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Abstract

Background: Recent highly publicized cases of premature patient assignment into clinical trials, resulting
from non-reproducible omics analyses, have prompted many to call for a more thorough examination of
translational omics and highlighted the critical need for transparency and reproducibility to ensure patient
safety. The use of workflow platforms such as Galaxy and Taverna have greatly enhanced the use,
transparency and reproducibility of omics analysis pipelines in the research domain and would be an
invaluable tool in a clinical setting. However, the use of these workflow platforms requires deep domain
expertise that, particularly within the multi-disciplinary fields of translational and clinical omics, may not
always be present in a clinical setting. This lack of domain expertise may put patient safety at risk and make
these workflow platforms difficult to operationalize in a clinical setting. In contrast, semantic workflows are
a different class of workflow platform where resultant workflow runs are transparent, reproducible, and
semantically validated. Through semantic enforcement of all datasets, analyses and user-defined rules/
constraints, users are guided through each workflow run, enhancing analytical validity and patient safety.

Methods: To evaluate the effectiveness of semantic workflows within translational and clinical omics, we have
implemented a clinical omics pipeline for annotating DNA sequence variants identified through next generation
sequencing using the Workflow Instance Generation and Specialization (WINGS) semantic workflow platform.

Results: We found that the implementation and execution of our clinical omics pipeline in a semantic workflow
helped us to meet the requirements for enhanced transparency, reproducibility and analytical validity recommended
for clinical omics. We further found that many features of the WINGS platform were particularly primed to help support
the critical needs of clinical omics analyses.

Conclusions: This is the first implementation and execution of a clinical omics pipeline using semantic workflows.
Evaluation of this implementation provides guidance for their use in both translational and clinical settings.
Background
High throughput ‘omics’ technologies such as genomics,
proteomics, metabolomics, etc. hold great promise for
precision medicine wherein a patient’s personal omics
data are used to inform individualized care. Recently
published preclinical omics studies highlight the tre-
mendous potential omics can have on improving patient
care through assessing disease risk [1–4], averting po-
tential adverse drug reactions [5–7], and ultimately
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tailoring treatment to the individual, not the disease
[8–10]. The potential of having disease traits be moni-
tored through omics data of healthy individuals [11] has
also garnered much excitement.
Despite the large number of published preclinical omics

studies, only a few have been successfully translated into a
clinical setting [12, 13]. The primary scientific causes for
this have been attributed to 1) preclinical omics studies
not being adequately designed to answer the intended
clinical question and 2) inadequate statistical or bioinfor-
matics rigor [14]. The latter issue has garnered much
attention with respect to both the benchmarking and
quality control of omics analysis pipelines and the trans-
parency and reproducibility of those pipelines once they
are established. Efforts to benchmark the accuracy, biases,
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Table 1 Criteria checklist for enhanced transparency and
reproducibility in clinical omics

▪ Exact input data used for the analysis

▪ Key intermediate data generated from the analysis

▪ Third party data (i.e., data from external sources)

▪ Output data

▪ Provenance of all data used

▪ All code/software used in the analysis

▪ Provenance of all code used

▪ Documentation of computing environment used

▪ Veracity checks to ensure analytical validity

▪ High-level flow diagram describing the analysis
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and sources of errors within omics analysis methods are
critical to translational and clinical omics [15]. On the
heels of the US Food and Drug Administration’s (FDA)
approval of the first next-generation sequencing instru-
ment [16], their recent public workshop on next gener-
ation sequencing standards highlighted the critical need
for the quality assurance of computational biology pipe-
lines [17]. Towards these efforts, the National Institute of
Standards and Technology (NIST), in conjunction with
the Genome in a Bottle Consortium, recently published a
set of high-confidence, genome-wide single-nucleotide
polymorphism (SNP), indel and genotype calls, based on a
genome sequence that they have established as a DNA ref-
erence material and made freely available to be used as a
truth table in the benchmarking of bioinformatics
methods for identifying DNA variants from sequenced ge-
nomes [15]. Unfortunately, efforts towards making clinical
omics analysis pipelines more transparent and reprodu-
cible are still in their infancy. Even in the clinical and
translational research domain, there has been a critical
need for computational transparency and reproducibility
[14, 18]. This is exemplified by a recent study in which
over 1500 person hours were dedicated to the ‘forensic
omics’ task of deciphering the exact data sets used and de-
termining how the data were processed for assignment of
patients to clinical trials [19].
Thus, a key challenge now is how we can increase

