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Abstract

Background: Neoadjuvant chemotherapy for breast cancer leads to considerable variability in clinical responses,
with only 10 to 20% of cases achieving complete pathologic responses (pCR). Biological and clinical factors that
determine the extent of pCR are incompletely understood. Mounting evidence indicates that the patient’s immune
system contributes to tumor regression and can be modulated by therapies. The cell types most frequently observed
with this association are effector tumor infiltrating lymphocytes (TILs), such as cytotoxic T cells, natural killer cells and B
cells. We and others have shown that the relative abundance of TILs in breast cancer can be quantified by intratumoral
transcript levels of coordinately expressed, immune cell-specific genes. Through expression microarray analysis, we
recently discovered three immune gene signatures, or metagenes, that appear to reflect the relative abundance of
distinct tumor-infiltrating leukocyte populations. The B/P (B cell/plasma cell), T/NK (T cell/natural killer cell) and M/D
(monocyte/dendritic cell) immune metagenes were significantly associated with distant metastasis-free survival of
patients with highly proliferative cancer of the basal-like, HER2-enriched and luminal B intrinsic subtypes.

Methods: Given the histopathological evidence that TIL abundance is predictive of neoadjuvant treatment
efficacy, we evaluated the therapy-predictive potential of the prognostic immune metagenes. We hypothesized
that pre-chemotherapy immune gene signatures would be significantly predictive of tumor response. In a
multi-institutional, meta-cohort analysis of 701 breast cancer patients receiving neoadjuvant chemotherapy,
gene expression profiles of tumor biopsies were investigated by logistic regression to determine the existence
of therapy-predictive interactions between the immune metagenes, tumor proliferative capacity, and intrinsic
subtypes.

Results: By univariate analysis, the B/P, T/NK and M/D metagenes were all significantly and positively associated
with favorable pathologic responses. In multivariate analyses, proliferative capacity and intrinsic subtype altered
the significance of the immune metagenes in different ways, with the M/D and B/P metagenes achieving the
greatest overall significance after adjustment for other variables.

Conclusions: Gene expression signatures of infiltrating immune cells carry both prognostic and therapy-predictive
value that is impacted by tumor proliferative capacity and intrinsic subtype. Anti-tumor functions of plasma B cells
and myeloid-derived antigen-presenting cells may explain more variability in pathologic response to neoadjuvant
chemotherapy than previously recognized.
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Background
Breast cancer is the most common cancer in women
worldwide with over 200,000 new cases diagnosed in the
US each year [1]. An increasing fraction of these patients
are being offered systemic treatment prior to definitive
surgery, known as neoadjuvant therapy. While the intent of
conventional systemic therapy is to reduce the risk of dis-
tant recurrence (that is, for patients with non-metastatic in-
vasive breast cancer), the primary objective of neoadjuvant
therapy is to reduce tumor volume, thereby improving sur-
gical outcomes for patients who desire breast conservation
or for whom a primary surgical approach is otherwise not
medically feasible. Moreover, according to the results of
clinical trials in the US and Europe, neoadjuvant chemo-
therapy is as effective as adjuvant chemotherapy at prolong-
ing patient disease-free survival, distant metastasis-free
survival (DMFS) and overall survival [2,3].
Like adjuvant therapy, the current standards of care for

neoadjuvant treatment include chemotherapy, endocrine
therapy, and biologic therapy (for example, HER2-directed
therapy). A corollary benefit of neoadjuvant treatment,
however, is that it may serve as an in vivo chemosensitivity
test, allowing for early evaluation of the efficacy of
systemic therapy and the possible discontinuation of
ineffective treatment [4,5]. Neoadjuvant chemotherapy
can lead to significant clinical response rates of 60 to 80%,
although only 10 to 20% of patients will exhibit a complete
pathologic response (pCR) [2,6]. pCR is typically defined
as tumor regression marked by the absence of detectable
residual disease in the breast and lymph nodes at surgery.
Recently, more precise diagnostic models that better
quantify the extent of residual disease have been devel-
oped [7-9]. For example, measurement of residual cancer
burden (RCB) provides a categorical index for tumor
responsiveness to neoadjuvant treatment based on size
and cellularity of the primary tumor and number and
size of involved lymph nodes [9].
The biological mechanisms that influence tumor

