although the 
cellular population dynamics or phenotype changes (such 
as naïve or central memory) over the course of the trial 

did not yield clear clinical correlates, the polyfunctionality 
kinetics did correlate with clinical observations, 
providing feedback for potentially improving the ACT 
trial design. This collective work over the past decade has 
refined the notion that the quality of a T-cell immune 
response is best captured by the functional performance 
of the T cells, rather than their quantity [36].

Microfluidics platforms offer the unique capacity for 
coupling cell adhesion, spreading, and migration assays 
with multiplex functional proteomics from the same 
single cells. This is because cells can be incubated and 
observed within the same microenvironment in which 
the protein assays are executed. Such assays have rele-
vance for understanding cancer cell behaviors. Cell 
migration, for example, can be influenced by certain of 
the cytokines more commonly associated with immune 
cells. Lu et al. [30] used an SCBC-type antibody array 
coupled with custom-designed microchip (Figure 3), and 
identified a few cytokines (IL-6, IL-8, and monocyte 
chemotactic protein (MCP)-1) that correlated with cell 
motility. Love and colleagues used microengraving to 
carry out two sets of studies that coupled functional 
behaviors with functional proteomics on single T  cells 
[31,37]. In the first [31], they measured cytolytic activity 
of CD8+ T cells by performing live-cell imaging of these 
cells cultured together with single target cells in a 
microengraving device. This allowed the killing ability of 
individual T  cells to be directly correlated with the 
production of multiple cytokines, and it revealed a dis-
cordance between cytokine secretion and cytolysis. The 
authors [31] found that the majority of in vivo primed, 
circulating HIV-specific CD8+ T cells were discordant for 
cytolysis and secretion of cytokines, notably IFN-γ, when 
encountering cognate antigen presented on defined 
numbers of cells. In their second study [37], they 
investigated the kinetics of cytokine production using 
serial analyses of single primary human T  cells under 
various conditions (Figure  1c). They showed that for 
multifunctional T helper 1-skewed cytokine responses 
(IFN-γ, IL-2, and TNF-α), cells predominantly release 
those cytokines sequentially, rather than simultaneously. 
These kinetic trajectories were associated with states of 
cell differentiation, suggesting that transient program-
matic activities of many individual T  cells contribute to 
sustained, population-level responses.

The value of absolute quantification was demonstrated 
by Shin et al. [38], who used a 12-plex SCBC assay to 
investigate how the secretome of lipopolysaccharide-
stimulated macrophage cells responded to neutralizing 
antibody perturbations. They reported on the use of 
statistical-physics-derived models as a means for correctly 
predicting how specific secreted protein levels would vary 
with the perturbations. We cover related concepts below 
in our discussions of phosphoprotein signaling networks.
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Applications to intracellular signaling networks
For many cancers, genomic surveys are revealing a rich 
molecular landscape of altered signal transduction cas-
cades that often cluster along a set of druggable core 
pathways. In fact, these pathways contain many of the 

targets of the newer generations of targeted cancer 
therapies [39]. However, the translation of genomic data 
into effective clinical treatments has not been straight-
forward. This is at least partly because non-genetic cell-
to-cell variability is profound in drug responses and 

Figure 2. Integrated FACS/SCBC phenotypic/functional proteomic analysis of tumor-antigen-specific T-cell populations collected 
from a melanoma cancer patient participating in an ACT trial. (a) Measurement protocol. MART-1 tumor-antigen-specific CD8+ T cells are 
separated from the blood of the patient using 10-parameter FACS sorting and then loaded onto an SCBC for assaying 19 secreted effector proteins. 
(b) Analysis of SCBC data. Unsupervised clustering of the single-cell proteomic data (tree, left) reveals coordinated behaviors that reflect specific 
immune functions. Correlation coefficients, calculated from single cell assays, are provided for proteins within the specified groupings (In group) 
and outside those groupings (Out group). The scatter plot (right) shows correlations between two anti-tumor effector proteins (IFN-γ and TNF-α) 
and also shows that the roughly 10% of the cell population that secretes five or more different proteins are also about 100-fold more active for any 
given protein, and so dominate the immune response for that phenotype. (c) The population kinetics of the TCR-engineered MART-1+ CD8+ T cells, 
as a percentage of CD3+ T cells (orange solid curve), along with the polyfunctional index (pie chart areas) for tracking population of the MART-1+ 
CD8+ T cells secreting five or more proteins. The pie chart composition reflects the relative abundances of those proteins. GB refers to the protein 
Granzyme B. The dynamics of the polyfunctional cells showed much stronger correlations with the observed clinical responses in the patients. 
Adapted from [5] with permission.
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resistance development, yet it cannot be readily captured 
from genome sequencing data. A recent editorial [40] has 
pointed out that capturing the functional protein 
signaling networks may prove valuable for this purpose, 
because it is those ‘signaling proteins, not the genes per 
se, that are responsible for the phenotypes of tumors and 
for the emergence of therapeutic resistance’. Single-cell 
proteomics provides the most direct approach for 
elucidating signaling network structure and coordination, 
and for interrogating how that coordination is disrupted 
by drugs. It thus may provide a powerful tool for 
translating genomic information into effective clinical 