transparency and reproducibility. This question is per-
tinent to clinical omics and the scientific community
as a whole [20–22]. This is highlighted by the recent
work of Garijo et al. [23], whose efforts to reproduce
a published computational method led them to pub-
lish a set of reproducibility guidelines for authors.
They recommend that authors include all pertinent
data: the exact input data used, key intermediate data,
output data, and any third party data (i.e., from exter-
nal databases) for the analysis. They also recommend
the inclusion of all software code, parameters, and
configuration files necessary for the analysis. Finally,
they recommended including a high level flow diagram to
guide users through the entire approach. Two recent
reports echoed similar requirements for translational and
clinical omics with the addition of key transparency
requirements, including the need for data provenance to
help ensure data integrity and the need to enhance analyt-
ical validity to help ensure “we are doing the test cor-
rectly” [14, 18]. We have summarized the requirements
across these studies into a checklist to facilitate the
evaluation of transparency and reproducibility in transla-
tional and clinical omics (Table 1).
Workflow systems such as Galaxy [24] and Taverna [25]

help to meet many of the requirements listed above and
have greatly enhanced the use, transparency, and reprodu-
cibility of omics pipelines in the research domain [25, 26].
With these systems, exact input, key intermediate, final
output, and relevant external data are all preserved. All
code, computational configurations, parameters, and their
provenance can be captured within these systems. These
systems also provide a high level flow diagram to guide
users through execution. However, a key requirement is
inherently missing from these systems: there is no way to
include veracity checks during workflow runs to enhance
analytical validity. The execution of workflows within
these systems therefore requires deep domain knowledge
and expertise to ensure data integrity and analytical valid-
ity. For example, it is the user’s responsibility to ensure
that the correct input is provided; the systems do not
inherently validate the input provided, nor do they
provide guidance to the user of the appropriate input
needed. Particularly within multi-disciplinary fields
such as translational and clinical omics where expert-
ise from clinicians, laboratory personnel, bioinformati-
cists, and statisticians must be effectively integrated
and navigated, expertise across all fields may not al-
ways be present in ‘real time’ in the clinical setting,
thus putting patient safety at risk and making these
workflow platforms inadequate for a clinical setting.
We recently investigated the use of semantic work-

flows with the analysis of multi-omics data and found
that the encapsulation of multi-step omics analysis
methods within a semantic framework resulted in a
transparent, reproducible, and semantically validated
analysis framework [27], making semantic workflows a
potential viable candidate for clinical omics. Semantic
workflows are a unique and different class of workflow
platforms. Similar to other workflow systems, semantic
workflows manage and record the execution of complex
computations, record provenance, and allow end-users
to reproduce workflows. However, unique to semantic
workflow systems is their ability to generate semantically
validated workflow runs wherein domain expertise can be
encoded within user-defined rules and constraints, and
these rules and constraints are semantically enforced to
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help guide users through a workflow run. This guid-
ance enhances data integrity and analytical validity
throughout a workflow run, thus making semantic
workflows a potential candidate for meeting the crit-
ical needs of transparency, reproducibility, and analyt-
ical validity in a clinical setting.
To evaluate the use of semantic workflows within clin-

ical omics, we have implemented and executed the first
clinical omics analysis pipeline using the Workflow In-
stance Generation and Specialization (WINGS) semantic
workflow platform [28]. We found the WINGS platform
capable of effectively meeting the checklist of require-
ments for enhanced transparency, reproducibility, and
analytical validity recommended for translational and
clinical omics defined at the beginning of this study. We
further found that many features of the WINGS plat-
form were particularly effective in supporting the critical
needs of clinical omics analyses, such as the need to
keep pace with frequent updates of biological life science
databases, to enforce consistency/data integrity across
heterogeneous biological/clinical data, to keep pace with
rapid updates/development of omics software tools, and
to process large omics data sets.

Methods and results
Use-case: clinical omics analysis pipeline
The clinical omics pipeline use-case, in this study, is a
DNA variant annotation pipeline, provided by the Knight
Diagnostic Laboratories (KDL) at Oregon Health and
Science University (OHSU) for this implementation,
aimed at coalescing molecular, pathogenic, and popula-
tion annotation information on DNA variants identified
through DNA sequencing from a patient’s tumor sample.
DNA sequencing was performed on the Ion Torrent
Personal Genome Machine (PGM™) System for Next-
Generation Sequencing, using the GeneTrails Solid
Tumor Panel®, which delivers information on 37 genes
commonly involved in solid tumors.
The omics annotation pipeline begins with a file of se-

quenced DNA variants from a patient’s tumor sample.
All identified DNA sequence variants are annotated with
the following information: 1) potential effect on the re-
sultant protein(s); 2) annotation within the Catalogue of
Somatic Mutations in Cancer (COSMIC) database [29];
and 3) annotation within the Single Nucleotide Poly-
morphism database (dbSNP) [30]. The potential molecu-
lar effect of the DNA variant on the amino acid sequence
of the resultant protein(s) (e.g., non-synonymous) is ana-
lyzed using the Bioconductor VariantAnnotation package
[31]. Information regarding the DNA variants' potential
pathogenic associations with cancer and their frequency
within the population is obtained through COSMIC and
dbSNP, respectively. Additional manually curated informa-
tion regarding the DNA variants (e.g., if it is within a
homo-polymer region), if available, is also incorporated.
The final output of the annotation pipeline is a file coales-
cing all of the obtained annotation information for all
identified DNA variants from the patient’s tumor sample.
This output is then used by clinicians to aid in determin-
ing individualized patient care.
This DNA variant annotation pipeline use-case involves

