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Immunoinformatics and epitope prediction
in the age of genomic medicine
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Abstract

Immunoinformatics involves the application of computational methods to immunological problems. Prediction of
B- and T-cell epitopes has long been the focus of immunoinformatics, given the potential translational implications,
and many tools have been developed. With the advent of next-generation sequencing (NGS) methods, an
unprecedented wealth of information has become available that requires more-advanced immunoinformatics tools.
Based on information from whole-genome sequencing, exome sequencing and RNA sequencing, it is possible to
characterize with high accuracy an individual’s human leukocyte antigen (HLA) allotype (i.e., the individual set of
HLA alleles of the patient), as well as changes arising in the HLA ligandome (the collection of peptides presented
by the HLA) owing to genomic variation. This has allowed new opportunities for translational applications of
epitope prediction, such as epitope-based design of prophylactic and therapeutic vaccines, and personalized cancer
immunotherapies. Here, we review a wide range of immunoinformatics tools, with a focus on B- and T-cell epitope
prediction. We also highlight fundamental differences in the underlying algorithms and discuss the various metrics
employed to assess prediction quality, comparing their strengths and weaknesses. Finally, we discuss the new
challenges and opportunities presented by high-throughput data-sets for the field of epitope prediction.
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From genomics to epitope prediction
Immunoinformatics deals with the application of com-
putational methods to immunological problems and is
thus considered a part of bioinformatics. Historically,
tools for the prediction of HLA-binding peptides were
the first tools developed specifically for immunoinfor-
matics applications (Box 1). These tools paved the way for
more-complex applications. The development of immu-
noinformatics tools has been crucial to the availability of
sufficient experimental data. High-throughput human
leukocyte antigen (HLA) binding assays led to major pro-
gress in this area. More recently, next-generation sequen-
cing (NGS) has facilitated many of the novel applications
and challenges that we will review here. A first area where
the availability of cost-effective sequencing is having a
large impact is our knowledge of the major histocompati-
bility complex (MHC, HLA in human) itself. The number
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of known HLA alleles, as registered in the International
ImMunoGeneTics information system (IMGT) database,
has increased from 1000 in 1998 to more than 13,000 in
2015 [1]. Initially tools for prediction of HLA binding
(often also — slightly inaccurately — called epitope pre-
diction) were trained on data for each HLA allele inde-
pendently, but the number of new alleles renders this
approach more and more impractical. The development
of novel predictors, so-called pan-specific binding predic-
tors, has been necessitated by this development. In gen-
eral, the availability of large-scale data has improved the
performance of immunoinformatics tools, and, for many,
although not for all, applications, there is now a wealth of
data available. This increase in data volume often trans-
lates to an increased accuracy of these tools, primarily be-
cause many tools are based on machine learning methods,
which profit greatly from additional data. In this context,
the availability of comprehensive and well-curated im-
munological databases is essential.
Here, we will first review how immunoinformatics tools

can be used to infer HLA allotypes from NGS data, and
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Box 1. The adaptive immune system

The adaptive immune system is the component of the immune

system that can learn to recognize specific threats (e.g.,

pathogens). This immunological memory results in long-lasting

immunity and rapid immune responses. Humoral immunity is

mediated by the recognition of antigens by B cells, whereas

cell-mediated immunity is based on the presentation of

antigens on human leukocyte antigen (HLA) and the recognition

of these antigens by T cells. B cells recognize antigens through

membrane-bound antibodies using B-cell receptors (BCRs),

resulting in the secretion of antibodies that bind to the antigen

and deactivate or eliminate it.

Processing and presentation of peptide epitopes are essential

steps in cell-mediated immunity. In general, the HLA class I

pathway processes proteins originating from inside the cell,

whereas the class II pathway presents extracellular proteins

(Fig. 2). The HLA system is encoded by 21 genes, which are

located on chromosome 6 and are highly polymorphic. HLA

class I entails three different loci, HLA-A, HLA-B and HLA-C, and

HLA class II encompasses HLA-DR, HLA-DP and HLA-DQ. Owing

to the possession of a diploid genome, each individual can thus

have between three and six different HLA class I allotypes. HLA

class I mainly binds to ligands with 8–12 amino acids, whereas

HLA class II binds to longer peptides with 15–24 amino acids.