responsiveness in the neoadjuvant setting are not clearly
understood. Routinely administered cytotoxic agents such
as anthracyclines and taxanes are known to inhibit
replication of rapidly dividing tumor cells by blocking nu-
cleic acid synthesis, or by disrupting microtubule function,
respectively. Not surprisingly, markers of tumor cell prolif-
eration, including Ki-67 staining and histologic grade, have
been observed to be significantly associated with higher
rates of pCR in breast tumors [10,11]. Other therapy-
predictive features of breast cancer, such as negative estro-
gen receptor status and HER2 overexpression, have also
been identified [11-13], although not without some degree
of controversy [14] and with little indication of clinically
applicable predictive value. Mounting evidence now
indicates that host-therapy interactions influence tumor
responsiveness to neoadjuvant treatment, and that the
patient’s immune system, in particular, can actively contrib-
ute to tumor regression. In mouse models of cancer, where
intact tumors were treated with anthracycline-based che-
motherapies, tumor regression was observed in immuno-
competent mice, while the same tumors transplanted into
immunodeficient mice failed to respond [15-18]. Further-
more, anthracycline-based chemotherapies have been ob-
served to induce rapid and prominent tumor infiltration
by Th1-oriented effector immune cells in mice and in
some human breast cancer patients [19-21]. Indeed, the
mere abundance of tumor-infiltrating leukocytes, namely
CD3+/CD8+ T lymphocytes, has been robustly correlated
with pCR in the neoadjuvant setting [22-25] as well as
relapse-free and overall survival of breast cancer patients
[25-29]. In more recent years, microarray expression pro-
filing studies in breast and other tumor types have identi-
fied immune gene signatures from whole tumor RNA
extracts that reflect the abundance of tumor-infiltrating
immune cells [30-38]. We and others have found that the
biological and phenotypic properties of the genes com-
prising these signatures implicate distinct immune cell
lineages [34-37,39,40], and that combinations of these
immune genes correlate with patient outcomes ranging
from recurrence-free survival [30,32,36-43] to tumor
regression in the neoadjuvant setting [44-47].
Recently, we reported in Nagalla et al. [36] the discovery

of three biologically distinct immune gene signatures, or
metagenes, in a large microarray dataset comprising 1,954
breast tumor expression profiles. Through gene ontology
enrichment analysis and demonstration of immune cell
type-specific expression patterns, we provided evidence
that these immune metagenes reflect tumor-infiltrating
populations of: 1) B cells/plasma B cells (B/P) marked
by the high expression of IgG antibody isotype-related
genes; 2) a T cell/natural killer cell-specific population
(T/NK) likely reflecting a predominantly Th1-type func-
tional orientation; and 3) a monocyte/dendritic cell popu-
lation (M/D) marked by the expression of myeloid specific
markers and a host of major histocompatibility complex
(MHC) class II antigen-presenting molecules. Each of
these signatures was found to be significantly and posi-
tively associated with DMFS of patients. This protective
effect, however, was mostly restricted to highly proli-
ferative cancers of the basal-like, HER2-enriched and
luminal B (LumB) intrinsic molecular subtypes. By
contrast, the same immune signatures exhibited little
to no protective effect in tumors of low or intermediate
proliferative potential or those classified as luminal A
(LumA) or claudin-low (CL) subtypes. In the present
work, we sought to evaluate the therapy-predictive
potential of these immune metagenes in the context of
neoadjuvant chemotherapy for breast cancer, and in the
presence of other covariates such as proliferation and
intrinsic molecular subtype.