a small number of annotation resources; however, even at
this level, the importance of and difficulty in adhering to
the requirements of transparency, reproducibility and ac-
curacy is evident. For example, the computational code
for this analysis pipeline was stored on multiple desktop
machines and executed by multiple laboratory personnel.
The lack of a central location for the storage and execu-
tion of the code exposed opportunities for potential errors
and inconsistencies, making reproducibility very difficult.
The use of multiple workstations introduced potential in-
consistencies arising from the use of different versions of
software or code. Potential errors or inconsistencies
might have also arisen from unmet constraints such as en-
suring that all genomic coordinates among the different
annotation resources are of the same genomic assembly.
Additionally, a lack of version control and automated
provenance tracking of the annotation sources further
complicates the task of accuracy and reproducibility.

The WINGS semantic workflow system
The WINGS workflow system [28] is a unique class of
workflow platforms wherein analysis pipelines are trans-
formed into transparent, reproducible, semantically
validated workflow runs. Similarly to other workflow
systems, through the encapsulation of analysis steps into
individual workflow components with predefined inputs,
outputs, and parameters, WINGS tracks and records the
provenance of complex computations and enables end-
users to reproduce workflows. However, unique to
WINGS is its ability to generate semantically validated
workflow runs wherein all components and datasets are
automatically checked for coherence and consistency
and all user-defined rules and constraints are semantic-
ally enforced. WINGS accomplishes this through two fea-
tures not found in other workflow platforms: 1) the
integration of individual workflow components and their
datasets; and 2) the semantic enforcement of user-defined
rules and constraints. Formal descriptions and detailed
algorithms for WINGS can be found in Gil et al. [32].
The integration of individual workflow components

and their datasets within WINGS is achieved through
the use of individual ontologies used to define and
organize all datasets and workflow components, respect-
ively. Within the dataset ontology, categories are defined
for each dataset, and within the workflow component
ontology, categories are defined for each workflow com-
ponent. Categories can be developed using study custom
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or standardized biological ontologies (e.g., EDAM [33],
SeqOntology [34, 35], etc.). In this way, all datasets and
workflow components are clearly defined (e.g., metadata,
parameters) and organized within their individual cat-
egories. These categories can then be used to define rela-
tionships within an individual ontology such as defining
one dataset as a subclass of an existing dataset or defining
one workflow component as a subclass of an existing
workflow component. These categories can also be used
to define relationships across the two ontologies, such that
the use of specific dataset categories can be restricted or
pre-set within individual workflow components. The abil-
ity for cross-talk between the two ontologies creates an
unprecedented integration between workflow components
and their datasets wherein only predefined datasets are
used and set throughout the workflow, thus maintaining
data integrity. Within other workflow platforms, such as
Galaxy and Taverna, which do not have this level of inte-
gration, data integrity is at risk, as the correct usage of
datasets throughout a workflow run is not automatically
verified. Although Galaxy and Taverna workflow compo-
nents can explicitly be defined to specify the format type
(e.g., FASTA file, SAM/BAM format) of required datasets,
no explicit inherent format type checking is performed to
ensure that a dataset of the specified format type was pro-
vided by the user.
Further enhancing the ability of WINGS to create se-

mantically validated workflow runs is that it can seman-
tically enforce user-defined rules and constraints. In
doing so, workflow developers are able to further refine
relationships across and between datasets and workflow
components. For example, developers can constrain all
datasets within a workflow run to have a specific meta-
data value (for instance, specific genome assembly).
Rules can also be defined to require that specific datasets
be processed by specific workflow components (de-
scribed further below). In essence, through the use of
predefined rules and constraints, domain knowledge
and expertise is embodied and disseminated with each
workflow. This not only enhances the analytical ac-
curacy and validity of each workflow run, but it also
guides users through a workflow run as error mes-
sages are displayed if any rule or constraint is vio-
lated. Optional semantically validated datasets can
also be suggested upon user request.
WINGS has other functionality that is not directly re-

lated to its semantic capabilities [36]. One is the large-
scale execution of workflows, which was one of the first
capabilities incorporated in WINGS to support large-
scale earthquake simulations [37]. Once a workflow is
set up, WINGS can execute it in several alternative
modes [38]. In one mode, its execution environment can
be a local host, with WINGS generating scripted codes, or
a distributed execution on a network of local machines.
Alternatively, WINGS can generate execution-ready work-
flows that can be submitted to either Apache OODT [39]
or the Pegasus/Condor execution engine [40], which are
designed for large-scale distributed data processing in a
variety of environments, such as local clusters, shared in-
frastructure, or cloud resources. Furthermore, based on
user-defined execution requirements, WINGS can auto-
matically generate the most appropriate and/or efficient
workflows [41]. WINGS has not, however, been used to
compose web services into workflows while other work-
flow systems such as Taverna can support it.
WINGS publishes and shares workflows using the W3C

