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Computational approaches to interpreting
genomic sequence variation
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Abstract

Identifying sequence variants that play a mechanistic role in human disease and other phenotypes is a fundamental
goal in human genetics and will be important in translating the results of variation studies. Experimental validation
to confirm that a variant causes the biochemical changes responsible for a given disease or phenotype is
considered the gold standard, but this cannot currently be applied to the 3 million or so variants expected in an
individual genome. This has prompted the development of a wide variety of computational approaches that use
several different sources of information to identify functional variation. Here, we review and assess the limitations of
computational techniques for categorizing variants according to functional classes, prioritizing variants for experimental
follow-up and generating hypotheses about the possible molecular mechanisms to inform downstream experiments.
We discuss the main current bioinformatics approaches to identifying functional variation, including widely used
algorithms for coding variation such as SIFT and PolyPhen and also novel techniques for interpreting variation
across the genome.
The need for variant annotation
Modern genomics technologies are yielding extensive
catalogues of sequence variation. Substantial progress has
been made in identifying some of the genetic contribution
to disease, but for many of the genotype-phenotype asso-
ciations discovered, we do not yet understand the mole-
cular mechanisms by which the underlying sequence
variants are acting. To make sense of this vast amount of
data in a timely manner, high-throughput techniques are
required to filter and prioritize candidate variants on the
basis of the wide range of functional genomic data that
are currently available. Numerous computational ap-
proaches have been developed and applied in the search
for sequence variants that play a role in phenotypes of
interest. These methods vary substantially in their under-
lying algorithmic approaches, and these differences lead to
a number of considerations that should be taken into ac-
count when interpreting the results. This article discusses
a number of widely used approaches to variant annotation,
which we categorize according to the underlying algorith-
mic strategy. For each category, we discuss some of the
advantages and limitations of the approach.
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We first examine tools that identify overlaps with an-
notated functional genomic regions, such as genes and
regulatory elements, and software that leverages existing
biological knowledge to predict the effects of sequence
variation in these regions. A number of methods have
also been developed that use signatures of evolutionary
constraint to identify conserved regions where variation
is likely to be deleterious. Machine-learning techniques
that integrate diverse sources of information to predict
likely functional variants have also been widely applied
to interpret variation in coding regions, and recently
also variation in the non-coding regions of the genome.
Finally, several new methods aimed at discovering novel
trait associations that can incorporate functional infor-
mation are described. Although we have not attempted
to be exhaustive, all of the tools discussed, along with
relevant URLs and references, are listed in Table 1.

Approaches to annotation
Annotation based on overlap with and proximity to
functional elements
A great deal of recent work in genomics and molecular
biology has yielded rich and detailed annotation of the
genome. Projects such as GENCODE [1] and RefSeq [2]
continue to provide comprehensive annotation of both
protein-coding genes and several classes of non-coding
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Table 1 A summary of selected computational tools and their applications

Tool Application Comments URL Reference

Annotation based on overlap with and proximity to functional elements

Ensembl Genome
Browser

Manual variant annotation and
genomic context

Web server, data also available via
Perl and REST APIs

http://www.ensembl.org [10]

UCSC Genome
Browser

Manual variant annotation and
genomic context

Web server, data also available for
download using the UCSC table
browser

http://www.genome.ucsc.edu [11]

Bedtools Automatic high performance feature
overlap and proximity

Command line tool and Python
interface

http://bedtools.readthedocs.org [12]

Bedops Automatic high performance feature
overlap and proximity

Command line tool http://bedops.readthedocs.org [13]

HaploReg Web server identifying non-coding
annotations for variants and
haplotypes

Web server with pre-computed
results for several GWAS

http://www.broadinstitute.org/
mammals/haploreg/

[14]

Biologically informed rule-based annotation

Ensembl Variant
Effect Predictor (VEP)

Wide support for variant annotation,
emphasis on genic variants, but also
incorporates regulatory elements
and TF motifs from JASPAR

Downloadable software, web server,
Perl and REST APIs, plugin system to
add functionality

http://www.ensembl.org/vep [17]

ANNOVAR Annotation of genic variants, can
also identify overlaps with other
annotated elements

Downloadable software http://www.openbioinformatics.org/
annovar/

[18]

VAT Annotation of genic variants Downloadable software http://vat.gersteinlab.org [20]

