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Abstract

Background: The Cancer Genome Atlas (TCGA) project has generated genomic data sets covering over 20
malignancies. These data provide valuable insights into the underlying genetic and genomic basis of cancer.
However, exploring the relationship among TCGA genomic results and clinical phenotype remains a challenge,
particularly for individuals lacking formal bioinformatics training. Overcoming this hurdle is an important step
toward the wider clinical translation of cancer genomic/proteomic data and implementation of precision cancer
medicine. Several websites such as the cBio portal or University of California Santa Cruz genome browser make
TCGA data accessible but lack interactive features for querying clinically relevant phenotypic associations with
cancer drivers. To enable exploration of the clinical–genomic driver associations from TCGA data, we developed
the Cancer Genome Atlas Clinical Explorer.

Description: The Cancer Genome Atlas Clinical Explorer interface provides a straightforward platform to query
TCGA data using one of the following methods: (1) searching for clinically relevant genes, micro RNAs, and proteins
by name, cancer types, or clinical parameters; (2) searching for genomic/proteomic profile changes by clinical
parameters in a cancer type; or (3) testing two-hit hypotheses. SQL queries run in the background and results are
displayed on our portal in an easy-to-navigate interface according to user’s input. To derive these associations, we
relied on elastic-net estimates of optimal multiple linear regularized regression and clinical parameters in the space
of multiple genomic/proteomic features provided by TCGA data. Moreover, we identified and ranked gene/micro
RNA/protein predictors of each clinical parameter for each cancer. The robustness of the results was estimated by
bootstrapping. Overall, we identify associations of potential clinical relevance among genes/micro RNAs/proteins
using our statistical analysis from 25 cancer types and 18 clinical parameters that include clinical stage or smoking
history.

Conclusion: The Cancer Genome Atlas Clinical Explorer enables the cancer research community and others to explore
clinically relevant associations inferred from TCGA data. With its accessible web and mobile interface, users can examine
queries and test hypothesis regarding genomic/proteomic alterations across a broad spectrum of malignancies.
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Background
Extensive catalogues of genetic aberrations in cancers
have been generated by high throughput technologies
such as next-generation sequencing (NGS) and genomic
scale microarrays [1–3]. For example, over 800 genomes
[4] and 2,700 exomes [5] from more than 25 cancer
types have been sequenced by NGS since 2008 [6]. Despite
the breadth and depth of these cancer genome data sets,
there are only a small number of studies that utilize these
cancer genome data sets for identifying associations
among genomic findings and clinical parameters or phe-
notypes. Rather, the majority of studies use unsupervised
analysis methods to delineate specific molecular signa-
tures [7–11]. Many of these studies have restricted sample
sizes, thus the studies have limited power in detecting
genomic associations with various clinical phenotypes
[12, 13]. Although molecular profiling studies have
brought enormous biological insights about cancer, clin-
ical translation of these discoveries requires associating
molecular features with clinical phenotypes.
The Cancer Genome Atlas (TCGA) project has gener-

ated genomic, epigenomic, transcriptomic, and prote-
omic data for over 20 different cancer types [14–21].
These data sets provide broad insight into the under-
lying genetic aberrations existing across multiple cancer
types. In addition, TCGA has clinical data describing
specific metrics such as histopathology and clinical stage,
among others. Overall, TCGA data has the potential for
determining the clinical significance of critical genetic
aberrations.
For clinicians and other cancer researchers lacking bio-

informatics expertise, extrapolating desired information
from the copious amounts of data supplied by TCGA
proves to be a difficult task. Several websites, including
the cBio portal [22] and the University of California, Santa
Cruz (UCSC) genome browser [23], were developed to
make TCGA data more accessible. These sites are gener-
ally configured for providing primary genomic results ra-
ther than clinical associations. Some programs, such as
StratomeX, use an unsupervised approach to explore the
relationship between clinical parameters and patient strat-
ifications based on molecular profiling [24]. However, the
results from StratomeX are provided as tumor sample
clusters without the granularity of identifying specific
genes. In contrast, many investigators are interested in
reviewing lists of candidate genes that facilitates the inter-
pretation of genomic results for non-computational bio-
medical researchers and other users.
To enable a gene-centric exploration of the potential

clinical–genomic associations in TCGA data, we devel-
oped the Cancer Genome Atlas Clinical Explorer (http://
genomeportal.stanford.edu/pan-tcga/). Enabling improved
access of cancer genomic data, this web and mobile inter-
face allows users to navigate the list of cancer genes, micro

RNAs (miRs), or proteins from TCGA data and explore
their translational or clinical significance. We conducted a
successful initial study [25] where we analyzed the rela-
tionship between genomic/proteomic profiles and clinical
phenotypes for colorectal cancers using the breadth of
TGCA data. Using an elastic-net regularized regression
method we integrated genomic alteration data from differ-
ent genomic platforms as well as clinical meta-data from
TCGA. For example, for colorectal cancer, the elastic-net
analysis identified hyper-methylation of MLH1 and muta-
tions of TGFBR2 as top predictors for a tumor with
microsatellite instability (MSI)—these are well-known ex-
amples of MSI-related events. Subsequently, we identified
genetic aberrations in cancer genes indicative of clinical
stage in colorectal cancer, considering multiple genomic
features and clinical data. We determined that combining
data from multiple genomic platforms outperformed the
analysis based on an individual genomic assay.
Given our success in the small pilot study, we con-

ducted a new and significantly expanded study using 25
cancer types with 18 clinical parameters from TCGA
Project. Our results from these elastic-net analyses suc-
cessfully identified known associations between genomic/
proteomic and clinical data.
The Cancer Genome Atlas Clinical Explorer allows

users to answer queries such as “which genes correlate
with the metastasis of skin cancer,” “do stomach cancers
with PIK3CA genetic aberrations behave differently in
EBV [Epstein–Barr virus] infected individuals compared
to uninfected,” or “what are the differences in TP53 copy
number between tumor samples with or without TP53
mutations.” Overall, this web interface eliminates barriers
to accessing TCGA data, allows researchers to address im-
portant questions to their projects, and allows researchers
to adjust their hypotheses and experimental designs in the
investigations accordingly.