PROV-O ontology for workflow executions and its exten-
sion OPMW to represent workflow templates [42, 43].
OPMW is based on the W3C PROV model as well as the
earlier Open Provenance Model adopted by many work-
flow systems [44]. OPMW supports the representations of
workflows at a fine granularity with a lot of details pertain-
ing to workflows that are not covered in more generic
provenance models [45]. OPMW also allows the represen-
tation of links between a workflow template, a workflow
instance created from it, and a workflow execution that
resulted from an instance. Finally, OPMW also supports
the representation of attribution metadata about a work-
flow, which some applications consume.
The WINGS workflow repository is publicly available

and is part of the WEST ecosystem [46] that integrates
different workflow tools with diverse functions (work-
flow design, validation, execution, visualization, browsing
and mining) created by a variety of research groups.
These tools include LONI Pipeline [47], Apache OODT
and Pegasus/Condor. The workflow repository has been
used to mine workflow patterns [46, 48]. WEST uses
workflow representation standards and semantic tech-
nologies to enable each tool to import workflow tem-
plates and executions in the format they need. WEST is
the first integrated environment where a variety of work-
flow systems and functions interoperate, and where
workflows produced by a given tool can be used by more
than one other tool. Other benefits of this approach in-
clude the interoperability among the applications in the
ecosystem, the flexibility to interchange data, and facilitat-
ing the integration of content modeled in other vocabular-
ies. Our representations are mapped to an extension of
PROV for reusable plans called P-PLAN [49] as a basis to
further map to processes other than workflows such as
scientific experiments that use ISA [50]. Workflow reposi-
tories such as myExperiment [51] and CrowdLabs [52]
can be used for sharing scientific workflows created with
other systems. These workflows are reused by scientists
that seek, retrieve, and reapply them. However, these
workflows are not described with any structured annota-
tions or constraints that capture their applicability as
WINGS does.



Table 2 WINGS datasets for our clinical omics use-case

Dataset Description

GeneTrails_Genes List of genes on the GeneTrails
Solid Tumor Panel®

COSMICSubset GeneTrails specific subset of
COSMIC

SNPSubset GeneTrails specific subset of
dbSNP

Patient_Called_DNA_Variant_File Identified DNA variants from a
patient’s tumor sample

Queried_COSMIC_Result Queried COSMIC annotation
specific to a
Patient_Called_DNA_Variant_File

Queried_SNP_Result Queried dbSNP annotation
specific to a
Patient_Called_DNA_Variant_File

Transcript_File Transcripts of interest from
GeneTrails_Genes

Predicted_Protein_Consequence Predicted consequence(s)
specific to a
Patient_Called_DNA_Variant_File

In_House_Curation_of_DNA_Variants Manually curated information
on sequence characteristics of
previously identified DNA variants

Final_Annotation_of_DNA_Variants Coalesced annotation
information from the workflow
specific to a
Patient_Called_DNA_Variant_File
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Other workflow systems used in biomedical research
such as LONI Pipeline, Taverna, GenePattern [53],
and Galaxy offer very useful capabilities, and include
libraries of components that are widely used in the
community, such as genomic analysis tools or Biocon-
ductor services [54]. However, their workflow repre-
sentations specify the software to run at each step,
but do not represent constraints such as whether an
algorithm is appropriate given a dataset’s characteris-
tics or how to set a software tool’s parameters to get
best results. The SADI framework proposes best prac-
tices for documenting services with semantic con-
straints, and provides a plug-in for Taverna where
services can be incorporated into the workflow based
on semantic constraints, but does not support con-
straint propagation and reasoning at the workflow
level [55]. WINGS is unique in capturing such se-
mantic constraints. Please refer to Additional file 1
for additional information on the WINGS system.

Implementation of a clinical omics workflow using the
WINGS semantic workflow system
The first step in implementing a WINGS semantic work-
flow is for a workflow developer to create all datasets,
components, rules, and constraints needed for an analysis
pipeline. These are then used to build the workflow tem-
plate needed for workflow users to execute reproducible
and semantically validated workflow runs. Each is de-
scribed in more detail below.