Each HLA allotype binds to different ligands characterized by

specific binding motifs [91]. HLA allotypes also differ in the set

of ligands that the encoded proteins can bind. Knowledge of

the allotypes is thus essential for predicting HLA-presented

peptides.
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then we explain how HLA ligands can be predicted based
on this information. There are fundamental differences
between the prediction of HLA class I and class II ligands
that we will also highlight. Specifically, for HLA class I, we
will also discuss the tools available for the prediction of
antigen processing [e.g., proteasomal cleavage and trans-
port by transporter associated with antigen processing
(TAP)] — although their impact in the field is limited
compared with that of tools for HLA binding prediction.
Despite all progress in immunoinformatics, prediction of
T-cell reactivity, prediction of B-cell epitopes, and large-
scale data integration are still major challenges, and we
will briefly discuss why and how these could be overcome.
Finally, we will consider how the availability of NGS-
based data has not only improved the current immunoin-
formatics tools, but has also paved the way for novel
applications of these tools. Most of these applications are
centered around the paradigm of epitope-based vaccines.
For example, epitope prediction tools can be applied to
construct vaccines based only on the genomic sequence of
a pathogen [2], and the availability of personal genomic
data enables personalized approaches to cancer immuno-
therapy [3]. It is in these areas that we expect the combin-
ation of NGS data and novel computational tools to
impact healthcare in a most profound way.

Immunoinformatics methods and databases for
epitope prediction
The availability of the sequence data of HLA-binding
peptides in the early 1990s [4] led to a search for com-
monalities among these sequences — that is, allele-
specific motifs that convey binding. It quickly became
clear that the interaction between HLA and peptides is
rather complex, and thus more and more involved
pattern-recognition methods were developed. Learning
patterns from data is a field in computer science that is
typically called machine learning (ML), and, in particu-
lar, supervised ML has been applied to HLA-ligand
binding.

Machine learning approaches
In supervised ML, a method tries to learn a function
that maps a given input to its corresponding output for
a given training data-set of known input and output
values (learning from examples). This could either be
classification (e.g., discrimination between binder and
non-binder) or regression (e.g., prediction of peptide
binding affinity). After training, the so-called predictor is
able to make predictions for uncategorized data [5]
(Fig. 1). The simplest ML technique that is still widely
used is position-specific scoring matrices (PSSMs) [6].
However, more-complex learning methods, such as sup-
port vector machines (SVMs) [7, 8], hidden Markov
models (HMMs) [9] or artificial neural networks (ANNs)
[10], have now become more important. There are a few
fundamental differences between the various methods.
PSSMs are unable to model the nonlinearity of the bind-
ing process as well as the interrelationship between
different binding positions, whereas SVMs, HMMs and
ANNs are able to model these effects and thus show su-
perior performance. Before a ML-based predictor can be
used, it has to be trained on training data and evaluated
on validation data that were not used for training. A
commonly used method to evaluate a predictor is k-fold
cross-validation (Fig. 1), in which k disjoint subsets of
data-points are created. Special care needs to be taken
with the selection of these subsets for HLA peptide data,
as the high level of sequence similarity between peptides
can result in an overestimation of the general prediction
performance.
Basic knowledge of the different performance mea-

sures is crucial to judge the relative performance of
different ML-based methods. Thus, we will first present



Fig. 1 Generating predictions from data. a Evaluation of the predictor using cross-validation: first the data-set is split into k-folds (k = 5). Next, five
predictors are trained on four folds and validated on the one left out. Evaluation can be, for example, a receiver operating characteristic (ROC)
curve analysis. Finally, an average ROC curve is generated. b Training of the final predictor: after evaluation, the final predictor is trained on the
complete data-set
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a quick overview of the most important metrics. Well-
known measures are truly predicted positives (TPs),
falsely predicted positives (FPs), truly predicted negatives
(TNs) and falsely predicted negatives (FNs). These mea-
sures can be used to define sensitivity (TP/P) and speci-
ficity (TN/N). Other commonly used measures are ‘area
under the receiver operating characteristic (ROC) curve’
(AUC) and Mathews correlation coefficient (MCC). The
ROC is a plot of the TP rate against the FP rate for
different parameters. The AUC is equivalent to the prob-
ability that the classifier will rank a randomly chosen
positive instance higher than a negative one [11]. A value
of 1 implies perfect prediction, and 0.5 is not better than
random prediction. The MCC describes the correlation
between observed and predicted classification [12]. An
MCC value of 1 represents perfect prediction, 0 is not
better than random prediction, and −1 indicates a nega-
tive correlation between prediction and observation.
Note that different metrics cannot be directly compared
with each other (e.g., AUC with MCC) and that perform-
ance is highly data-set dependent. The performance of
ML-based immunoinformatics tools has improved in re-
cent years primarily owing to the increased availability of
data and from advances in ML techniques.
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Epitope databases
Training supervised ML approaches requires data —
and the more data, the better. A wealth of immuno-
logical data is publicly available from several databases
(Table 1). The growth in some of these databases has
been driven by high-throughput methods, in particular NGS
(e.g., HLA allele databases), high-throughput binding assays
(quantitative HLA ligand data) and high-resolution mass
spectrometry (qualitative HLA ligand data). There is a wealth
of other databases available [13], but we focus our discussion
on databases that profited fromhigh-throughputmethods.
One of the oldest databases is SYFPEITHI, which con-