SnpEff Annotation of genic variants,
companion tool SnpSift can filter
results by annotations

Downloadable software http://snpeff.sourceforge.net [19]

RegulomeDB Identifies overlaps with non-coding
elements and applies heuristic rules
to predict consequences

Web server http://regulome.stanford.edu [24]

Annotation based on sequence motifs

JASPAR Open access database of TF binding
PWMs

Queryable interface and database
downloads

http://jaspar.genereg.net [26]

MEME suite Several tools for handling PWMs Web services and downloadable
tools

http://meme.nbcr.net [27]

MOODS Tool for aligning PWMs to sequences Command line tool http://www.cs.helsinki.fi/group/
pssmfind/

[28]

Human Splicing
Finder

Tool for computing the effects of
mutations on splicing

Web server http://www.umd.be/HSF/ [29]

Annotation based on constraint estimated from multiple sequence alignments

GERP Nucleotide resolution conservation
scores

Downloadable software, pre-computed
scores and elements for human and
mouse genomes

http://mendel.stanford.edu/
SidowLab/downloads/gerp/

[31]

PHAST package Suite of tools for phylogenetic
analyses, including phastCons and
phyloP

Downloadable software and R
package

http://compgen.bscb.cornell.edu/
phast/

[32,33]

SCONE Position-specific conservation scores Downloadable software http://genetics.bwh.harvard.edu/
scone/

[34]

SIFT Predicts deleterious AASs) based on
conservation and physico-chemical
principles

Downloadable software and web
server

http://sift.bii.a-star.edu.sg [35]

FATHMM Uses a hidden Markov model to
identify AASs likely to be deleterious

Downloadable software and web
server, VEP plugin

http://fathmm.biocompute.org.uk [39]
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Table 1 A summary of selected computational tools and their applications (Continued)

Integrative approaches using supervised learning algorithms

PolyPhen Predicts deleterious AASs based on
several sequence and structural
features

Downloadable software and web
server, pre-computed predictions
for all possible substitutions

http://genetics.bwh.harvard.edu/
pph2/

[41]

MutationTaster Classifier which can predict deleterious
variants in genic regions, including
coding regions and splice sites

Web server http://www.mutationtaster.org [42]

MutationAssessor Predicts deleterious AASs based on
evolutionary conservation

Web server, pre-computed scores for
all possible substitutions

http://www.mutationassessor.org [43]

SNAP Predicts deleterious AASs based on a
range of protein level information

Downloadable software and web
server

http://www.rostlab.org/services/
SNAP/

[44]

PhD-SNP Predicts deleterious AASs based on
protein sequence information

Downloadable software and web
server

http://snps.biofold.org/phd-snp/ [45]

Condel Tool that integrates predictions from
multiple AAS prediction tools

Downloadable software and web
server, VEP plugin

http://bg.upf.edu/fannsdb/ [46]

CAROL Tool that integrates scores from SIFT and
PolyPhen using a weighted Z method

Downloadable R script, VEP plugin http://www.sanger.ac.uk/resources/
software/carol/

[47]

GWAVA Classifier identifying likely functional
regulatory variants

Downloadable software and database of
pre-computed scores and annotations
for known variants, VEP plugin

http://www.sanger.ac.uk/resources/
software/gwava/

[48]

CADD Integrated classifier that can score all
classes of variants

Web server, pre-computed scores for
all possible SNVs, VEP plugin

http://cadd.gs.washington.edu [51]

Phenotype association techniques that can incorporate functional information

fgwas Command line tool for incorporating
functional information into a GWAS

Downloadable software http://www.github.com/joepickrell/
fgwas

[52]

SKAT A test for association between a set
of variants and dichotomous or
quantitative phenotypes

Downloadable software http://www.hsph.harvard.edu/skat/ [53]

VT Tests for pooled association of
multiple rare variants and phenotypes

Downloadable software http://genetics.bwh.harvard.edu/vt/
dokuwiki/start

[54]

VAAST Probabilistic tool to identify causal
genes and variants in disease

Downloadable software, free for
academic use, license required for
commercial usage

http://www.yandell-lab.org/
software/vaast.html

[55,56]