Datasets and their metadata
Datasets consist of any input, output, or intermediate
data files within an analysis pipeline. For example, within
our DNA variant annotation pipeline, key datasets in-
clude 1) Patient_Called_DNA_Variant_File, the file of se-
quenced DNA variants from a patient’s tumor; 2)
COSMICSubset, the GeneTrails-specific subset of COS-
MIC; 3) SNPSubset, the GeneTrails-specific subset of
dbSNP; and 4) Final_Annotation_of_DNA_Variants, the
final annotation file of the identified DNA variants.
Please refer to Table 2 for a complete list of datasets
found within our pipeline. Because all datasets are de-
fined within an ontology, WINGS is able to effectively
organize and constrain the use of each dataset (Fig. 1a).
We note that custom or standardized ontologies (e.g.,
the Sequence Ontology which not only represents the
DNA variants but also contains the Protein Feature
Ontology to handle protein consequence [56]) can easily
be used. Some datasets are defined as their own
entity (e.g., GeneTrails_Genes or Patient_Called_DNA_
Variant_File) while others are defined as subclasses to
other datasets (e.g., Queried_SNP_Result and SNPSubset
are subclasses of SNPData). By defining datasets as sub-
classes to other datasets, common metadata can be
shared among the parent and child datasets. For example,
dbSNPVersionId is common metadata for SNPData,
SNPSubset, and Queried_SNP_Result datasets. Metadata
for each dataset can be defined, populated, updated, and
viewed using the WINGS framework (Fig. 1b). Metadata
can also be automatically populated and propagated
throughout a workflow run. For a complete list of metadata
used in our workflow, please refer to Additional file 1.

Workflow components
Workflow components define and encapsulate each step
of an analysis pipeline. Similarly to datasets, all WINGS
components are classified using an ontology where an
individual component can either be classified as its own
entity or grouped under a super-component class
termed “component-type”. Component-types are used to
group components sharing a common base set of input/
output datasets such as those encapsulating code for
different versions of the same tool or different tools
performing similar functions. Component-types can also
be used to effectively organize and enhance the flexibility of
individual components within a workflow template wherein
components can be easily incorporated into existing
component-types with their use semantically enforced (dis-
cussed further below).
To capitalize on the many features of component-types,

each step of our clinical omics pipeline was segregated



Fig. 1 WINGS datasets ontology for our clinical omics use-case. WINGS datasets — any input, output, or intermediate data files — within a
workflow template are classified within an ontology. (a) The ontology classifying the datasets within our WINGS omics workflow is shown.
Each dataset can be defined as an individual class or defined as a subclass of an existing dataset. Patient_Called_DNA_Variant_File is an example
of an individually defined dataset class while COSMICSubset and Queried_COSMIC_Result are examples of subclasses under the COSMICData
dataset. Each dataset can be further defined with metadata. (b) The defined metadata and its value for a Patient_Called_DNA_Variant_File
are shown
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into the following component-types: 1) CreateLocalCOS-
MIC, 2) CreateLocalSNP, 3)QueryLocalCOSMIC, 4)Query
LocalSNP, 5) PredictProteinConsequence, and 6) Merge-
Annotation (Fig. 2a). CreateLocalCOSMIC created a data-
set containing a subset of COSMIC annotation specific
for genes found on the GeneTrails Solid Tumor Panel®.
CreateLocalSNP creates a dataset containing a subset of
dbSNP annotation specific for genes found on the Gene-
Trails Solid Tumor Panel®. QueryLocalCOSMIC queried
the COSMIC subset dataset for annotation information
pertaining to a file of identified DNA variants from a
patient’s tumor sample. QueryLocalSNP queried the
dbSNP subset dataset for annotation information pertain-
ing to a file of identified DNA variants from a patient’s
tumor sample. PredictProteinConsequence predicted the
potential molecular effect of the resultant amino acid
changes caused by the DNA variant identified from a
patient’s tumor sample. MergeAnnotation merged all
annotation information obtained from the other compo-
nents, in addition to information obtained from a file of
manually curated annotations that detail sequence charac-
teristics of the identified DNA variant (for example, within
a homopolymer region); it then output a final file detailing
the annotation information for the identified DNA variants.
Individual components were then created for each

component-type. For example, the components Predict
ProteinConsequenceVersion1 and PredictProteinConse
quenceVersion2 were created under the PredictProteint
Consequence component-type and the component
QueryLocalCOSMICVersion1 was created under the
QueryLocalCOSMIC component-type. Each component
was defined with the following: 1) input datasets, 2)
computational code, and 3) output datasets. For ex-
ample, each PredictProteinConsequence component was