Construction and content
All data originated from the public websites of TCGA
Project. The Cancer Genome Atlas Clinical Explorer
summarizes TCGA clinical parameters and translates
these data into a list of clinically relevant cancer drivers
including genes, miRs, and proteins. First, we generated
descriptive statistics such as mutation frequencies or
copy number variation (CNV). These selected gene aber-
ration statistics were categorized by cancer types and de-
rived from SQL queries using our relational database
that contains pre-processed TCGA data, as described
later. Second, we generated a list of genes, miRs, and pro-
teins that correlate with specific clinical parameters using
elastic-net analysis as described [25]. For example, if
breast cancer data had ten clinical parameters with an ad-
equate number of samples having annotation, the elastic-
net analysis would be run separately for each clinical
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parameter. Overall, our analysis included 25 cancer types
and 18 clinical parameters.
Some of the clinical features were available to a limited

number of cancer types. For instance, PAM50 information
is only available in breast cancer samples and EBV infec-
tion is exclusive to stomach cancer. Compared to our ini-
tial, limited analysis on TCGA colorectal cancer data, this
new study has been dramatically increased in scale and
fully leverages the wealth of new molecular data, clinical
parameters, and different cancer types. For example, new
features of this study include (1) an expanded miR and re-
verse phase protein array (RPPA) data set that was not
previously available; (2) analysis of an additional 24 can-
cers with more than ten clinical parameters, providing a
significantly more expanded analysis and results database
compared to our previous publication (e.g. four clinical
parameters in colorectal adenocarcinoma [COADREAD]);
and (3) development of a new interactive interface that

allows users to easily explore TCGA data with an orienta-
tion toward clinical phenotypes.

Data sources
We downloaded TCGA genomic/proteomic data (2 April
2015 version) from the Broad Firehose (http://gdac.broa
dinstitute.org) using firehose_get (version 0.4.3) and ran
md5sum to ensure the integrity of the downloaded data
and to verify that all genomic data files were intact. These
data files included genomic, transcriptomic, epigenomic,
and proteomic data for each of the 25 cancer types.
Specifically, these data included DNA CNV, somatic
mutations, mRNA expression level by RNA sequencing
(RNA-Seq), DNA methylation, miR expression level by
RNA-Seq, and protein expression level by RPPA (Table 1).
Clinical and pathological data covering 18 clinical pa-

rameters were obtained from TCGA. During the course
of the study, we noted that the availability and

Table 1 Sample numbers of clinical data used from The Cancer Genome Analysis pan-cancer data set

Tumor type (TCGA ID) Number of samples in analysis Number of
clinical
parameters

Total Gene micro RNA Protein

Adrenocortical carcinoma (ACC) 92 75 80 46 5

Urothelial bladder cancer (BLCA) 412 388 409 127 8

Breast invasive carcinoma (BRCA) 1098 945 755 410 9

Cervical cancer (CESC) 307 190 307 173 7

Colorectal adenocarcinoma (COADREAD) 628 476 295 461 10

Esophageal cancer (ESCA) 185 0 184 126 9

Glioblastoma multiforme (GBM) 610 111 0 214 2

Head and neck squamous cell carcinoma (HNSC) 528 496 486 212 9

Chromophobe renal cell carcinoma (KICH) 66 66 66 0 4

Kidney renal clear cell carcinoma (KIRC) 537 446 254 454 7

Papillary kidney carcinoma (KIRP) 291 161 291 207 7

Acute myeloid leukemia (LAML) 200 160 0 0 1

Lower grade glioma (LGG) 516 510 512 258 4

Liver hepatocellular carcinoma (LIHC) 377 189 372 0 7

Lung adenocarcinoma (LUAD) 582 485 450 181 9

Lung squamous cell carcinoma (LUSC) 504 178 342 195 8

Ovarian serous cystadenocarcinoma (OV) 605 216 453 412 1

Pancreatic ductal adenocarcinoma (PAAD) 185 145 178 106 9

Pheochromocytoma and paraganglioma (PCPG) 179 161 179 79 1

Prostate adenocarcinoma (PRAD) 498 419 494 0 4

Skin cutaneous melanoma (SKCM) 470 290 351 169 6

Stomach adenocarcinoma (STAD) 443 255 395 264 11

Thyroid carcinoma (THCA) 503 397 502 222 7

Uterine corpus endometrioid carcinoma (UCEC) 559 241 411 200 4

Uterine carcinosarcoma (UCS) 57 56 56 48 1

Total cancer = 25 10,432 7,056 7,822 4,564

TCGA The Cancer Genome Atlas
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comprehensiveness of clinical data varied across the can-
cer types. For example, the status of EBV infection was
only reported for stomach cancer and clinical stage was
only listed for 16 of the 25 cancers in the TCGA data set
we analyzed. Given the fragmented nature of these clinical
metric data sets, we consolidated the different clinical
metrics across several sources. Twelve clinical parameters
were obtained from the public TCGA data portal, five
clinical parameters were acquired from the UCSC cancer
genome browser, and one clinical parameter was obtained
from the cBio Portal (Table 2). Data consistency was then
evaluated across these sources. When inconsistencies or
issues among the sources were identified, adjustments and
resolutions were made. For example, although TCGA data
portal provides multiple files for each patient, there were
71 cases where the values for a single patient were not
consistent (Additional file 1: Table S1). These cases are an-
notated with “NA” as a missing value. In another example,
we only annotated breast cancer samples regarding triple
markers (her2, estrogen, and progesterone) when this
information was available. Subsequently, we classified
these breast cancer samples into four molecular subtypes:
triple positive, Her2 positive, ER positive (either estrogen
or progesterone positive, or both), and triple negative.