Table 1 Clinical characteristics of the neo-adjuvant cohort

Characteristic MDACC-701

Number Percentage

Age at diagnosis, years

≤40 134 19

41-50 247 35

>50 320 46

Chemotherapy type

FAC 74 11

FAC + paclitaxel 236 34

FAC + docetaxel 61 9

FEC 33 5

FEC + paclitaxel 73 10

Paclitaxel 65 9

Docetaxel 39 6

Unspecified 120 17

Chemotherapy response

pCR or RCB 0,1 188 27

No pCR or RCB 2,3 492 70

Unspecified 21 3

Estrogen receptor status

Positive 385 55

Negative 300 43

Unspecified 16 2

HER2/neu status

Positive 65 9

Negative 561 80

Unspecified 75 11

Intrinsic subtypes

Basal 211 30

LumA 216 31

LumB 135 19

HER2-E 74 11

Claudin-low 47 7

Normal-like 16 2

Unspecified 2 0.3

FAC = cyclophosphamide, doxorubicin, 5-FU; FEC =5-FU, epirubicin,
cyclophosphamide; HER2-E, HER2-enriched; LumA = luminal A; LumB = luminal
B; pCR = complete pathologic response; RCB = residual cancer burden.
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Methods
Microarray data origination and patient characteristics
We assembled a retrospective microarray database
(MDACC-701) of breast tumor expression profiles derived
from five well-curated, publicly available datasets housed
in the NCBI’s Gene Expression Omnibus (GEO). The
dataset accession numbers are GSE25066, GSE20194,
GSE20271, GSE22093 and GSE23988. Specific details of
the patient cohorts are described elsewhere [42,48-51]
and summarized below. All microarray experiments
pertaining to these datasets were conducted at the
Department of Pathology, MD Anderson Cancer Center
(MDACC), Houston, Texas, as part of several inter-
national and multicenter studies conducted between
2000 and 2010. According to previously published re-
ports [48-51] for each study the research protocol was
approved by one or more institutional review boards,
and all participating patients provided written informed
consent consistent with the principles of the Declar-
ation of Helsinki. Expression profiles were generated
from RNA samples isolated from fine needle aspirates
(FNAs) or needle core biopsies of breast tumors (stage I
to III) collected prior to treatment with neoadjuvant
chemotherapy. All RNA samples were analyzed on the
Affymetrix U133A or U133 PLUS 2.0 GeneChip plat-
forms. In multiple instances, a tumor expression profile
was associated with more than one GEO dataset. To
create MDACC-701, we downloaded a total of 1,128
tumor profiles from the five datasets then filtered for
the unique (nonredundant) profiles using a custom
script to measure correlations between all pair-wise
combinations. In this manner, redundant profiles (that
is, tumor profiles included in more than one dataset)
and hybridization repeats could be identified by virtue of
high (or perfect) pair-wise correlations. After consolidating
the unique profiles, we further excluded a small number
of outlier arrays (n = 7) based on low signal intensity dis-
tributions. Upon completion of filtering, 701 tumor ex-
pression profiles remained. Microarray probe sets were
filtered to include only those common to both array plat-
forms (22,277 probe sets). Corresponding patient and clin-
ical characteristics were obtained from supplemental data
associated with the original publications or from data as-
sociated with the GEO accessions. For redundant profiles,
comparison of data entries across the different clinical
data sources revealed a small number of discrepancies. In
these instances, the discordant clinical data points were
re-labeled as 'uncertain' and censored from our analyses.
Patient and clinical characteristics of MDACC-701 are
summarized in Table 1 and consolidated on a per-sample
basis in Additional file 1. Of note, none of the tumor ex-
pression profiles of MDACC-701 overlap with the datasets
used to discover and characterize the immune metagenes
in Nagalla et al. [36].
Microarray data processing
The tumor expression profiles were normalized by the
Robust Multi-array Average (RMA) algorithm [52] using
R software and the Affy package library file from the
Bioconductor project [53]. Normalization was per-
formed within each dataset, and normalized expression
values (log2 signal intensities) were corrected for batch
effects across datasets using the COMBAT empirical
Bayes method [54]. PAM50 subtypes (including the CL



Table 2 Logistic regression analysis for associations with
tumor response, with and without adjustment for the
proliferation metagene and subtype

Variable Odds ratio P-valueb Adjusted odds ratioc P-value

(95% CI)a (95% CI)

B/P 1.60 (1.35-1.89) <0.0001 1.41 (1.18-1.69) 0.0002

T/NK 1.59 (1.32-2.05) 0.0004 1.66 (1.23-2.25) 0.001

M/D 1.69 (1.35-2.11) <0.0001 1.66 (1.28-2.15) 0.0001

P 2.54 (1.90-3.41) <0.0001 - -

Subtyped - <0.0001 - -

B/P = B cells/plasma B cells; CL, Clauin-Low subtype; CI = confidence interval;
LumA= Luminal A; LumB= Luminal B; M/D =monocyte/dendritic cell population;
T/NK = T cell/natural killer cell-specific population; P = proliferation.
a95% confidence interval. bLikelihood ratio test P-value. cAdjustment for P
metagene as a continuous variable and subtype as a categorical variable.
dOdds ratios (versus normal subtype) and 95% CI and P-value for each subtype
are: basal-like (1.33; 0.43-4.10; 0.0006), CL (1.12; 0.32-3.87; 0.13), HER2-enriched
(1.08; 0.33-3.56; 0.10), LumA (0.18, 0.06-0.60; <0.0001) and LumB
(0.55; 0.17-1.75; 0.16).
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classification) were assigned to each sample using pre-
viously published methodology [36,55-57].

Metagene construction
A summary of the content of the individual metagenes is
as follows: proliferation (P) metagene (61 probe sets, 54
genes), B/P metagene (65 probe sets, 40 genes), T/NK
metagene (52 probe sets, 46 genes) and the M/D meta-
gene (30 probe sets, 19 genes). The proliferation and
immune metagenes were constructed as described in
Nagalla et al. [36] based on the probe set and gene
name assignments listed in Additional File six of that
publication. The probe sets 200904_at, 204834_at and
211742_s_at, which overlapped between the T/NK and
M/D metagenes, were excluded to enhance distinction
between metagenes. Metagene scores were computed
for each tumor by averaging the signal intensities of the
genes comprising each metagene as described previ-
ously [36]. When multiple probe sets corresponded to
the same gene designation, these probe sets were aver-
aged first, prior to cross-gene averaging of signal inten-
sities. Tumors were grouped into metagene tertiles by
ranking tumors by metagene scores and identifying the
33rd and 66th percentile thresholds. As the cellular
composition of a tumor biopsy can differ depending on
the tissue sampling method used [58], we sought to
compare the metagene score distributions between the
surgically acquired tumor specimens that we previously
used to derive the metagenes (n = 1,954 tumor samples)
[36] and the confirmed FNA biopsy samples that com-
prise the majority of the current study (n = 482 tumor
samples). Both microarray datasets were quantile nor-
malized by the RMA method [52] and similarly cor-
rected for batch effects [54] prior to computing the
proliferation and immune metagene scores. The log2
transformed metagene scores were then mean-centered
and their distributions examined by boxplot analysis
(Additional file 2). While not identical, the major fea-
tures of the metagene distributions appeared largely
conserved between the surgical and FNA specimens,
suggesting their general comparability to one another.