Fig. 2 WINGS workflow components ontology for our clinical omics use-case. WINGS components are used to encapsulate individual steps
of an analysis pipeline and are classified within an ontology in a workflow template. Individual components can be classified as their
own component-class or as a subclass of a component-type. Component-types are used to group components sharing a common base
set of input and output datasets such as those encapsulating code for different versions of the same tool or different tools performing
similar functions. Component-types can also be used to effectively organize and enhance the flexibility of individual components within
a workflow template. Each step of our clinical omics analysis pipeline was encapsulated within a component-type, even if only one
component is currently defined (a). Individual component-types are shown in grey while individual components are depicted in yellow.
Each component is defined with the following: 1) input datasets, 2) computational code, and 3) output datasets. For example, each
PredictProteinConsequence component was defined with the following two input datasets: 1) Patient_Called_DNA_Variant_File and 2)
Transcript_File and the following output dataset: 1) Predicted_Protein_Consequence (b). The R code needed for the analysis of this step
was included to complete the creation of the component
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defined with the following two input datasets: 1) Pa-
tient_Calledt_DNA_Variant_File and 2) Transcript_File
and the output dataset Predicted_Protein_Consequence
(Fig. 2b). Thus, datasets not classified as a Patient_Cal-
led_DNA_Variant_File or Transcript_File dataset would
not be a valid input into the PredictProteinConsequence
component. Similarly, any output from the PredictPro-
teinConsequence component would be classified as a
Predicted_Protein_Consequence dataset. The code
needed for the analysis of this step was included to
complete the creation of the component. This component
utilizes the Bioconductor VariantAnnotation package [31]
for its analysis (please refer to "Clinical Omics Analysis
Pipeline" section for more detail); however, code imple-
menting other popular annotation methods may easily be
incorporated or used in its place. Please refer to Table 3
for a complete description of all input/output datasets for
each component-type.
Semantic rules and constraints
Workflow rules and constraints can be used to enforce
user-defined rules/constraints needed within a workflow
template to create a semantically validated workflow run
such as any pre-specified requirements for input data-
sets, inter-dependencies between components and/or
datasets, or recommended/proposed regulations. Rules
and constraints currently defined within our clinical
workflow include requiring that genomic coordinates
across all datasets be of the same genomic assembly and
ensuring the propagation of pre-defined sets of metadata
(e.g., patient ID number, software versions, data set ver-
sions) throughout a workflow run. Effective metadata
propagations aid in effective provenance tracking. User-
defined rules and constraints have also been put in place
to pre-define the use of specific components, within
each of our component-types, with specific versions of
datasets. For example, a rule has been defined specifying



Table 3 WINGS input/output datasets for each component-type within our clinical omics use-case

Component-type Input dataset(s) Output dataset(s)

CreateLocalCOSMIC GeneTrails_Genes COSMICSubset

CreateLocalSNP GeneTrails_Genes SNPSubset

QueryLocalCOSMIC Patient_Called_DNA_Variant_File, COSMICSubset Queried_COSMIC_Result

QueryLocalSNP Patient_Called_DNA_Variant_File, SNPSubset Queried_SNP_Result

PredictProteinConsequence Patient_Called_DNA_Variant_File, Transcript_File Predicted_Protein_Consequence

MergeAnnotation Pateint_Called_Variant_File, Queried_COSMIC_Result, Queried_SNP_Result,
Predicted_Protein_Consequence, In_House_Curation_of_DNA_Variants

Final_Annotation_of_DNA_Variants
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that the UseComponentVersion metadata value in the
Transcript_Filedatasetmustbeequal totheComponentVer-
sion parameter value of the PredictProteinConsequence
component used. Every component under the PredictPro-
teinConsequence component-type has a value set for Com-
ponentVersion, indicating its version number, and set to
match the value of the UseComponentVersion metadata
value a Transcript_File dataset. Thus, a user is effectively
choosing a specific component from a component type
when choosing a specific input dataset. Similar rules have
Fig. 3 WINGS workflow template for our clinical omics use-case. WINGS
datasets, and rules and constraints of an analysis pipeline needed to e
representing our clinical omics analysis pipeline. Within our workflow t
rectangles); however, please note that individual components can also
template that has all input and output datasets (blue rounded rectangle
generates an accompanied GUI for the workflow template, thus allowin
enforcement of all user-defined rules and constraints, each workflow ru
enables WINGS to help guide users through a workflow run by sugges
and Suggest Parameters buttons). For example, due to our predefined r
assembly would be suggested for this workflow template
been set up for pre-defining the use of specific compo-
nents within each component type. Please refer to the
Additional file 1 for a full list of rules and constraints de-
fined within our clinical omics workflow.

Assembly of a workflow run
Once all datasets, components, rules and constraints are
defined and created, each can be pieced together to
assemble a workflow template (Fig. 3). Our workflow
template was assembled using only component-types;
templates are fully connected representations of all components,
xecute a semantically validated workflow run. A workflow template
emplate, each step is represented by its component-type (grey
be sequentially connected to one another to build a workflow
s) represented. Once a workflow template is created, WINGS
g workflow users to execute workflow runs. Due to the
n is semantically validated. Pre-defined rules and constraints also
ting semantically validated inputs and parameters (Suggest Data
ules and constraints, only datasets with the same genomic
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however, individual components can also be used to
build a workflow template. The workflow template illus-
trates each step of our analysis pipeline in addition to all
input and output datasets.