practices for many highly challenging types of cancer 
[41].

An early single-cell study of phosphoprotein signaling 
[42] used ICS FFC to assay, in various cancer cells, the 
cytokine responses of six phosphoproteins, mostly from 
the signal transducers and activators of transcription 
(STAT) family. Signaling network heterogeneity and 
network remodeling was observed in both normal cells in 
a hematopoietic compartment [43] and cancerous cells 
such as acute myeloid leukemia [42], suggesting that cells 
could be classified according to functional phenotype. 
There have been other highly multiplex studies of 
phosphoprotein signaling networks using flow (or mass) 
cytometry [44] or image cytometry [19] over the past 
decade, and more recent work using SCBC platforms 
[27,28,45]. Such a sparse literature (especially compared 
with the routine use of cytometry techniques for cellular 
phenotyping) highlights the difficulty of these assays, 
even though the specific studies have illustrated their 
value. We now turn to discussion of this value, within the 
specific context of cancer pathways.

Cancer pathway models are essentially maps of the 
protein-protein interactions that describe the flow from a 
cell signaling trigger (ligand-receptor binding) to func-
tional behaviors, such as cell division or apoptosis. These 
pathways are often assembled from diverse datasets 
(high-throughput data on cell populations, integrated 
with small interfering RNA perturbations, knockout 
models, and so on) to yield maps in which the nodes are 
functional proteins and the edges are inhibitory or 
activating interactions. These models generally assume 
linear relationships between upstream effector proteins, 
ATP, and nutrient levels and activation downstream. 
However, most signaling cascades behave as excitable 
devices with thresholds, enabling them to integrate 
diverse temporal and spatial inputs to produce specific 
signaling responses [46]. Single-cell proteomics discerns 
much of this detail, and, if truly quantitative, can yield 
simplifying approaches towards understanding how such 
pathways function (Figure 4).

Population heterogeneity can arise from factors such as 
the stochastic nature of intracellular events controlled by 
low-copy-number transcription factors [47] or through 
cell-cell interactions [48,49]. The net result is often high-
amplitude fluctuations at the single-cell level but stable 
distributions across a population [50]. The concept of a 
stable population existing in the presence of random 
fluctuations is reminiscent of many physical systems that 
are successfully understood using statistical physics. 
Thus, tools derived from that field can probably be 
applied to using fluctuations to determine the nature of 
signaling networks. This approach contrasts with tradi-
tional biology thinking, which might seek to classify the 
population into functional phenotypes.

Figure 3. Multiplexed proteomics for co-measurement of cell 
migration and cytokine secretion of the same A549 (model lung 
carcinoma) cancer cells. (a) Light field images showing migration 
of three single cancer cells within microfluidic channels collected at 
0 (before) and 24 (after) hours. (b) Heatmap: each column is a single-
cell assay; each row is an assayed parameter. Cell migration distance 
(top row) is shown with the entire protein secretion profile (lower 
14 rows). Approximately 1,000 single cells were assayed. (c) Scatter 
plots showing how the levels of three proteins (MCP-1 and IL-6) 
varied with cell migration distance. a.u., arbitrary units. Adapted from 
[30] with permission.

Protein secretion from single cells

B
efore

A
fter

Cell migration

P
roteins

Migration distance (µm)

P
ro

te
in

 s
ec

re
tio

n
(f

lu
or

es
ce

nc
e/

a.
u.