Statistical analyses
In the panel of 680 cases having tumor response data, a
series of simple logistic regression models were fit exam-
ining each of the metagenes (B/P, T/NK, M/D and P)
and subtype separately to determine associations with
tumor response (odds ratio and 95% confidence interval)
(Table 2). Metagenes were entered as continuous variables
and subtype was entered as a categorical variable unless
otherwise specified. We next examined each immune meta-
gene’s association with tumor response while adjusting for
proliferation and subtype (Table 2). We then stratified the
data into tertiles based on the proliferation metagene and
once again examined each immune metagene’s associ-
ation with tumor response (Table 3). Next, we fit a step-
wise logistic regression model within each tertile to see
whether one (or more) metagenes were independently
associated with tumor response. We then examined the
association of each immune metagene with tumor re-
sponse separately by each cancer subtype (basal-like, CL,
HER2-enriched (HER2-E), LumB, and LumA; Table 4). In
addition, we used a chi-square test to determine whether
there was a relationship between treatment type and
tumor response. Finally, we fit two stepwise logistic
regression models to predict tumor response with 6 or 11
potential predictor variables: estrogen receptor (ER) status,
the P metagene, BP, TNK, and MD metagenes and tumor
subtype considered as one six-level categorical variable
(Table 5) or tumor subtype considered as six individual
binary variables (that is, LumA yes/no, LumB yes/no, and
so on) (Table 6). Analyses were performed using SAS
version 9.3 (SAS Institute Inc., Cary, NC, USA).

Results
We assembled a microarray database of gene expression
profiles of breast tumor biopsies from a multicenter
meta-cohort of 701 breast tumor patients who received
neoadjuvant chemotherapy (Table 1). From this data-
base, we re-constructed the three immune metagenes
(B/P, T/NK and M/D) and a proliferation (P) metagene
as previously described [36] and as outlined in the
Methods section. Briefly, a metagene is defined as a clus-
ter of coordinately expressed gene transcripts whose
expression levels, within a tumor, can be averaged to
generate a single metagene score that reflects the com-
posite transcriptional activity level of the gene cluster
[32,36]. In Nagalla et al. [36] we found that these scores
(for each of the three immune metagenes) exhibited



Table 3 Univariate response analysis of metagenes
stratified by proliferation tertile

Variablea Odds ratio P-value

(95% CI)

PL n = 222 (pr = 20, nr = 202)

B/P 1.96 (1.30-2.93) 0.001

T/NK 1.70 (1.04-2.77) 0.03

M/D 1.64 (1.00-2.71) 0.51

PI n = 230 (pr = 48, nr = 182)

B/P 1.39 (1.06-1.83) 0.02

T/NK 2.17 (1.30-3.61) 0.003

M/D 1.95 (1.30-2.93) 0.001

PH n = 228 (pr = 82, nr = 146)

B/P 1.50 (1.15-1.96) 0.003

T/NK 1.96 (1.24-3.07) 0.004

M/D 1.96 (1.37-2.82) 0.0002

B/P = B cells/plasma B cells; CI = confidence interval; M/D =monocyte/dendritic
cell population; PH = high proliferation tertile; PI = intermediate proliferation
tertile; PL = low proliferation tertile; T/NK = T cell/natural killer cell-specific
population.
aFor each tertile, 'n' is the number of cases in specified proliferation tertile, 'pr'
is the number of responders, and 'nr' is the number of nonresponders.

Table 4 Univariate response analysis of metagenes
stratified by subtype

Variablea Odds ratio P-value

(95% CI)

Basal-like n = 205 (pr = 72, nr = 133)

B/P 1.26 (0.95-1.68) 0.12

T/NK 1.53 (0.93-2.51) 0.09

M/D 1.66 (1.15-2.39) 0.007

Claudin-low n = 47 (pr = 17, nr = 30)

B/P 1.92 (1.10-3.34) 0.02

T/NK 2.08 (0.80-5.47) 0.14

M/D 1.11 (0.43-2.86) 0.82

HER2-E n = 72 (pr = 26, nr = 46)

B/P 1.31 (0.84-2.04) 0.23

T/NK 0.83 ( 0.36-1.92) 0.67

M/D 1.19 (0.54-2.59) 0.67

LumB n = 133 (pr = 23, nr = 110)

B/P 1.33 (0.93-1.89) 0.11

T/NK 1.44 ( 0.86-2.42) 0.16

M/D 1.71(1.01-2.91) 0.05

LumA n = 207 (pr = 7, nr = 200)