Abbreviations: AAS amino acid substitution, API application programming interface, GWAS genome-wide association studies, PWM position weight matrix, REST representational
state transfer (an architecture style for designing networked applications), TF transcription factor, UCSC University of California Santa Cruz, VEP Variant Effect Predictor.
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transcripts. Genic variants have been implicated in a wide
range of genetic diseases, including sickle-cell disease,
phenylketonuria and cystic fibrosis [3]. The ENCODE
[4] and Roadmap Epigenomics [5] projects have ex-
panded annotation beyond genic regions and have made
available a wide range of annotations of regulatory ele-
ments in a range of different cell and tissue types. These
elements include regions of open chromatin, regions
marked by a range of histone modifications identifying
epigenetic states, and sequences bound by specific tran-
scription factors. Variation in regulatory elements has
historically received less attention than that in protein-
encoding regions, but the fact that the majority of vari-
ants associated with complex disease are found outside
of genes suggests that at least some associations may be
driven by variants that affect gene regulation [6]. Indeed,
several recent studies have implicated specific regulatory
variants in human diseases, such as type 2 diabetes [7],
systemic lupus erythematosus [8] and hemophilia [9].
When seeking to interpret sequence variation, one can
exploit the fact that all of the elements, both genic and
regulatory, that show variation are typically mapped to a
common genome assembly. Hence it is possible to iden-
tify functional elements that are overlapping or proximal
to mapped sequence variants. Where the numbers of
variants being investigated are low, such analyses can be
performed manually using genome browsers such as
Ensembl [10] and UCSC [11] by querying for variants by
database identifiers (such as dbSNP or refSNP IDs) or
by genomic position. For larger analyses, automated ap-
proaches are clearly required. Toolkits such as bedtools
[12] and bedops [13] implement efficient data structures
and algorithms to carry out these analyses on a genome
scale very quickly. Both packages take as input databases
of genomic elements in standard file formats, and sup-
port a range of useful operations such as computing
overlaps and differences between sets of elements and
identifying proximal elements. The webserver HaploReg
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[14] can also identify overlaps of variants and a wide
range of non-coding elements from the ENCODE and
Roadmap Epigenomics projects.
The identification of overlapping annotations can give

a sense of the genomic context of a variant, but it is also
important to consider in which elements variation might
be tolerated. Several recent studies using genome-wide
variation data from different human populations have
sought to identify informative annotations by looking at
patterns of variation overlapping a range of annotated
elements. Ward and Kellis [15] used variation data from
the 1000 Genomes Project to demonstrate that a wide
range of annotated elements, including non-coding re-
gions, show evidence of purifying selection in the human
lineage, and their results identify constrained regions
where sequence variation might be expected to be dele-
terious. Maurano et al. [16] used data identifying regions
of open chromatin from DNase-seq experiments in nu-
merous cell types and tissues. They demonstrated that
trait-associated variants from genome-wide association
studies (GWAS) are systematically enriched in open
chromatin in relevant cell types: for example, they
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identified a significant enrichment of variants associated
with Crohn’s disease, an autoimmune disorder, in re-
gions of open chromatin in immune cells. The results of
these and similar studies can be used to identify classes
of annotation that might be informative when studying
the effects of variation for some specific phenotype.

Biologically informed rule-based annotation
For some classes of genomic features, we have a relatively
rich understanding of the function of particular nucleotide
sequences, and this knowledge can be exploited to make
allele-specific predictions about the effect of variants that
overlap an element. For variants that fall within annotated
gene structures, an understanding of the genetic code and
splicing can be used to identify variants that change the
coding sequence or disrupt the essential splice sites at ei-
ther end of the intron (Figure 1). There are a number of
software packages that perform these analyses, including
the Ensembl Variant Effect Predictor (VEP) [17], ANNO-
VAR [18], SnpEff [19] and VAT [20]. As an example of the
methodology implemented in these tools, the VEP starts
with a predefined set of variant classifications (termed
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‘consequences’), each of which has an associated rule for
calling a consequence (which is expressed in the software).
For example, the rule to call a frameshift variant is that a
variant falls in coding sequence and that the absolute dif-
ference between the lengths of the reference and alterna-
tive alleles is not divisible by 3. The VEP systematically
checks all rules against the query variants and outputs all
consequence terms that hold for each variant. The VEP
also reports ancillary information identified as part of the
annotation process, such as predicted amino acid alter-
ations and protein and cDNA relative coordinates, which
could be useful in follow-up experiments.
Clearly, the predictions from such tools are heavily