Next, we categorized each clinical parameter into one
of three types: categorical, ordinal, or binary. Categor-
ical variables depict clinical parameters with multiple
subtypes but no clear ordering (e.g., smoking history),
ordinal describes clinical parameters with multiple sub-
types with identifiable ordering (e.g., clinical stage), and
binary represents clinical parameters with only two
subtypes (e.g., gender). Finally, we produced a compre-
hensive data table for all 18 clinical parameters across
all of 25 cancer types. These lists can be reviewed and
downloaded at our web portal (http://genomeportal.
stanford.edu/pan-tcga/data_download).

Target selection for elastic-net analysis
To increase the signal of driver events versus non-
informative passengers, we vetted the gene list for the
elastic-net analysis. We included known and putative
cancer genes according to the Catalogue of Somatic
Mutations in Cancer (COSMIC) [1] and results from
various TCGA studies. As of February 2015, the COS-
MIC database listed 547 genes as cancer-related owing
to their implication for a role in cancer biology as docu-
mented by the scientific literature. We also included 135
genes currently targeted by drugs according to the

Table 2 Type, subtypes, and sources of clinical parameters used in elastic-net analysis. Eighteen total clinical parameters were inclu-
ded—availability of each clinical attribute is dependent on cancer type

Clinical
parameter

Number of
subtypes

Type Subtypes Number of
cancer types

Source

Country 16 Categorical US, Russia, Korea South, Italy, etc. 17 TCGA

Gender 2 Binary male, female 18 TCGA

HistoType by cancer type Categorical Ex) Intestinal/diffuse for stomach 10 TCGA

PriorMalignancy 2 Binary yes, no 7 TCGA

FamilyHistory by cancer type Ordinal 0,1,2,3 1 TCGA

M-Status 2 Binary M0, M1 15 TCGA

N-Status 4 Ordinal N0, N1, N2, N3 18 TCGA

ClinicalStage 4 Ordinal I, II, III, IV 16 TCGA

T-Status 5 Ordinal T0, T1, T2, T3, T4, 18 TCGA

HistoGrade 3 Ordinal Low, Intermediate, High 11 TCGA

SmokingHistory 4 Categorical Current smoker, Lifelong Non-smoker, Current reformed smoker
for >15 years, Current reformed smoker for ≤15 years

8 TCGA

MolecularSubtype 2 Categorical CIN, GS, MSI, EBV 1 TCGA

MSIstatus 3 Ordinal MSS, MSI-L, MSI-H 5 UCSC

PAM50clust 5 Categorical Normal-like, Luminal A, Luminal B, Basal-like, HER2-enriched 1 UCSC

RPPAclustersBRCA 6 Categorical ReacI, LumA/B, Basal, LumA, Her2, ReacII 1 UCSC

GeneExpSubtype 4 Categorical Classical, Mesenchymal, Proneural, Neural 1 UCSC

TripleMarker 4 Categorical TripleNegative, Her2Positive, Erpositive, TriplePositive 1 UCSC

EBV present 2 Binary Positive, Negative 1 cBio

cBio cBio portal, EBV Epstein–Barr virus, GeneExpSubtype types based on gene expression in glioblastoma multiforme, HistoGrade histology grade, HistoType
histological type, CIN chromosomal instability, GS genomically stable, MSIstatus microsatellite instability status, MSS Microsatellite stable, MSI-L Microsatellite
instable-low, MSI-H Microsatellite instable-high, PAM50clust clusters based on PAM50, RPPAclustersBRCA clusters based on reverse phase protein array data, TCGA
The Cancer Genome Atlas, UCSC University of California Santa Cruz cancer genome browser
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database tumor alterations relevant for genomics-driven
therapy (TARGET; www.broadinstitute.org/cancer/cga/
target) (Additional file 2: Table S2). In addition, we in-
cluded genes with significant mutations (MutSig; 852),
focal amplifications (CN-AmpPeak; 502), and focal de-
letions (CN-DelPeak; 2,105) that were reported by
Broad Firehose from TCGA data for all 25 cancers
(Additional file 3: Table S3). A total of 2,180 cancer
genes from both COSMIC and TCGA were selected for
analysis (Additional file 4: Table S4). For the miR-
oriented and protein-oriented supervised analysis, we
included all 1,751 miRs that were presented in miRNA-
Seq data and all 228 proteins that were presented in
RPPA data from the 25 cancers types we selected to
analyze (Additional file 4: Table S4). We included all
miRs and proteins because of the limited list that is
currently available for these platforms; TCGA pre-
selected these candidates. For example, the RPPA assay
technology is constrained by the number of different
proteins that can be measured.