tains naturally processed MHC ligands and T-cell epitopes
[14]. The Immune Epitope Database (IEDB) incorporates
more than 120,000 curated epitopes, most of which are
extracted from scientific publications and, in contrast to
SYFPEITHI, includes also a lot of data on synthetic
peptides. Furthermore, three-dimensional structures of
epitope–MHC/BCR complexes are available from the
IEDB [15]. MHCBN 4.0 contains MHC binding and non-
binding peptides and peptides interacting with TAP [16].
The AntiJen database contains MHC ligands, T-cell recep-
tor (TCR)–MHC complexes, T-cell epitopes, TAP, B-cell
epitopes and immunological protein–protein interactions
[17]. Despite its broad range of information, AntiJen has
not been updated since 2005 and allows no download of
the data. The IMGT system contains information on anti-
bodies, TCRs and HLAs [18]. The subsection IMGT/HLA
has gathered more than 13,000 HLA alleles [1], and this
large body of HLA sequences is often used as a reference
for NGS-based HLA typing [19, 20].
To develop new prediction tools, public access to train-

ing data is important. In 2011, Zhang and colleagues made
the Dana-Farber Repository for Machine Learning in Im-
munology available [21]. Using this dataset, new predic-
tors can be established and easily compared with state-of-
the-art methods. Additionally, IEDB and IMGT provide
Table 1 Examples of databases offering immunological data

Database Content Reference

SYFPEITHI MHC ligands, T-cell epitopes [14]

IEDB Epitopes, epitope–MHC/BCR complexes [15]

IMGT Antibodies, T-cell receptors [18]

IMGT/HLA HLA alleles [18]

MHCBN 4.0 MHC peptides, TAP-interacting peptides [16]

AntiJen MHC ligands, TCR–MHC complexes, T-cell
epitopes, TAP, B-cell epitopes, protein–protein
interactions

[17]

Dana-Farber
Repository

MHC ligands for machine learning [21]

Abbreviations: BCR B-cell receptor, HLA human leukocyte antigen, IEDB Immune
Epitope Database, IMGT International ImMunoGeneTics information system, MHC
major histocompatibility complex, MHCBN MHC binding and non-binding, TAP
transporter associated with antigen processing, TCR T-cell receptor
datasets to build large training sets for epitope prediction.
Although SYFPEITHI has not been updated since 2012, it
is still used frequently for performance evaluations owing
to its high-quality, manually curated data.

Available tools: strengths and weaknesses
To predict each step of the antigen-processing pathway,
predictors based on different ML methods have been de-
veloped. They all rely on detailed knowledge of the HLA
types. With the availability of NGS data (exome, whole
genome, transcriptome) the typing of an individual’s HLA
alleles from these data has become an interesting applica-
tion as it does not require additional data or experimenta-
tion. We will thus start by describing NGS-based HLA
typing and then discuss the methods for T-cell and B-cell
epitope prediction and highlight important commonalities
and differences (Table 2). We will conclude by discussing
how these tools can be integrated and applied in a transla-
tional setting.

NGS-based HLA typing
To predict a T-cell epitope, knowledge of the HLA allo-
type is required. Classical approaches for HLA typing
rely on either antibody-based methods or targeted se-
quencing [22]. In many clinical applications, the NGS
data of a patient are already available. The tools inferring
the HLA allotype from NGS data (exome, transcrip-
tome) can thus avoid additional cost. These tools are
also frequently used to infer HLA types for large-scale
genome sequencing projects (e.g., ICGC [23], The Cancer
Genome Atlas, 1000 Genomes project [24]), where no
dedicated HLA typing data are available for the majority
of genomes. They differ mostly in prediction accuracy and
in the HLA loci covered (class I or class II). Early tools
were ATHLATES (WES) [25] and seq2HLA (RNA-Seq)
[26]. However, their accuracy is lower than that of more
up-to-date tools. In a recent comparison, Shukla and
colleagues [20] found their own tool (PolySolver (WES))
and OptiType (WGS,WES, RNA-Seq) [19] to be the most
accurate tools for HLA class I inference.

T-cell epitope prediction
Given the HLA type for an individual, it is now possible
to predict the HLA ligandome. This is often referred to
as T-cell epitope prediction, even though presentation
by HLA is necessary, but not sufficient, for a peptide to
become an epitope, since recognition by the immune
system is not guaranteed. Thus, additional steps in anti-
gen processing and recognition need to be considered as
well. HLA ligand binding is a limiting step in the
antigen-processing pathway (Fig. 2). It is generally con-
sidered to be more specific than subsequent steps of the
antigen processing pathways and thus pivotal for vaccine
design.