dependent on the gene set used, and it is important to
realize that the human genome is still imperfectly anno-
tated [21]. McCarthy and colleagues [22] have demon-
strated that both the choice of gene set and software
package can result in substantially different annotation re-
sults for the same set of query variants. (In their study,
they compare the GENCODE and RefSeq gene sets, and
the VEP and ANNOVAR packages). Their results suggest
that there is still some ambiguity about how to assign
consequence predictions to variants in some contexts,
and efforts to define and standardize terms that are used
to describe these effects, such as the Sequence Ontology
[23], should help to improve the evaluation of different
packages.
The importance of specific sub-sequences within other

kinds of annotated regions, for example enhancer ele-
ments, is less well understood. Nevertheless, heuristic
rules can still be productively applied to identify consist-
ent combinations of annotations that are suggestive of
possible function. The RegulomeDB [24] webserver
identifies sequence variants that overlap with a wide
range of data from the ENCODE and NIH Roadmap
Epigenomics projects, transcription factor (TF) binding
motifs and variants known to be associated with differ-
ences in gene expression (expression quantitative trait
loci (eQTLs)). RegulomeDB uses all observed overlaps
for a variant to assign it a score that is dependent on the
consistency and specificity of the annotations. Thus, a
variant overlapping a known eQTL, a TF motif and evi-
dence for the binding of that specific TF (from a ChIP-
seq experiment, for example) will be assigned a higher
score than a variant that is only found to overlap a re-
gion of open chromatin.
Rule-based approaches are appealing in that they pro-

vide testable hypotheses regarding variant function, but
they are of course limited by our current models of the
function of genomic elements and so cannot identify vari-
ants acting in unexpected ways. Current implementations,
especially those for genic variants, typically do not con-
sider information about the relevant tissue or develop-
mental stage in which the element might be important.
For example, a variant that is predicted to terminate a
coding sequence prematurely might have little effect if
the relevant transcript is not expressed in a given tissue.
Incorporating functional genomic data, such as expres-
sion levels in the tissue(s) of interest, with annotation
results is therefore advised if possible. Population genetic
data also indicate that some predicted ‘loss-of-function’
variants (Figure 1 legend) are also common in human
populations: it has been predicted that a typical human is
homozygous for approximately 20 such variants [25]. This
perhaps surprising result suggests that not all variants that
are predicted to truncate proteins have any significant
phenotypic impact, and that we should be cautious in ap-
plying general rules about biological function across the
genome.
Annotation based on sequence motifs
Sequence motifs are recurring patterns in genomic se-
quence and are frequently used to describe the sequence
preferences of proteins that bind to DNA or transcribed
RNA sequences. For example, TFs are proteins that are
involved in gene regulation and which bind to DNA ac-
cording to specific sequence preferences. Binding prefer-
ences can be represented using a position weight matrix
(PWM), which summarizes alignments of experimentally
bound regions and represents the probability of each nu-
cleotide occurring at each position in the binding site.
The JASPAR database [26] is the largest open-access col-
lection of PWMs with over 200 non-redundant profiles
for vertebrate TFs. Software such as the MEME suite
[27] and MOODS [28] can use these matrices to scan
new sequences for regions that match the PWM, typic-
ally using a certain score threshold to call a site. PWMs
can be represented figuratively with sequence logos,
which identify the positions of high information content
in the motif (Figure 2). PWMs have also been applied in
modeling splicing signals beyond the ‘essential’ two-
base-pair splice sites at either end of introns (known as
the splice donor and acceptor sites; Figure 1) as there
are still substantial sequence preferences in the flanking
regions, which serve to guide the splicing machinery.
Given that a variant is observed to overlap a particular

motif, a fairly specific prediction can be made about
whether the variant results in the underlying sequence
being closer or further from the sequence represented
by the PWM (Figure 2). Desmet et al. [29] describe a
webserver called the Human Splicing Finder that uses
PWMs to predict the effect of different alleles on spli-
cing motifs. In addition, the Ensembl VEP can be config-
ured to identify variants that overlap TF motifs from the
JASPAR database when aligned under matched ChIP-seq
peaks and computes the difference in score between the
reference and alternative alleles.