Data pre-processing and normalization
We formatted raw genomic/proteomic TCGA data to the
updated, filtered, normalized, and structured meta-data by
each platform (Fig. 1). First, we updated every genomic
symbol to HUGO Gene Nomenclature (HGNC, June 2015
version) and revised all protein names to match those
assigned from the primary output of the Broad Firehose.
Fifteen gene symbols were removed, because they did not
have current HUGO identifiers (Additional file 5: Table S5).
Second, we selected those samples that underwent

analysis using all of the available genomic platforms.
This included gene-oriented analysis (CNV, mutations,
RNA-Seq, methylation), miR analysis (CNV, RNA-Seq),
and protein analysis (RPPA). Of note, in gene-oriented
analysis, all of the samples had methylation values that

were determined with two platforms, Infinium Human-
Methylation27 (HM27) and/or Infinium HumanMethy-
lation450 (HM450). To increase sample coverage,
probes that were common to both platforms were placed
into a methylation matrix—this approach was completed
in eight cancers including BRCA, COADREAD, GBM,
KIRC, LUAD, LUSC, STAD, and UCEC. LAML was the
only exception. For this cancer, all the samples had been
analyzed on both platforms and, for this reason, we ex-
clusively used the HM450 methylation platform given
that this version of the assay is more comprehensive
than the HM27 methylation platform.
Third, we removed any molecular features measure-

ments that were missed from 3 % or more samples and
replaced missing values with the median across all sam-
ples for each feature. In average, 257 genes (for RNA-
Seq) and 327 probes (for methylation), 621 miRs, and no
protein were excluded from analysis, while imputation
occurred with 448 genes in RNA-Seq, 289 probes in
methylation, and 357 miRs from miR-Seq. Proteins were
not excluded given the completeness of the data. The list of
excluded gene features can be reviewed and downloaded at
our web and mobile portal (http://genomeportal.stanford.
edu/pan-tcga/data_download).
Fourth, as has been done with other studies, we normal-

ized the scale of each feature by the standard deviation of
each gene’s measurement plus the tenth percentile of the
global standard deviation in each genomic/proteomic
assay [25, 26], as follows:

ĝ i; jð Þ ¼ g i; jð Þ
sd g ið Þð Þ þ sd10 gð Þ

where g(i,j) is the value for feature i in sample j, sd(g(i)) is
the standard deviation across samples for feature i, sd10(g)
is the tenth percentile value of standard deviations across

Mutated DNA Aberrant RNA 

Proteins 

 Whole exome sequencing  
 Methylation 
 SNP array 

 RNA-Seq 
 miR-Seq 

 Reverse phase 
protein array (RPPA) 

Cancer Genomic/Proteomics Clinically relevant genes/miRs/proteins 

Gene-oriented 

miR-oriented 

Protein-oriented 

Rank Gene 
1 Gene1 
2 Gene2 
3 Gene3 

Elastic-net Analysis on 
Clinical parameters Rank miR 

1 miR1 
2 miR2 
3 miR3 

Rank Protein 
1 Protein1 
2 Protein2 
3 Protein3 

Rank Gene 
1 Gene1 
2 Gene2 
3 Gene3 

Rank miR 
1 miR1 
2 miR2 
3 miR3 

Rank Protein 
1 Protein1 
2 Protein2 
3 Protein3 

Clinical Stage M-Status 

Fig. 1 Overview of the elastic-net analysis pipeline. Genomic data was downloaded from Broad Firehose and analyzed in three separate groups.
Gene-oriented analysis relied on samples with data for mutations, copy number alterations, RNA-Seq, and methylation. The genes, miRs, and
proteins with >3 % missing values were excluded; otherwise missing values were imputed using the median sample value. MicroRNA (miR) and
proteins (reverse phase protein array, RPPA) were analyzed separately given the smaller number of genes and targets that came from these analysis
platforms. Integrated genomic/proteomic matrices were associated with clinical outcomes by elastic-net across all 25 type of cancer. SNP single
nucleotide polymorphism
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features, and ĝ(i, j) is the normalized feature value. This
standard deviation correction factor is standard in micro-
array analysis [26] and minimizes the risk of generating
outliers due to normalization. The scale of each platform
was also normalized.
To execute the regression analysis, we converted clin-

ical outcome values into an integer according to the type
of clinical parameter: ordinal, binary, or categorical
(Table 2). For ordinal and binary, we converted clinical
outcomes into numerical values (Additional file 6: Table
S6). For example, Stage I, II, III, and IV designations
were converted into integer values of 1, 2, 3, and 4 re-
spectively. Citing another example, female or male sex
annotations were altered to either 0 or 1. Categorical
clinical features were converted into binary types by
comparing one class to the remaining classes. For ex-
ample, there are four molecular subtypes in breast can-
cer: triple positive, Her2 positive, ER positive, and triple
negative. Thus, using these four designated subtypes, we
complete the following multiple binary comparisons:
triple negative subtype versus others, Her2 positive ver-
sus others, ER positive versus others, and triple positive
versus others. We then converted a selected class into 1
and others into 0 to achieve an integer measurement.
These converted clinical outcomes were assigned to the
samples in the genomic/proteomic data matrices as a
dependent variable for elastic-net analysis. Samples with-
out available clinical metrics and outcomes were excluded
from analysis.

Identification of genes/miRs/proteins associated with
clinical phenotype
As described previously, we organized the pre-processed
data into three groups: (1) gene-oriented; (2) miR-
oriented; and (3) protein-oriented (Fig. 1). We used
elastic-net regression to estimate an optimal multiple
linear regression of the clinical outcome on the space of
genomic features from these three data groups. For ex-
ample, because there were 11 available clinical parame-
ters in stomach cancer, we conducted elastic-net analysis
33 times (three groups × 11 clinical parameters) for
stomach cancer. Our analysis relied on all of the avail-
able clinical attributes across all 25 types of cancers.
We used the elastic-net algorithm package available in

MATLAB (MathWorks, Natick, MA, USA) as previously
published [25]. There were three distinct data categories,
organized into separate data matrices. First, we compiled
and integrated four genomic data types (DNA CNV,
somatic mutations, mRNA expression level by RNA-Seq,
and DNA methylation) for gene-oriented data. Second,
we analyzed the miRNA-oriented data set using miRNA
genomic CNV and miRNA expression level by RNA-Seq.
Third, we used proteomic information available from the
RPPA data.