)

10,000

1,000

100

10
0 200 400 600

MCP-1

IL-6

(a)

(b)

(c)

Wei et al. Genome Medicine 2013, 5:75 
http://genomemedicine.com/content/5/8/75

Page 8 of 12



Wei and coworkers [45] reported simulations to account 
for how an increasing signaling activity of a hypothetical 
protein would be reflected in the fluctuations of the 
activated state of that protein (Figure  4a). They used a 
mean field theory, which treated the increasing signaling 
activity of the hypothetical protein as arising from the 

statistically averaged (mean field) influences of effector 
proteins. As the activity increases, the fluctuations shift 
to higher average copy numbers and are increasingly 
dispersed. The simulations captured how the experi-
mentally measured fluctuations of hypoxia inducible 
factor (HIF)-1α in single glioblastoma multiforme (GBM) 

Figure 4. Phosphoprotein signaling networks from multiplex, quantitative single-cell proteomics. All data represented are uniquely 
measured at the single-cell level. (a) A Monte-Carlo simulation of fluctuations that represent the copy numbers per cell of an activated (such as 
phosphorylated) form of a protein, as that protein is involved in increasing numbers of regulatory processes. On the right are the experimentally 
measured fluctuations of HIF-1α from model GBM cancer cells as these cells are exposed to different O2 partial pressures. The increasingly 
important role of HIF-1α under hypoxic conditions is evident. Reproduced from [45]. (b) Scatter plot showing protein-protein correlations for two 
phosphoproteins. The black and red dots represent measurements from 0-cell and 1-cell SCBC microchambers, respectively. Reproduced from [28]. 
(c) A protein-protein correlation network for model GBM cancer cells following epidermal growth factor (EGF) stimulation (top), and following EGF 
stimulation + erlotinib (anti-EGF receptor) inhibition (bottom). The weight of the network edges reflects the correlation strength, and a red edge 
indicates an anti-correlation. Reproduced from [27]. (d) Collective signaling modes, as determined by the eigenvectors of the single-cell protein-
protein covariance matrix. Shown are the eigenvectors associated with mTORC1 signaling in model GBM cells, as pO2 is varied. The composition of 
the green, red, and blue eigenvectors (top plot) is given in the pie charts below for each value of pO2 investigated. The amplitude of the mTORC1 
associated eigenvectors shows a minimum between 1.5% and 2% pO2, indicating the loss (and undruggability) of that signaling within this 
narrow window of pO2 values. Note that HIF-1α is strongly associated with mTORC1 signaling above 2% pO2, but not below 2% pO2, indicating a 
switch in the structure of the signaling network. The cells studied were model GBM cell lines containing the EDFR variant III (vIII) oncogene (U87 
EGFRvIII; panels a, b, d) or the EGRFvIII oncogene plus loss of the phosphatase and tensin homolog (PTEN) tumor suppressor gene (EGFRvIII PTEN). 
Reproduced from [45] with permission.
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cancer cells evolve as the cells were exposed to increas-
ingly hypoxic conditions. HIF-1α is, in fact, steadily 
activated as the cells transition from normoxia to hypoxia 
[51]. This conclusion can be drawn by simply inspecting 
the HIF-1α fluctuations.

Quantitative, multiplexed assays can also provide 
protein-protein correlations. This means that one can use 
statistical models that explicitly account for protein-
protein interactions (Figure 4b,c) and begin defining the 
state of the signaling network. Shin et al. [38] developed a 
quantitative Le Chatelier principle that relates how the 
changes in average signaling protein levels following a 
weak perturbation to a cell correlate to the changes in the 
chemical potentials of those proteins. The Le Chatelier 
principle states that a stable system will respond to a 
weak perturbation so as to restore that stability. The 
theory is summarized by the matrix equation ΔN– = βΣΔμ. 
Here, ΔN– is a column vector with P components repre-
senting the average protein levels of the P assayed 
proteins; β is 1/kBT, where kB is Boltzmann’s constant and 
T is temperature; Σ is a P × P matrix where each element 
is the experimentally measured covariance of a specific 
protein Pi with another specific protein Pj; and Δµ is a 
column vector whose P components describe the change 
in the chemical potentials of the P proteins, due to a 
change in external conditions (the perturbation). If the 
predicted changes in protein levels match experiment, 
the implication is that the signaling network is described 
by a stable state and responds to a weak perturbation so 
as to restore that state. If the calculation does not match 
experiment, then either the perturbation is strong or the 
signaling network is not stable. The theoretical tools were 
coupled with single-cell proteomics assays of mammalian 
target of rapamycin (mTOR) complex1 (C1) and HIF-1α 
signaling in model GBM cancer cells, to capture the 
response of these networks to the transition from 
normoxia (21% O2 partial pressure (pO2)) to hypoxia (1% 
pO2) (Figure  4d). mTORC1 signaling was identified as 
one stable state above 2% pO2 and as a different stable 
state between 1.5% and 1% pO2, with a switch between 
those two states near 2 to 1.5% pO2. Within this narrow 
window of pO2, the models predicted that mTORC1 
would be unresponsive to inhibitors, but that it could be 
drugged at higher or lower pO2. These surprising pre-
dictions were found to be correct in both cell lines and 
tumor models [45].