Figure 2 A sequence logo for the transcriptional factor CTCF
derived from binding site predictions from Ensembl on human
chromosome 22. The height of the letters represents information
content at each position. For example, if a particular nucleotide is
always found at a given position, it will have the maximal height
and information content, while if a position has all four nucleotides
at equal frequencies, it will have a minimal height and no information
content. One instance of a motif alignment is shown, which contains a
variant at a high information position (boxed). The alternative allele at
this position, A, results in a sequence more different from the motif
represented by the PWM as measured by the motif score.
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A caveat with these analyses, however, is that motifs
that have low information content, either because they
are short or because they have relatively low sequence
specificity, will align to numerous places in a genome as
large as human, so further contextual evidence, such as
evidence of the relevant protein binding, is important to
reduce false positives. It is also the case that motif score
changes and physical differences in binding affinities are
not perfectly correlated, reflecting the fact that sequence
motifs are an imperfect model of biophysical binding
preferences [30].

Annotation based on constraint estimated from multiple
sequence alignments
Evolutionary theory predicts that deleterious variation in
regions of the genome that are important for fitness will
be selected against. Consequently, over evolutionary
time, such regions will appear conserved compared with
neutral regions. Measures of conservation can be used
to identify regions of the genome where variation is ex-
pected to be more deleterious, even in the absence of
specific annotations of functional elements.
Several methods have been developed to identify evo-

lutionary conservation in both DNA and protein se-
quences based on aligning homologous sequences from
different species. For example, the Genomic Evolution-
ary Rate Profiling (GERP) algorithm [31] is a widely
used method for estimating constraint in genomic se-
quences as it can assign conservation scores to specific
nucleotides, which is clearly of importance when anno-
tating small-scale variation such as single-nucleotide
variants (SNVs). GERP starts with a multiple sequence
alignment (MSA) built from several species and analyses
each column of the alignment independently. The number
of observed substitutions is counted and then contrasted
with the ‘expected’ rate, computed by considering the
branch lengths of a phylogenetic tree estimated from neu-
tral sequences to compute the neutral divergence rate.
Nucleotide-resolution GERP scores can then be used to
identify runs of unexpectedly constrained sequence, which
can also be a useful regional annotation: these runs are de-
fined as ‘constrained elements’. PhastCons [32], from the
PHAST package, is another widely used approach to iden-
tifying conserved genomic regions and uses a phylogenetic
hidden Markov model (HMM) to segment a multiple
sequence alignment into conserved and non-conserved
regions. Scores for individual bases in the genome can
then be computed, with higher scores indicating a
higher probability that the base is in a conserved elem-
ent. Several other methods that can provide nucleotide-
resolution conservation scores have also been developed,
including phyloP [33], also from the PHAST package, and
SCONE [34].
Estimating constraint from MSA has been widely ap-

plied to predict whether a sequence variant resulting in
an amino acid substitution is likely to be deleterious.
The SIFT algorithm (for Sorts Intolerant From Tolerant
substitutions) [35] predicts whether a substitution at a
particular position in a protein sequence is expected to
be deleterious for protein function. It proceeds by build-
ing a protein MSA for a given query protein sequence
from closely related sequences from a database, such as
UniProt [36], using a sequence-matching algorithm such
as BLAST [37]. Probabilities for all possible substitutions
at each position are then computed to construct a
position-specific scoring matrix, where each entry in the
matrix represents the probability pca of observing amino
acid a in column c in the alignment. Pseudocounts, de-
rived from a statistical model of amino acid distributions
[38], are also incorporated into pca to account for the in-
completeness of the sequence database used. The entries
in the matrix are then normalized based on the consen-
sus amino acid (that is, that with the maximal pca) to
allow a single threshold value to be used for all columns.
Positions with normalized probabilities <0.05 are pre-
dicted to be deleterious (Figure 3). A recent method
called FATHMM [39] also uses an MSA to identify con-
served amino acid residues, but builds an HMM from
the MSA and computes the differences in model prob-
abilities between the wild-type and mutant residues to
estimate the impact of the substitution. FATHMM can
also incorporate ‘pathogenicity’ weights that are derived
from databases of disease-implicated variants to improve
predictions.
Conservation has proven to be an important signal for

variant annotation, but it is blind to adaptations that
have evolved since the last common ancestor of humans