B/P 1.52 (0.82-2.83) 0.19

T/NK 1.16 (0.52-2.60) 0.72

M/D 0.93 (0.43-2.02) 0.85

B/P = B cells/plasma B cells; CI = confidence interval; HER2-E, HER2-enriched;
LumA= Luminal A; LumB= Luminal B; M/D =monocyte/dendritic cell population;
T/NK = T cell/natural killer cell-specific population.
aFor each subtype, 'n' is the number of cases, 'pr' is the number of responders,
and 'nr' is the number of nonresponders.
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prognostic value by Cox regression analysis, with high
metagene scores associated with prolonged patient
DMFS. The prognostic value, however, was largely re-
stricted to the highly proliferative tumors defined by the
upper tertile of the proliferation metagene scores (that
is, the most proliferative tumors).
To determine the therapy-predictive value of the im-

mune metagene scores in the neoadjuvant setting, we
used simple (that is, single explanatory variable) logistic
regression models to examine each metagene, individu-
ally, followed by multiple (that is, multiple explanatory
variables) logistic regression to measure associations be-
tween immune metagenes, the P metagene, tumor sub-
type and tumor response to chemotherapy. Measures of
tumor response were based on previously assigned scores
of RCB (0 = complete pathologic response, 1 =minimal
residual disease, 2 =moderate residual disease and 3 =
extensive residual disease) or determination of the pres-
ence or absence of a clinical pCR. Tumors with RCB
scores of 0 or 1, or that achieved a pCR (in the absence of
assigned RCB scores) were coded as '1' to designate a posi-
tive response; all other instances were coded as '0' to des-
ignate a negative response. In the group of 680 patients
annotated for tumor response, univariate analyses revealed
highly significant associations between tumor response
and all five covariates (the immune metagenes, the P
metagene and intrinsic subtype) with high immune and P
metagene scores, and basal-like subtype, being associated
positively with tumor response, and LumA subtype being
associated with negative tumor response (Table 2).
Next, we investigated the dependence of the therapy-
predictive performance of the immune metagenes on
tumor proliferative capacity and molecular subtype. First,
we examined the association of each metagene with tumor
response while adjusting for the proliferation metagene
and subtype. As shown in Table 2, the adjusted odds ratios
for each immune metagene remained highly significant,
indicating that each metagene contributes additive pre-
dictive information independent of proliferation and sub-
type, and is not simply recapitulating information about
tumor response already conveyed by those variables. To
examine this more closely, we next stratified cases into
proliferation (P) tertiles (low (PL), intermediate (PI) and
high (PH)) and the association of each immune metagene
with tumor response was examined as a function of P
tertile (Table 3). Significant positive associations were
observed for all immune metagenes within each of the
three P tertiles, with the exception of the M/D metagene
in the PL tertile. We then fit three stepwise multiple logis-
tic regression models, one for each P tertile, to determine
whether or not multiple metagenes would retain signifi-
cance in a single model. We found that only one immune



Table 5 Stepwise model with intrinsic subtype entered as
categorical variable

Variable Odds ratio P-value

(n = 662) (95% CI)

P 2.28 (1.64-3.18) <0.0001

ER statusa 2.14 (1.45-3.18) 0.0002

M/D 1.49 (1.12-1.99) 0.0065

B/P 1.24 (1.01-1.54) 0.045

B/P = B cells/plasma B cells; ER = estrogen receptor; M/D =monocyte/dendritic
cell population; P = proliferation.
aBinary variable (negative versus positive).
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metagene achieved significance in each P tertile. In the
PL tertile, only the B/P metagene remained significant
(P = 0.001), while only the M/D metagene remained sig-
nificant in the PI and PH tertiles (P = 0.001 and P = 0.0002,
respectively). This result reflects the degree of collinearity
between the three immune metagenes, particularly M/D
and T/NK, which have a Spearman correlation of 0.80
(Additional file 3). We next investigated the predictive
value of the metagenes in the context of the intrinsic
molecular subtypes, as we previously observed the prog-
nostic value of the metagenes to segregate most signifi-
cantly with the basal, HER2-E and LumB subtypes [36].
As shown in Table 4, the M/D and B/P metagenes
achieved statistical significance in certain subtypes, des-
pite potential limitations owing to variability in sample
size. While all three metagenes trended towards signifi-
cant positive associations with tumor response in the
basal and LumB subtypes, only the M/D metagene
achieved a significant association in these two subtypes.
By contrast, the B/P metagene achieved significance in
the CL subtype despite small sample size. None of the
metagenes displayed a significant association within the
HER2-E and LumA subtypes.
Based on reports that indicate an immuno-modulatory

role for anthracyclines and taxanes [59-62], we investi-
gated the possible impact of exposure to these drugs in
relation to tumor response. Using a chi-square test, we
examined a 4 × 2 table (treatment by response) to see
whether a relationship existed between treatment type
and tumor response in this meta-cohort. No statistically
Table 6 Stepwise model with intrinsic subtype entered as
individual variables

Variable Odds ratio P-value

(n = 662) (95% CI)