We rescaled each feature and included the data into a
single integrated matrix. Briefly, each feature in a matrix
was normalized by both the standard deviation of each
gene’s value and the tenth percentile of the global stand-
ard deviations. The elastic-net regression estimates an
optimal multiple linear regression of the clinical out-
come on the integrated space of genomic/proteomic fea-
tures. For each supervised analysis, it calculates the
coefficient values associated with each genomic feature
while limiting the number of predictors in the model to
ensure the selected model is general.
To confirm each supervised comparison, we used 10-

fold cross validation to identify the set of genes/miRs/
proteins that minimized the average mean-squared error
on each testing set. The resulting coefficients from the
regularized regression were used to rank genomic/prote-
omic features by their association with clinical attributes.
The features were scored proportionally to their ranks
and the score of each gene is the sum of all scores of its
selected features. Nonparametric bootstrap resampling
was used to assess the robustness of the set of top-
ranked genes to changes in the training data as has been
previously validated. The complete data set was
resampled with replacement up to 2,000 times and the
elastic-net regression was recomputed for each bootstrap
data set. Features that are consistently selected by the
bootstrap regression have high rank and low variance.
Genes that are highly ranked for individual category of
genetic aberration (e.g. mutations) or show high ranks
among multiple different genomic assays are the most
robust.
Lists of clinically relevant genes for the 25 cancer types

were identified from elastic-net analysis. The number of
candidate genes associated with clinical stage ranged from
zero (ESCA) to 48 (THCA), with an overall average of
13.6 across the 16 cancer types. The number of miRs asso-
ciated with clinical stage ranged from 0 (BRCA, ESCA,
HNSC, KICH, LUAD, PAAD, STAD) to 46 (KIRP) with an
average of 7.1. Finally, the number of proteins associated
with clinical stage ranged from 0 (ACC, BRCA, LUAD,
LUSC, STAD, KICH, LIHC) to 23 (KIRC) with an average
of 3.4. A total of 199 gene-oriented, 111 miR-oriented,
and 45 protein-oriented top candidates were found when
analyzed with clinical stage. To directly query these candi-
dates, the user types in the name of the genes/miRs/pro-
teins of interest or by selecting pre-defined icons (see
Utility and Discussion).
We provided statistical significance for genes, miRs,

and proteins—among 10-fold cross validation of elastic-
net analysis—for P-values <0.01. After identifying the
candidate list from elastic-net analysis, we tested each
candidate individually with the null hypothesis that there
is no difference in a selected genomic feature between
two groups by a clinical parameter with Bonferroni
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correction. Fisher’s exact test was used to assess signifi-
cance for mutation and copy number data, while a
Mann–Whitney–Wilcoxon Test was used to assess sig-
nificance among RNA-Seq, methylation, miR-Seq, and
RPPA data. As an example, our integrative elastic-net ana-
lysis identified 107 genes associated with clinical stage in
STAD. We focused on the candidate gene HEATR3 with
the null hypothesis that there is no difference in copy
number changes of HEATR3 between early and advanced
stage. We conducted a Fisher’s exact test using a 2 × 2
contingency table with four numbers: (1) number of sam-
ples with amplified HEATR3 in stage I and II, (2) number
of samples without amplified HEATR3 in stage I and II,
(3) number of samples with amplified HEATR3 in stage III
and IV, and (4) number of samples without amplified
HEATR3 in stage III and IV. To apply Bonferroni correc-
tion, we multiplied the P-value of HEATR3 by 107, which
was the number of tests for this specific analysis. The can-
didate genes were ones that had a corrected P-value less
than 0.01. Among the 107 genes initially identified, only
24 had a corrected P-value less than 0.01. A link to down-
load the list of full candidates selected by elastic-net ana-
lysis is still available (http://genomeportal.stanford.edu/
pan-tcga/data_download).
This list may guide users to select targets for experi-

ment validation. As an example, there are 24 genes asso-
ciated with clinical stage in STAD. If users have a list of
genes they are interested in, and seven of them are on
our list, it is better to validate own genes of interest
using our higher-ranked genes. Statistically speaking, a
genetic alteration in a higher-ranked gene has a greater
influence on clinical parameters than alterations in
lower-ranked genes. Without any prior genes of interest,
it may be better to validate experiments with the
highest-ranked genes, such as top-ranked HEART3. The
P-value is an indicator of how significantly these gen-
omic features distinguish between limited and advanced
stage cancer. If the user is interested in expression levels,
NTPX1 is the highest-ranked gene with regards mRNA
expression.

Database schema
All processed data mentioned above was migrated to a
structured MySQL relational database from source-
formatted files. The data were migrated using a combin-
ation of bash scripts and Rails rake tasks. The web appli-
cation was written in Ruby on Rails, which is well suited
for a relational backend database. We categorized the
data according to the type or level of elastic-net analysis
that was conducted. This included high-level clinical
summaries, outcome summaries, and multiple other ta-
bles correlating samples, genes, proteins, miRs, and clin-
ical parameters.