Execution of a workflow run
Workflow users interact with WINGS in a different way
from a workflow developer. Workflow users do not need
to know how the workflow was developed in order to
use it. Upon the creation of a workflow template,
WINGS generates a GUI for workflow users to interact
with and run assembled workflows (see top of Fig. 3).
With this GUI, users are able to choose the desired pa-
rameters and inputs for this workflow. Furthermore,
through the semantic reasoning [28, 32] of pre-defined
rules and constraints, the ‘Suggest Parameters’ and ‘Suggest
Data’ buttons within the GUI can be used to suggest appro-
priate parameters and inputs, respectively, for a workflow
run. This guides users effectively and accurately through a
workflow run. For example, due to our pre-defined rules
and constraints, upon the selection of a Patient_Called_D-
NA_Variant_File, WINGS would only allow the selection of
additional input objects of the same genomic assembly, as
specified in their individual GenomicAssembly metadata. If
Fig. 4 Execution of our clinical omics use-case WINGS workflow. Once a w
the successful execution of our clinical omics use-case WINGS workflow
and individual components (yellow) of the workflow run are shown. Particular
details of an executed workflow run can be used to identify the exact compo
and the user-defined rules and constraints, Version1 of each component-type
a user chooses an input inconsistent with the pre-defined
rules and constraints, a message is displayed informing the
user of the error and requiring the user to choose an alter-
native input. Once all parameters and inputs are provided,
the workflow run can be planned and ultimately run with
the ‘Plan Workflow’ button. As the workflow run is being
executed, WINGS directs users to a user interface where
the run can be monitored and, when needed, reports from
code execution failures are displayed to aid in debugging
workflows and the underlying code.

Execution of our clinical omics workflow
The executed workflow plan of a successful run of our
clinical omics workflow highlighting all parameters, data-
sets, and components used is shown in Fig. 4. Particularly
when component-types are used to assemble a workflow
run, as in our clinical omics pipeline, this schema shows
the actual components used during the execution as these
may change as data inputs change. Based on the use of
the same input data and versions of annotation sources,
the final output from this workflow run was found to be
identical (based on the use of the unix diff command) to
the output obtained from the original analysis pipeline.
Our final workflow output had the added benefits of
orkflow run is executed, the details of the run are shown. Displayed is
. All input parameters (green), input and output data objects (blue),
ly when component-types are used to define a workflow template, the
nents used for each workflow run. Based on the chosen input datasets
was used in our executed workflow run
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having all run-time parameters and metadata automatic-
ally tracked and the assurance that all parameters, data-
sets, and components used during the analysis were
consistent with all user-defined rules and constraints.
Please refer to Additional file 1 for more detailed instruc-
tions on how to execute a run of our clinical omics work-
flow on the WINGS site.

Meeting the minimal requirements of transparency and
reproducibility of clinical omics
Based on the checklist of requirements recommended for
enhanced transparency and reproducibility of translational
and clinical omics defined in Table 1, our WINGS imple-
mented clinical omics workflow met all requirements. All
data, including the exact input data used, intermediate
data, third party data, output data, and their provenance,
were captured and preserved within our implemented
workflow. All code, configurations, computing environ-
ment, and their provenance were preserved along with a
high level diagram illustrating all steps of the analysis.
And most importantly, the user-defined rules and con-
straints within our workflow provided the veracity checks
needed to enhance analytical validity.

Discussion
The implementation of our clinical omics DNA variant
annotation pipeline use-case within the WINGS plat-
form is the first implementation and execution of a clin-
ical omics pipeline in a semantic workflow. We found
that the implementation of our clinical omics annotation
pipeline into a semantic workflow helped us to achieve
the requirements for enhanced transparency, reproduci-
bility, and analytical accuracy recommended for transla-
tional and clinical omics. During the implementation of
our clinical omics workflow, we also found many fea-
tures of the WINGS system were particularly primed to
support the specific needs of clinical omics analyses.
These include the need to: 1) keep pace with frequent
updates of biological life science databases; 2) enforce
consistency and data integrity across heterogeneous bio-
logical and clinical data; 3) keep pace with rapid updates
and development of omics software tools; and 4) process
large omics data sets. Each is described below.

Frequent updates of molecular life science databases
The analysis and interpretation of omics data rely heavily
on information within molecular life science databases
such as those provided by the National Center for Bio-
technology Information (NCBI) [57], European Molecular
Biology Laboratory — European Bioinformatics Institute
(EMBL-EBI) [58], and the UCSC Genome Browser [59].
Gene and transcript information supplied by NCBI’s Ref-
erence Sequence (RefSeq) database [60] and EMBL-EBI
Ensembl database [61] serves as the foundation of many
omics studies, particularly in RNA-seq studies [62]. Data-
bases such as dbSNP, COSMIC, and clinVAR [63] provide
annotation information for DNA variants regarding their
frequency within the population and potential associations
with disease and clinical phenotype.
To keep pace with our growing biological knowledge,