M/D 1.64 (1.28-2.11) <0.0001

P 1.97 (1.36-2.85) 0.0003

ER statusa 1.90 (1.26-2.88) 0.002

LumAa 1.94 (1.03-3.66) 0.04

ER = estrogen receptor; LumA = Luminal A; M/D =monocyte/dendritic cell
population; P = proliferation.
aBinary variable (negative versus positive).
significant association was observed. Furthermore, treat-
ment type did not mediate the observed associations
between individual metagenes and tumor response (data
not shown).
To better understand the predictive value of the im-

mune metagenes in the presence of other clinical and
predictive covariates, we fit multiple logistic regression
models on the 662 cases with complete annotation for
the variables listed below. Specifically, we fit two
stepwise logistic regression models to predict tumor
response using either 6 or 11 potential predictor vari-
ables: ER status, P, B/P, TN/K, and M/D metagenes,
and tumor subtype considered as one six-level categor-
ical variable (Table 5) or tumor subtype considered as
six individual binary variables (Table 6). The goal of
this analysis was to identify a subset of variables that
retained a significant association with tumor response
when included together in the logistic regression model.
When subtype was considered as one categorical variable,
we found that ER status, P, M/D, and B/P metagenes all
were retained in the model as statistically significant
predictors of tumor response (P <0.05). However, when
we re-fit the model with subtypes entered as individual
binary variables, we found that the LumA subtype was
added as a statistically significant predictor, along with
ER status, P and M/D metagenes. In this model, B/P
was no longer statistically significant (P >0.05) and was
not selected for inclusion by the stepwise procedure.
Despite these differences between the two stepwise
logistic regression models, both showed a strong and
consistent association of ER status, P and M/D meta-
genes (P <0.007 for all variables) with tumor response,
suggesting that these variables each explain different
aspects of tumor response to neoadjuvant chemotherapy.

Discussion
Over the past decade, a number of tumor expression
profiling studies have identified transcriptomic signa-
tures unique to tumor-infiltrating immune cells. Often
revealed by hierarchical clustering techniques or out-
come correlation studies, these signatures distinguish
multiple different immune cell types [32-37] and recapitu-
late immunohistochemistry-based observations in breast
cancer that link tumor-infiltrating immune cell abundance
to disease-free survival and overall survival of patients
[30,36-42]. More recently, similar studies involving pre-
surgical breast tumor biopsies have begun to demonstrate
associations between immunity-related genes and tumor re-
sponsiveness to neoadjuvant chemotherapy [22,44,45,63,64].
However, a unified understanding of how immunity-related
genes relate to both patient prognosis and therapy predic-
tion has yet to be addressed. In Nagalla et al. [36], we
recently reported the discovery of three immune metagenes
with highly significant and independent associations with
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patient DMFS; however, the significance of these associ-
ations was found to depend largely on tumor prolifera-
tive capacity and intrinsic molecular subtype. In the
current study, we hypothesized that the same immune
metagenes may exhibit similarly significant associations
with tumor response to neoadjuvant chemotherapy. To
test this hypothesis, we analyzed a collection of 701
microarray expression profiles of primary breast tumor
biopsies and corresponding clinical data, including tumor
responsiveness to neoadjuvant chemotherapy. Overall, we
found that each of the immune metagenes, B/P, T/NK and
M/D, was highly significantly and positively associated
with tumor response (Table 2), thereby confirming the
duality of their roles as biomarkers of favorable outcome
in both patient prognosis and therapy prediction.
However, certain biological variables that influence

the strength of these associations were found to vary
between the prognostic and therapy-predictive settings.
Whereas the prognostic performance of the immune
metagenes observed in Nagalla et al. [36] was found to
be mostly restricted to highly proliferative tumors (PH),
this was not the case for their therapy-predictive per-
formance. With the exception of the M/D metagene,
which did not reach significance in the PL tertile, all
metagenes were found to be significantly associated with
positive tumor response in each of the proliferation
tertiles and with similar odds ratios (Table 3). In multi-
variate analysis, we observed mostly collinear relation-
ships among the metagenes, with only single metagenes
retaining significance in each proliferation tertile. Spe-
cifically, only the B/P metagene remained significant in
the PL tertile, while only the M/D metagene remained
significant in the PI and PH tertiles. Taken together,
these observations suggest that tumor proliferative cap-
acity may modify the prognostic and therapy-predictive
potentials of the immune metagenes in fundamentally
different ways. While the prognostic attributes of the
immune metagenes (but not their therapy-predictive
attributes) exhibit dependency on a high proliferative
capacity, the predominating therapy-predictive power of
the immune metagenes may vary from one immune
compartment to another in a proliferation-dependent
manner (for example, B/P versus M/D).
With respect to intrinsic molecular subtypes, the