Web implementation
The resulting data is queried, processed, and made view-
able through a Ruby on Rails web application; Rails 4.0.
Bootstrap is currently used for the front-end framework.
The web application is hosted on Linux Ubuntu 10.04,
Apache 2.2.14, with Passenger 4, Ruby 1.9.3. To provide
a visual summary of data, Highcharts—a JavaScript
charting library—was used to generate different types of
charts and graphs on web pages. Each chart is dynamic-
ally generated (no charts are hard coded) using data
returned from queries in the Rails controllers. These
data are sorted, filtered, and processed, and in some
cases statistical formulation is applied. The data are then
passed on to the chart code by html5 data attributes to
Highcharts. This enables the data to be rendered in page
views. Some pages have multiple charts dynamically dis-
played, made possible with Ruby code in the Rails view
templates.

Utility and discussion
The Cancer Genome Atlas Clinical Explorer is a clinic-
ally oriented summary of genomic/proteomic data orga-
nized by cancer type or clinical parameters. Its interface
enables users to query TCGA data in multiple ways
(Fig. 2). First, users can search for clinically relevant
gene/protein/miRs identified by elastic-net analysis. Sec-
ond, users can query a gene, miR, or protein in subcat-
egories of a selected clinical parameter in a chosen
cancer of interest. Third, users can test a specific gene
for results supporting the two-hit hypotheses.
As an indicator of the robustness of our results, we

found that for the molecular subclass HER2-positive
breast cancers, ERRB2 and HER2 were identified as top
predictors from gene-oriented and protein-oriented ana-
lysis respectively. As an additional test regarding the
overlapping correlations, we compared our study to a
previous TCGA study focused on GBM [27]. We used
110 GBM samples from the TCGA for elastic-net analysis
regarding GBM subtype. The TCGA study had more
samples but limited clinical annotation, thus restricting
the number of samples from which we could conduct our
supervised analysis based on clinical parameters. When
we used our elastic-net analysis using only one class of
genomic aberration (e.g. mutation alone, copy number
alone), our results were highly concordant with the results
of the TCGA study in terms of molecular subclass.
We used only one genomic feature to facilitate a direct

comparison with the TCGA results. When we used only
the CNV data, our supervised analysis of the proneural
molecular subclass compared to all others identified
OR51E2 and OR52E4 (chr 11p15) as the second and
third ranked candidates; CDK4 was the 17th highest
ranking CNV. This result is concordant with the TCGA
study results regarding this molecular subclass. When
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we used only the mutation data, our supervised analysis
of mesenchymal subclass identified IDH1 and TP53 as
the first and second ranked candidates. Again, this result
overlaps with the TCGA results. When we used copy
number data, our supervised analysis of the classical
subclass revealed EGFR as the top ranking candidate, a
result that is concordant with the TCGA study. For the
mesenchymal subclass, our results were concordant with
TCGA in that we identified NF1, CDH18, and RB1 as
the top, tenth, and 18th candidates, primarily using mu-
tation data, and NF1 was also seen prominently in terms

of somatic CNV. As the clinical annotation is extended
to more GBM samples, we anticipate that our approach
will identify more of the genes found in the original
study and place them in the context regarding their as-
sociation with clinical parameters.

Search for clinically relevant genes/miRs/proteins
As noted previously, the first search capability allows users
to search by the genes/miRs/protein name (Fig. 2ai). Once
a gene, protein, or miR is entered into the search window,
a new page will display clinical parameters associated with

Fig. 2 The Cancer Genome Atlas Clinical Explorer homepage. The web interface provides three different ways of navigating TCGA data. a Users
can inquire about the clinical relevance of specific genes, miRs, or proteins identified by elastic-net analysis. This is done by entering the (i) gene
name, (ii) cancer type, or (iii) clinical parameter. b Users can examine if a somatic alteration behaves differently between categories in a clinical
parameter and in a cancer type. c Users can investigate how a genetic event affects another alteration in a selected cancer type using the two-hit
hypotheses test
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their molecule of interest. For example, entering TP53 will
display the clinical parameters associated withTP53 across
all cancer types as identified by elastic-net analysis
(Fig. 3a). In this search, users can also see the frequency of
mutations and copy number changes on TP53 across all
cancer types located in separate tabs labeled “Fre-
quency-Mutation” and “Frequency-Copy Number.” Sort
functions for each column allows users to visualize that
TP53 is most frequently mutated, amplified, or deleted
in OV, HNSC, and KICH respectively. A P-value is pro-
vided as well to enable users to sort based on statistical
significance.
The current version of the portal only displays infor-

mation about candidate molecules (i.e. genes, miRs, or
proteins) from elastic-net analysis. Warning messages
will appear if data are not available in the current ver-
sion. For example, the warning message “this gene was
included for elastic-net analysis, but no association with

clinical parameters was found” will appear when a user
selects a gene that was included in analysis, but not
identified as having a relevant association by the elastic-
net algorithm. Alternatively, “this gene was not included
for elastic-net analysis” indicates that a user has selected
a gene that was not included in the analysis. However,
the frequency of mutation and CNV by cancers will be
provided. Users will view a warning message, “target
name not recognized, please try another target name” if
they have entered a gene name that does not exist.
The second search parameter in the top search panel

queries by cancer type (Fig. 2aii). This allows users to se-
lect a cancer of interest from a drop-down menu. Once
the cancer type is selected, the user can visualize all
clinical parameters that are associated with the selected
cancer (Fig. 3b; example of COADREAD). In addition,
this high-level summary window shows the number of
candidates identified by elastic-net analysis for each