Figure 3 A protein multiple alignment for the human GALP gene built from the SIFT alignment pipeline. Color intensity corresponds to
conservation in each column. Two variants that are predicted to alter the amino acid sequence (A/V and Y/H) are indicated by arrows and their
SIFT scores are presented. Note that SIFT scores ≤0.05 are predicted to be deleterious and other scores are predicted to be tolerated.
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and the other primates. This is particularly important to
consider for regulatory regions, which appear to evolve
much faster than protein-coding genes. For example,
Schmidt and colleagues [40] have found that most of the
binding sites for the TFs they study are species-specific,
even among vertebrates. Thus, while evidence that a
genomic region is highly conserved can suggest that a
variant might be deleterious, a lack of evidence of con-
servation in some specific genomic region does not ne-
cessarily imply that the region is not functional.

Integrative approaches using supervised learning
algorithms
The approaches discussed so far are based on using bio-
logical knowledge about the putative functions of par-
ticular genomic regions, or on the expectation that
conserved regions are functionally important, to predict
the effect of sequence variation. Rather than predefining
some specific set of annotations as informative about
variant consequences, an alternative approach is to at-
tempt to learn informative annotations, or combinations
of annotations, by comparing known functional variants
with variants for which there is no direct evidence of
functional consequences.
Several supervised machine-learning approaches have

applied this methodology to the task of predicting whether
a novel variant is likely to have some phenotypic conse-
quence. The central idea is to use a ‘training set’ of vari-
ants that are categorized as either ‘functional’ or ‘benign’
to identify features, or combinations of features, that can
be used to discriminate between the two classes and,
hopefully, that allow the accurate classification of unseen
variants.
This approach has been applied extensively in at-

tempts to determine whether variants that are predicted
to result in single amino acid substitutions (AASs),
known as missense or non-synonymous variants, might
be deleterious. This is an interesting class of variant as,
whereas some substitutions appear to be tolerable and
the underlying variants are common polymorphisms,
others have been implicated in a range of genetic dis-
eases such as cystic fibrosis, muscular dystrophy and
sickle cell anemia [3]. A widely used example of this
class of algorithm is PolyPhen [41], which incorporates a
measure of constraint from a protein MSA (known as
PSIC and somewhat similar to SIFT), along with infor-
mation about the position of the substituted amino acid
in a three-dimensional structure (if available), Pfam do-
mains and other data. The algorithm trains a naïve Bayes
classifier to use these features to discriminate between
common polymorphic substitutions and substitutions
with an annotated involvement in disease from UniProt.
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PolyPhen’s developers have found that the platform can
discriminate between these two classes of variants with
useful levels of accuracy. MutationTaster [42] uses the
same naïve Bayes algorithm as PolyPhen but can also
classify variants other than missense variants that can be
mapped to a transcript as the algorithm incorporates a
wider range of genic annotations, including conserva-
tion, splice sites and translation initiation signals.
There are also several other AAS prediction algorithms,

including MutationAssessor [43], SNAP [44] and PhD-
SNP [45], that take similar approaches but exploit dif-
ferent underlying features and training sets. Recently, a
number of methods, such as Condel [46] and CAROL
[47], have been developed to integrate the predictions of
multiple AAS tools.
Coding regions constitute only 1 to 2% of the genome,

however, and relatively little work has focused on pre-
dicting the consequences of variation in other genomic
regions. A recent method called GWAVA [48] applies a
similar methodology to non-coding variants. It trains a
Random Forest classifier [49] to discriminate between
regulatory variants that are implicated in disease from
the Human Gene Mutation Database [3] and control
variants from the 1000 Genomes Project [50] using a
wide range of annotations relevant to gene regulation,
including ENCODE project data, conservation scores
and genic context.
Another recent supervised learning method that aims

to identify likely functional variants across the genome is
CADD [51], which incorporates both genic and regula-
tory annotations. Instead of learning to discriminate be-
tween known functional variants and controls, CADD
uses a training set composed of variants that have be-
come fixed in the human lineage, and which therefore
presumably represent tolerable variation, and simulated
variants that are not observed in human populations.
This interesting approach means that, unlike the other
methods discussed above, CADD can take advantage of
a much larger training set and avoids ascertainment biases
associated with existing databases of known disease-
implicated variants.
Because these algorithms learn to identify combina-