therapy-predictive associations could not be resolved to
the same degree as that of the prognostic associations
observed in Nagalla et al. due to smaller sample sizes
that prevented simultaneous stratification by both sub-
type and proliferation tertile. However, stratification
by subtype alone did reveal several interesting therapy-
predictive associations (Table 4). First, the majority of
odds ratios trended toward positive and significant tumor
responses in three subtypes - basal-like, LumB and CL -
while showing few to no associations in the HER2-E and
LumA subtypes. Similarly, in Nagalla et al., we found
that the immune metagenes were strongly associated
with favorable DMFS in the majority of basal-like and
LumB tumors, but not LumA tumors. By contrast, how-
ever, in Nagalla et al. we observed that the immune
metagenes were not associated with prognosis in CL
tumors, not as a whole, nor when partitioned into pro-
liferation tertiles. Interestingly, these findings may indicate
that CL tumors exemplify a condition wherein the prog-
nostic and therapy-predictive roles of the immune
metagenes diverge, rather than parallel one another.
However, given the paucity of CL tumors represented in
our microarray dataset, this hypothesis warrants further
investigation in larger sample populations. Another
discordant observation pertained to the HER2-E tumor
subtype. While the immune metagenes were prognostic
of DMFS in the majority of HER2-E tumors analyzed
(that is, the PH population), we did not observe a paral-
lel association with tumor response in HER2-E tumors
in the current study. Whether this observation would
hold true in the PH subpopulation of HER2-E tumors
could not be determined due to limiting sample size.
Taken together, these observations indicate that while

the immune metagenes are associated with both patient
prognosis and chemotherapy response, the tumor prop-
erties that influence these associations (proliferation and
subtype) are not consistent in their effects. A plausible
explanation may relate to the anti-tumor biology mir-
rored by the immune metagenes and the impact of
chemotherapy on tumor immunogenicity. As surrogate
markers of immune cell abundance, and by virtue of
their positive associations with both DMFS and chemo-
therapy response, the immune metagenes appear to
reflect the anti-tumor potential of the host immune
system. Neoadjuvant chemotherapy is known to impact
tumor-specific immune responses in various ways.
Central among these is the ability of chemotherapy to
enhance tumor-specific immunogenicity. For example,
chemotherapy-induced cell death can trigger the release of
tumor-associated antigens or cell death-associated mole-
cules leading to a cascade of anti-tumor immune responses
that can contribute to tumor regression [16,65,66]. Alterna-
tively, chemotherapeutic agents are known to exert a
variety of other immunostimulatory effects, including:
1) induction of MHC class I expression and subsequent
presentation of tumor antigens [67]; 2) increased ex-
pression of ligands that stimulate tumor-reactive activa-
tion of NK and cytotoxic T cells [68,69]; 3) induction of
tumor-expressing death receptors responsive to ligands
expressed by immune effectors [70]; and 4) the deple-
tion or inactivation of tumor-protective regulatory T
cells [71,72]. In the neoadjuvant setting, such mecha-
nisms of chemotherapy-induced immunogenicity may
operate independent of tumor proliferation rate and
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intrinsic molecular subtype. Thus, while it remains
uncertain as to why the prognostic power of the im-
mune metagenes is restricted to highly proliferative
breast tumors and certain molecular subtypes [36],
their therapy-predictive power may be influenced more by
the prevalence of chemotherapy-induced immunogenic
mechanisms than by tumor phenotypes that dictate im-
munogenic potential in the absence of neoadjuvant
treatment.
As our study involved the comparison of gene expres-

sion metrics between prognostic and therapy-predictive
settings, an underlying assumption was that microarray
expression profiles are comparable between different
types of tissue biopsies - namely surgical tumor biopsies
(SURGbx) obtained at tumor resection (that is, the basis
for our previous prognostic observations) and fine-
needle aspirate biopsies (FNAbx) or core biopsies (Cbx)
obtained prior to surgery (the basis for our current
therapy-predictive observations). Previously, Symmans
and colleagues compared the cellular compositions and
expression profiles between breast FNAbx and Cbx [58].
They reported similar proportions of immune cell infil-
trates (on average, 15% (FNAbx) and 20% (Cbx)) but
discordant proportions of malignant epithelial cells
(80% (FNAbx) versus 50% (Cbx)) and stromal cells (5%
(FNAbx) versus 30% (Cbx)). While unsupervised hier-
archical clustering revealed a high degree of gene correl-
ation between patient-matched FNA and core biopsies
overall, disproportionate cell compositions among biopsy
types were shown to result in skewed distributions for
certain cell type-specific gene expression patterns.
Whether this is true for SURGbx and FNAbx has, to
our knowledge, not been investigated. The proliferation
and immune metagenes examined in our current study
derived predominantly from expression profiles of FNAbx
(confirmed for 69% of samples (n = 482)) but also included
a smaller unspecified number of Cbx intermixed with
FNAbx (31% of samples). In Nagalla et al. [36] we defined
and characterized the metagenes based solely on SURGbx
specimens (n = 1,954). Thus, we used this opportunity
to compare and contrast metagene score distributions
between the SURGbx and FNAbx microarray datasets
by box and whisker plot analysis (Additional file 2). In
each metagene comparison, both the interquartile ranges
(boxes) and the spreads among the lower and upper
quartiles (whiskers) showed good concordance between
FNAbx and SURGbx datasets, suggesting that the distri-
butions of the proliferation and immune metagenes are
fairly comparable among these different biopsy types.
Nevertheless, a more rigorous investigation of the im-
pact of biopsy method on gene expression dynamics
would be warranted for clinical diagnostic applications.
To date, the published data on immune gene signatures