Fig. 3 Query results page – clinically relevant genes, miRs, or proteins. a The search results page when TP53 is entered in the search panel
(Fig. 2ai) and the explorer website has retrieved data using elastic-net analysis. b The search results page for a specific cancer type; COADREAD is
selected from the drop-down menu (Fig. 2aii) and this action retrieves results about COADREAD. This includes summary tables for genes, miRs,
and proteins potentially associated with ten clinical parameters in COADREAD. Each clinical parameter table displays the number of candidates
(gene, miRs, and proteins) and the number of samples used in each analysis. Categorical clinical parameters list subtypes beneath the clinical
parameter title; each subtype, when selected, displays a more complete summary table including number of candidates (gene, miRs, and proteins)
and the number of samples used in each analysis. c The search results page when clinical stage is selected from drop-down menu (Fig. 2aiii). Results
are displayed for summary tables across all of the cancers. Each clinical stage table displays the number of candidates (gene, miRs, and proteins) and
the number of samples used in each analysis
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clinical parameter as well as the total number of samples
used for analysis. By clicking on a gene, miR, or protein,
users will be directed to an outcome summary page. For
example, when a user clicks on “genes” under MSI, the
list of genes that are associated with MSI will be dis-
played in this outcome summary page (Fig. 4). The user
has the option to download the relevant information via
a download button.
The final search capability in the top search panel per-

mits users to query clinical parameters of interest
(Fig. 2aiii). Once a clinical parameter is selected from the
drop-down menu, a high-level summary page provides a
visualization of the number of clinically relevant genes,
miRs, or proteins across all cancer types (Fig. 3c; example
of clinical stage). From this high-level summary page, the
user simply locates the table for the cancer of interest, and
then clicks on the gene, miR, or protein. Afterwards, the
user is directed to an outcome summary page—it may be
noted that this outcome summary page can be reached
through different search functions as described earlier.
The outcome summary page offers a variety of useful

information (Fig. 4). First, the diagram at the upper right
corner shows the distribution of samples by subtype for
the clinical parameter currently selected (Fig. 4; example

of MSI in colorectal cancer). This diagram, as well as all
other figures, can be saved in PNG, JPEG, PDF, or SVG
formats by clicking the icon. Second, clinically relevant
genes are listed by rank. As previously described, higher-
rank genes contribute more to the selected clinical par-
ameter by the supporting genomic platform as derived
from elastic-net analysis [25]. In general, genes that are
highly ranked for individual category of genetic aberra-
tion (e.g. mutations) or across different genomic assays
are the most robust and correlate well with other stud-
ies, as we noted previously. A blue down arrow—“direct
association”—indicates that as the degree of the pre-
dictor increases, the outcome increases after controlling
for other significant predictors. Likewise, a red upward
arrow—“inverse association”—means that as the level of
predictor decreases, the outcome increases.
Users can also click an individual gene name, which will

direct them to a gene summary page (Fig. 5). The gene
summary page of MLH1 displays CNV (Fig. 5a), mutation
(Fig. 5b), and mRNA expression levels (Fig. 5c; RNA-Seq
displayed, RNA array not displayed). The tabs located
above each graph enable users to view different genomic
features (copy number, mutation, RNA array, and RNA-
Seq) for the gene and parameters selected (Fig. 5a–c).

Fig. 4 Outcome summary page for clinical stage in COADREAD (colorectal cancer) is reached by selecting a candidate (gene, miR, or protein).
The pie chart displays distribution of samples by subtype for the clinical parameter currently selected. This panel shows a table of clinically relevant
genes listed by rank and each associated genomic aberration associated with that gene for the clinical parameter and cancer type. For COADREAD
and MSI, the gene MLH1 is top ranked. The color codes of these platforms indicate that MLH1 often shows decreased gene expression (downward blue
arrow) and increased methylation (red upward arrow)
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The companion summary table to the right of the
graph displays percentiles for each clinical parameter
and genomic category—the sample numbers will only be
displayed if the user selects “View Sample Counts Table.”
Expression data from RNA-Seq, or RPPA are displayed
by box plot and, as a result, summary tables show mini-
mum, first quartile, median, third quartile, and max-
imum instead of percentiles.

Profiling a gene, micro RNA, or protein by clinical
parameter and cancer type
The middle search panel allows users to query by gene/
miR/protein in a specific cancer with one selected clinical
parameter (Fig. 2b). This profiling function requires three

inputs including a gene/miR/protein, a cancer type, and a
clinical parameter of interest. For example, a user can de-
termine the difference in PIK3CA mutation frequency in
stomach cancer between patients with EBV infections and
patients without EBV infections. To answer this question,
users type PIK3CA in the gene/miR/protein search box,
select STAD for cancer type in the drop-down menu, se-
lect EBV presence in the clinical parameter drop-down
menu, and click submit (Fig. 6a). A query results page
shows the distribution of CNV, the frequency of muta-
tions, and other available genomic/proteomic profiles be-
tween EBV-positive and EBV-negative samples (Fig. 6b;
copy number, Fig. 6c; mutation). As indicated by the
search results, 16.4 % of the EBV-negative samples have

Fig. 5 Gene summary page for MLH1 as a candidate gene associated with MSI. This is reached by selecting a gene, miR, or protein listed in the
outcome summary page (Fig. 4). Genomic profile tabs include a the status of copy number variation, b mutation frequency, and c mean expression
levels based on RNA-Seq. Genomic profile tabs vary depending on category (gene, miR, or protein), clinical parameter, and cancer type being
scrutinized. Tables to the right of the genomic profile graphs display percentiles or quartiles of genomic values for each category in a clinical parameter
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mutations on PIK3CA while 83.3 % of EBV-positive sam-
ples harbor the same mutation (Fig. 6c). Again, the user
has the option to use the download button to download a
list of relevant genes.