tions of informative annotations they can potentially
identify variants acting via novel mechanisms, which
rule-based approaches such as those discussed earlier
would miss. However, a caveat with predictions from
most machine-learning algorithms is that they cannot
generally produce a human-understandable explanation
of the reason for a particular prediction. Such ap-
proaches are also prone to exploit any systematic biases
(such as an over-representation of variants from specific
genes) in their predictions. It is therefore important to
assess the performance on unseen data sets that were
not used for training.
Phenotype association techniques that can incorporate
functional information
Typically, the techniques discussed above are used after
an association analysis has been performed to identify
potential causal variants among those linked to the asso-
ciation signal, or to filter variants that have been shown
to segregate with disease in a pedigree study. By identify-
ing variants that are more likely to be involved in disease
a priori, these approaches can also potentially be used
to increase the power to detect association signals in
the first place. In a recent application to common dis-
ease genetics, Pickrell [52] developed an association
technique called fgwas that incorporates a wide range
of functional genomic annotations, and showed that the
approach identifies biologically consistent enrichment
of association signals in functional elements. Pickrell’s
technique builds a statistical model, linking variant an-
notations to the probability of trait association, that is
used to reweight the variants. The model gave a modest,
but potentially significant, increase in power to detect
associations in the 18 traits studied, which included
glucose levels, height, body mass index and Crohn’s
disease.
There has recently been much interest in assessing the

contribution of rare variants to complex diseases, such
as type 2 diabetes, arthritis and heart disease. This has
prompted the development of a range of techniques to
address the issue that the sample sizes required to reli-
ably detect associations using single-locus tests are still
prohibitive. One common approach to resolving this
problem is to test for the association with the phenotype
of a group of variants collectively rather than of each
variant individually. In this context, annotations can be
used to group variants according to similar biological
function, such as those falling in the same gene, or to
limit the work to coding variants only. SKAT [53] im-
plements this methodology and has increased power
to detect association if accurate prior ‘functionality’
weights can be assigned to the variants under consider-
ation. The VT Test [54] is a similar method that can
incorporate PolyPhen scores to up-weight probable
deleterious coding variants. Experiments on both simu-
lated and empirical data demonstrate that this approach
is effective in identifying phenotypical associations with
rare variants.
VAAST [55,56] is another technique that aggregates

information from multiple variants to identify the genes
and variants underlying genetic disease. VAAST uses in-
formation on allele frequencies in cases and controls,
and combines this with AAS scores for coding variants
in a likelihood framework to evaluate if a gene (or other
genomic element) contributes to disease risk. VAAST
also incorporates scores for non-coding variants based
on a conservation metric using a general framework,
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which could, in principle, incorporate scores from new
tools such as CADD and GWAVA. VAAST has recently
been successfully applied to identify the causal coding
variant for a lethal X-linked disorder [57].

Summary
The number of variants identified in the genome has
grown dramatically over the past several years, and this
rich dataset has both inspired and challenged efforts to
use computational techniques to functionally annotate
the so-called ‘variome’. Although considerable progress
is being made, in light of the limitations in the various
methodologies reviewed here, we suggest that careful inte-
gration of annotations and predictions from a range of tools
is a sensible strategy in practical variant-prioritization
scenarios. These techniques often offer complementary
information about possible functional mechanisms, and
the combined results can be used to inform and ge-
nerate hypotheses for subsequent validation. A further
general limitation of current techniques is that they
consider variants in isolation, whereas variants are not
inherited independently and their genomic background
might modulate any functional effects. We anticipate
that techniques that can consider the combined effects
of multiple variants will refine and improve predictions
of variant function.
As sequencing moves from research towards clinical

practice, it will become increasingly important that the
variant-analysis techniques in use are validated and bench-
marked for accuracy. The development of open-access da-
tabases of well-characterized variants associated with
specific phenotypes will be essential. Efforts such as the
Critical Assessment of Genome Interpretation (CAGI) ex-
periment, which sets variant prediction challenges and in-
vites predictions from all-comers, should also help to
increase the accuracy and quality of predictions through
collaborative competition. Technological advances in
developing experimentally tractable disease models,
such as induced pluripotent stem cells, and the ability
to induce mutations in specific regions, for example
with the CRISPR-Cas9 system [58], also offer promising
opportunities to assess the performance of computa-
tional predictions.
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