These results have several implications. First, single-cell 
proteomics, coupled with approaches derived from statis-
tical physics, can yield detailed (and often surprising) 
predictions, which can be experimentally validated. 
Traditional biology experiments on bulk cell cultures or 
disease models rarely yield such detailed predictions. 
Furthermore, cellular heterogeneity was not assessed to 
capture functional phenotypes. Instead the fluctuations 

were analyzed to identify a stable state or to point to 
where that state was unstable. Although this general 
concept is not new, the experimental challenge has been 
to find approaches that can accurately sample the 
relevant fluctuations. Related examples have drawn from 
model systems using, for example, green fluorescent 
protein reporter genes to provide signatures of protein 
fluctuations. In one such case [50], time-lapse live-cell 
microscopy was used to capture specific promoter 
activity fluctuations in fibroblast cells. The authors [50] 
identified switching rates between two stable states 
within the cells. A major advantage of the multiplexed 
platforms, such as SCBCs, is that fluctuations of broadly 
sampled signaling networks from primary cells can be 
measured, allowing predictive applications to non-model 
systems, with extensions to clinically relevant problems.

Extending such assays to discrete cell populations 
(unique to microfluidic/nanotechnology platforms) allows 
the investigation of cell-cell interactions. A few studies 
have explored the inhibitory or activating nature of such 
interactions using a combination of protein assays and/or 
functional observations [52-55]. A recent study [28] 
correlated the levels of a panel of phospho- (and effector) 
signaling proteins in model GBM cells, with cell-cell 
distances in two-cell assays. This indicated that a detailed 
knowledge of pairwise cell interaction functions could be 
used to predict specific properties of larger cell 
populations. Such experiments again draw from concepts 
derived from statistical physics [56], and may eventually 
allow complex phenomena within tissue microenviron-
ments to be understood.

Looking forward
The advance of methods for single-cell functional proteo-
mics has been rapid, and the majority of tools discussed 
here did not exist 5  years ago. These platforms offer 
unique and emerging opportunities. The coupling of 
functional and proteomic assays at the single-cell level is 
one such advantage. Most microfluidic proteomics 
platforms, however, cannot yet match the statistics and 
throughput of cytometry tools. However, as these 
technologies evolve, the range of potential applications 
will continue to expand, as will the thinking regarding 
how the resultant datasets can be interpreted. It is likely 
that, in the near future, microchip platforms will enable 
as many as 100 proteins to be assayed from single cells, 
and platforms that enable 10- to 20-plex assays will 
become routine biological and clinical tools. However, 
beyond about 100 proteins, all (microchip or cytometry) 
single-cell proteomics approaches will ultimately be 
limited by antibodies or other capture agents. Thus, an 
important underlying challenge is the production of 
high-performance and robust protein capture agents at 
low cost. A second outstanding challenge is the 
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develop ment of a capture-agent-independent approach 
that allows discovery.

One area that has not been covered here is that of mass 
spectrometry. However, that field has seen remarkable 
advances over the past few years, and single-cell 
proteomics may be on the horizon. Targeted proteomics 
using mass spectrometry has evolved to the extent that 
small cell numbers, or even single cells, can be analyzed 
for highly abundant proteins. Protein processing with 
immobilized enzymes [57] or novel column chromato-
graphy methods [58] may eventually allow mass spectro-
metry to be a single-cell proteomics discovery tool. 
Finally, the idea that single-cell functional proteomics 
can provide a conduit to the predictive world of statistical 
physics is exciting, but the benefits (and limitations) of 
this type of thinking are largely untapped. It is certain, 
however, that as measurement quantification, multiplex-
ing capacity, statistical sampling, and sensitivity all 
improve, so will the power of the models that can use 
these data to resolve what are otherwise complex bio-
logical problems.
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