Test two-hit hypotheses
Finally, the bottom search panel called “Two-hit hypoth-
esis test” enables users to explore the relationship be-
tween two genomic/proteomic profiles of their choosing
(Fig. 2c). This function also allows users to examine how
genetic changes affect their corresponding transcrip-
tome/proteome. For example, if a user wishes to know
how many samples have TP53 CNVs overlapping with
TP53 mutations in colorectal cancer, a user selects TP53

with copy number for the first target and TP53 with mu-
tation for the second target (Fig. 7a). Once submitted,
the query result page provides a graph showing the dis-
tribution of CNV of TP53 between samples with TP53
mutations and samples without TP53 mutations (Fig. 7b).
This is also summarized in table format (table not dis-
played). Finally, by selecting RNA-Seq for the first target
and mutation for the second target (Fig. 7c; example of
TP53), the results page will show expression levels by
mutation status of the selected candidate gene/miR/pro-
tein (Fig. 7d; example of TP53). The genomic/proteomic
profile for a second target, which splits samples into
groups, is limited to mutation and copy number; it is
not feasible to split samples by setting an arbitrary cutoff

Fig. 6 Query and results pages – gene, miR, or protein in a specific cancer type and one clinical parameter. a An input query window shows the
selections of PIK3CA (gene), STAD (cancer type), and EBV present (clinical parameter). Results of genomic profile tabs are shown for (b) copy number
variation of PIK3CA between EBV-infected and EBV-uninfected samples and (c) mutation frequency between EBV-infected and EBV-uninfected samples.
Genomic profile tabs vary depending on search parameters. Tables to the right of the genomic profile graphs display percentiles for each clinical
parameter and genomic value category. This example shows the frequency of PIK3CA mutations: 16.4 % of the EBV-negative samples have mutations
compared to 83.3 % of EBV-positive samples
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for expression levels. For future updates, we plan to allow
users to input their own cutoff to realize the differences
above and below cutoffs of their first target sample.

Conclusions
The Cancer Genome Atlas Clinical Explorer facilitates
the clinical use of TCGA data by the broader cancer re-
search and clinical community by providing a simple
interface for exploring the clinically relevant associations
from TCGA genomic data sets. The search functions
provided by this application enhance the clinical utility
of TCGA data for biomedical scientist and clinicians. In
addition, the Cancer Genome Atlas Clinical Explorer
complements existing databases and webpages, such as
TCGA data portals, the UCSC Cancer Genomics
Browser [23], cBio portal [22], and Broad Firehose, by
providing clinically oriented summaries that are easily
accessible by a variety of devices including smart phones
and laptops.
The TCGA study is ongoing with a significant fraction

of samples lacking either genomic results or clinical
data. Our elastic-net analysis requires complete data
across all of the major genomic assay platforms and clin-
ical annotation; there remain many assay data sets that
are incomplete. In addition, some of the cancers are
under embargo. We are planning a major upgrade of the
portal when the TCGA has final results for all genomics
platforms and fully annotated clinical data, and this is
likely to occur in 2016. When TCGA results are fully

released, we anticipate a benefit from using the com-
pleted data sets for a final update. For example, the final
release of mutations from the exome data will provide a
perfect opportunity to provide comprehensive mutation
class and pathogenicity score assignment across all
TCGA samples.

Availability and requirements
Cancer Genome Atlas Clinical Explorer is accessible at
http://genomeportal.stanford.edu/pan-tcga. Data can be
utilized without any restriction with the citation of this
publication.
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Abbreviations
ACC: adrenocortical carcinoma; BLCA: urothelial bladder cancer; BRCA: breast
invasive carcinoma; CESC: cervical cancer; CNV: copy number variation;

Fig. 7 Query and results page – two-hit hypotheses test. a The input query window shows the selections of COADREAD (cancer type), TP53 copy
number (first target), and TP53 mutation (second target). b This panel shows the joint copy number status and mutation status for TP53—results
from the query input are shown in (a). c The input query window shows the selections of COADREAD (cancer type), TP53 RNA-Seq (first target),
and TP53 mutations from genomic sequencing (second target). d This panel shows the expression levels of TP53 in samples with and without
mutations as called from the query input shown in (c)
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COADREAD: colorectal adenocarcinoma; COSMIC: Catalogue of Somatic
Mutations in Cancer; EBV: Epstein–Barr virus; ERBB2: erb-b2 receptor tyrosine
kinase 2; ESCA: esophageal cancer; GBM: glioblastoma multiforme;
HER2: human epidermal growth factor receptor 2; HGNC: HUGO Gene
Nomenclature; HNSC: head and neck squamous cell carcinoma; JPEG: joint
photographic experts group; KICH: chromophobe renal cell carcinoma;
KIRC: kidney renal clear cell carcinoma; KIRP: papillary kidney carcinoma;
LAML: acute myeloid leukemia; LICH: liver hepatocellular carcinoma;
LGG: lower grade glioma; LUAD: lung adenocarcinoma; LUSC: lung
squamous cell carcinoma; MLH1: mutL homolog 1; miR: micro RNA;
MSI: microsatellite instability; NGS: next-generation sequencing; OV: ovarian
serous cystadenocarcinoma; PAAD: pancreatic ductal adenocarcinoma;
PCPG: pheochromocytoma and paraganglioma; PDF: portable document
format; PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic
subunit alpha; PNG: portable network graphics; PRAD: prostate
adenocarcinoma; RPPA: reverse phase protein array; SKCM: skin cutaneous
melanoma; STAD: stomach adenocarcinoma; SVG: scalable vector graphics;
TCGA: The Cancer Genome Atlas; TGFBR2: Transforming growth factor, beta
receptor II; THCA: thyroid carcinoma; TP53: tumor protein p53; UCEC: uterine
corpus endometrioid carcinoma; UCS: uterine carcinosarcoma; WRN: Werner
syndrome, RecQ helicase.
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