predictive of breast tumor response to neoadjuvant
chemotherapy derives from four studies that have
focused mainly on genes implicated in the biology of
tumor infiltrating lymphocytes [22,44,45,64]. Surpris-
ingly, we observed very little overlap between these
four published gene sets and our immune metagenes.
The greatest overlap was seen with our T/NK meta-
gene. Of the 46 genes comprising our T/NK metagene,
12 are included in one or more of the published gene
sets, with at least two T/NK genes overlapping with
each of the four gene sets. By contrast, however, only
one of the 40 genes comprising our B/P metagene, and
one of the 19 genes comprising our M/D metagene
showed overlap with a published gene set. Thus, we
conclude that the therapy-predictive attributes of the
B/P and MD metagenes are mostly unexplored, repre-
senting novel biomarkers of breast tumor response to
neoadjuvant chemotherapy.
By stepwise logistic regression, we discerned that the

M/D and B/P metagenes gave the most robust therapy-
predictive performances among the immune metagenes.
In a similar vein, both the B/P and M/D metagenes were
strong and independent predictors of DMFS in Nagalla
et al., whereby the B/P metagene emerged as the most
significant immune covariate by multivariate analysis. In
the context of therapy prediction, however, the M/D
metagene prevailed as the most significant and additive
immunity-related covariate in the final multivariate model.
The genes comprising the M/D metagene are overex-

pressed in myeloid cell lineages and enriched for functions
associated with antigen processing and presentation [36].
Of the 19 genes comprising the M/D metagene, nine are
involved in MHC class II-mediated antigen presentation
(HLA-DRA, HLA-DRB1, HLA-DMA, HLA-DMB, HLA-
DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, CD74),
suggesting that antigen presentation may constitute the
driving biology behind the metagene’s therapy-predictive
power. While B cells also express MHC class II molecules,
the M/D metagene is absent of B cell markers but inclu-
sive of CSF1R, which encodes the classical macrophage
colony-stimulating factor receptor that controls growth
and differentiation of macrophages and dendritic cells
[73]. Thus, the biology underlying the M/D metagene
is consistent with a myeloid-driven, anti-tumor immune
response engendered by either macrophages (for ex-
ample, M1-polarized) or dendritic cells functionally ori-
ented towards tumor rejection. Dendritic cells (DCs)
are professional antigen presenting cells that coordinate
innate and adaptive immune responses to cancer. Dying
tumor cells, such as those succumbing to chemotherapy-
induced apoptosis, emit danger signals interpreted by DCs
as damage-associated molecular patterns (DAMPs) [74].
These signals can induce DC maturation, production of
pro-inflammatory cytokines, tumor cell engulfment and
subsequent processing and presentation of tumor antigens
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[15,75,76]. Moreover, anthracyclines and taxanes can
stimulate DC-mediated antigen presentation either indir-
ectly, through induction of a DC-responsive immunogenic
form of tumor cell death [16], or directly, through DC
exposure to chemotherapy (at low or noncytotoxic concen-
trations) resulting in the up-regulation of MHC and
co-stimulatory molecules on the surface of DCs [77]. These
observations, and in light of the prognostic and therapy-
predictive attributes of the M/D metagene described
herein, suggest the possibility that DC-based cancer vac-
cines [78] could synergize with conventional breast cancer
chemotherapeutics, and if administered in the neoadjuvant
setting, could prime a durable immunogenic response that
not only contributes to primary tumor regression but pro-
vides protection against recurrent disease.

Conclusion
Our findings demonstrate the existence of distinct tran-
scriptional footprints of infiltrating effector immune cell
subpopulations in breast tumors that are predictive of
both chemotherapeutic efficacy and reduced risk of meta-
static recurrence. From a biological perspective, these
metagenes underscore the important participation of
different arms of the immune system in the chemotherapy-
induced rejection of established breast tumors as well as
the prevention of distant recurrence in the presence or
absence of adjuvant treatment [36]. Furthermore, our work
indicates that antigen presentation may play a more prom-
inent role in the efficacy of neoadjuvant chemotherapy of
breast cancer than previously recognized, and may explain,
in part, the variability of pathologic response in the neoad-
juvant setting. As reporters of immunogenic potential, the
immune metagenes could have functionality as actionable
therapeutic markers, particularly in this era of expanding
immunotherapies. How the immune metagenes might be
harnessed to inform clinical decisions early in the thera-
peutic sequence warrants further investigation.
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Additional file 2: Comparison of metagene distributions by biopsy
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