information within these databases is constantly up-
dated. For example, RefSeq databases are updated twice
a month [60], the COSMIC database is updated every
2 months [64], and new builds of dbSNP are periodically
released, especially after a new genome release or after a
large submission of SNPs [30]. To ensure that the most
current biological knowledge is used to analyze and in-
terpret omics data, particularly within a clinical setting,
it is imperative that all provenances of the databases are
effectively captured and tracked.
WINGS’ ability to dynamically extract and propagate

metadata within a component enhances the capture and
tracking of provenance of datasets associated with fre-
quently updated biological databases. The ability to dy-
namically extract metadata within a component is a new
and unique feature of WINGS that helps to prevent any
errors that may arise if manual intervention were
needed. For example, the version of R used within each
component of our clinical omics workflow is dynamic-
ally extracted at runtime and automatically propagated
to the RVersionId metadata value of its output dataset.
Within other workflow platforms, such as Galaxy and
Taverna, metadata can only be manually populated and
cannot be dynamically extracted at runtime.

Heterogeneity/consistency of biological data
The analysis and interpretation of omics data also rely
heavily on disparate and heterogeneous sets of biological
data. For example, a typical RNA-seq analysis protocol
involves two very different types of biological data: 1)
the genomic sequence used for the alignment of the
RNA-seq reads; and 2) the annotated transcript models
used for expression quantification. Within our DNA
variant annotation pipeline, biological information across
multiple databases is used. Thus, to ensure consistency
and validity across these heterogeneous data sources, it
is critical that the disparate data types be consistent with
one another.
The WINGS platform helps to ensure consistency across

heterogeneous data sets through the use of its semantic
technology. For our clinical omics workflow, user-defined
rules and constraints were used to ensure that all datasets
were of the same genomic assembly and that specific data-
sets were processed using specific workflow components.
Further enhancing the consistency across disparate datasets
is WINGS ability to predefine and constrain the specific
datasets allowed as input/output for each component. Pre-
defining and constraining the types of datasets helps to
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maintain the integrity of the datasets used. These features
to enhance data integrity and veracity are absent in other
workflow platforms.

Rapid development of omics software tools
Paralleling, and at times even driven by, our growth of
biological knowledge is the rapid development of new
and existing omics analysis software tools. As an ex-
ample, two popular short-read alignment tools, BWA
[65] and TopHat [66], had a total of seven and three
releases, respectively, in the year 2014. For a workflow
system to effectively support clinical omics, in addition
to efficiently tracking the specific versions of the soft-
ware used, it is critical that the integration of new or
updated software tools within new or existing workflows
be user-friendly and efficient.
Two features of the WINGS platform help to effi-

ciently incorporate new tools and updates to existing
tools. The first feature is WINGS’ ability to group related
components under a common component-type: this
allows components for alternative tools or updated ver-
sions of existing tools to be easily added into an existing
workflow template and their use semantically enforced.
Related to this, the second feature is its ability to track
the provenance of all component-types, components and
workflow templates. A timestamp and user-ID is associ-
ated with the creation and update of each. Provenance
for data objects is also similarly tracked.

Processing of large omics data sets
The ability to store and process large data sets has become
a mandatory part of analyzing omics data, particularly as
the volume and complexity of omics data continue to
increase [67, 68]. WINGS’ ability to execute workflows
under a variety of modes — either in a local host, across a
network of local machines, or across large scale distrib-
uted data processing environments, such as clusters or
cloud services — is an invaluable tool in processing large
omics data sets.

Conclusions
We implemented and executed a clinical omics pipeline
aimed at annotating DNA variants identified through
large-scale DNA sequencing using the WINGS semantic
workflow system. We found the semantic workflows in
WINGS capable of effectively meeting the requirements
for enhanced transparency, reproducibility, and analyt-
ical validity recommended for translational and clinical
omics. We further found many features of the WINGS
platform particularly effective in supporting the specific
needs of clinical omics analyses.
The next stage for the application of WINGS in this

setting is extension to other clinical omics use cases, as
well as clinical user evaluation to facilitate seamless
integration in these settings. We also note that the needs
for reproducibility extend beyond the clinical setting.
With regard to methods development, the semantic con-
straints in WINGS allow for more efficient and robust
dissemination of methods and workflows to the broader
research community, particularly to non-expert users.
The FDA’s Computational Science Center has now
started to receive next generation sequencing data with
regulatory submissions that must be validated and ana-
lyzed, along with the corresponding methods. For FDA
approval diagnostic devices, analytical validation of the
device to establish performance characteristics, such as
analytical specificity, precision (repeatability and repro-
ducibility), and limits of detection, is essential. As such
validation may require developing an algorithm or deter-
mining the threshold for clinical decisions, these steps
must be captured such that the rationale and evidence
for these decisions can also be evaluated. Finally, given
the National Institutes of Health’s initiatives to improve
reproducibility, particularly in preclinical research, frame-
works such as WINGS will become more and more essen-
tial to the research enterprise.
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