Table 2 Methods for analyzing steps in the antigen-processing
pathway and for HLA typing

Predictor/tool Key method Reference

HLA class I binding

Allele-specific

SYFPEITHI PSSM [14]

RANKPEP PSSM [27]

BIMAS PSSM [28]

SVMHC SVM [7]

netMHC ANN [29]

Pan-specific

MULTIPRED HMM/ANN [39]

netMHCpan ANN [40]

PickPocket PSSM [41]

TEPITOPEpan PSSM [42]

ADT Threading [43]

UniTope SVM [44]

KISS SVM [45]

HLA class II binding

Allele-specific

SYFPEITHI PSSM [14]

netMHCII/SM-align PSSM/ANN [48, 49]

ProPred PSSM [50]

RANKPED PSSM [27]

TEPITOPE PSSM [51]

SVRMHC SVM [8]

MHC2MIL Multi-instance learning [52]

MHC2pred SVM –

Pan-specific

MULTIPRED HMM/ANN [39]

MHCIIMulti Multi-instance learning [55]

TEPITOPEpan PSSM [42]

netMHCIIpan ANN [56, 90]

Consensus methods

CONSENSUS – [57]

netMHCcon – [56]

Binding stability

netMHCstab ANN [47]

Proteasomal cleavage

in vitro

netChop 20S ANN [60]

PCM PSSM [61]

FragPredict PSSM [62]

Pcleavage SVM [63]

PAProC ANN [64]

Table 2 Methods for analyzing steps in the antigen-processing
pathway and for HLA typing (Continued)

in vivo

netChop Cterm ANN [60]

ProteaSMM PSSM [65]

TAP transport

PredTAP HMM/ANN [39]

SVMTAP SVM [61]

Integrated processing

EpiJen – [70]

WAPP – [61]

NetCTL – [71]

NetCTLpan – [72]

T-cell reactivity

POPI SVM [74]

POPISK SVM [75]

B-cell epitope prediction

Continuous

COBEpro SVM [78]

BCPRed SVM [79]

FBCPred SVM [79]

Discontinuous

EPMeta SVM [82]

Discotope 2.0 Linear regression [83]

NGS-based HLA typing

ATHLATES Contig assembly [25]

seq2HLA Greedy algorithm [26]

OptiType Integer linear programming [19]

Polysolver Bayesian classification [20]

Abbreviations:ANN artificial neural network,HLA human leukocyte antigen,HMM hidden
Markovmodel,NGS next-generation sequencing, PSSM position-specific scoringmatrix,
SVM support vectormachine, TAP transporter associatedwith antigenprocessing
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HLA class I
As different HLA class I alleles have distinct binding prefer-
ences, the simplest class I binding predictors are allele-specific
predictors. In order to achieve good prediction quality, these
predictors need to be trained on large amounts of experimen-
tal data. Among the most popular methods are PSSM-based
predictors (e.g., SYFPEITHI [14], RANKPEP [27] or BIMAS
[28]), SVM-based predictors {e.g., SVMHC [7], SVRMHC [8])
and ANN-based methods (e.g., netMHC [29])}. To find the
most accurate prediction tool, several benchmarks have been
performed [30–34], but their results differ greatly, primarily
owing to the use of different evaluation datasets. In general
(and not surprisingly), modern non-linear ML methods such
as ANNs and SVMs are outperforming the simpler PSSM
methods. This can be attributed to the inherent nonlinearity
of the problem and interdependencies between amino acid
positions [34]. In 2012, the second machine learning



Fig. 2 Antigen processing pathways. Top: HLA class I pathway — the endogenous antigen is cleaved by the proteasome into peptides. These
peptides are transported into the endoplasmic reticulum (ER) by the TAP and become bound to HLA class I. The HLA–ligand complex is
transported in a vesicle to the cell surface and can be recognized by the TCR on CD8+ T cells. Bottom: HLA class II pathway — the exogenous
antigen is taken up into the cell, digested into peptides and bound to HLA class II in an endosome. The HLA–ligand complex is transported in
a vesicle to the cell surface and can be recognized by the TCR on CD4+ T cells. HLA human leukocyte antigen, TAP transporter associated with
antigen processing, TCR T-cell receptor
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competition in immunology was performed [35], and it pro-
vided an unbiased comparison of different methods on previ-
ously unpublished data in a blind prediction setting. A
number of recent [36] and ongoing continuous [37] bench-
marks conclude that, currently, ANN-based methods such as
netMHC are the best-performingmethods.
To train an allele-specific predictor, large amounts of data

for each individual allele are required. The flood of newly se-
quenced alleles made it clear that generating the data for all
new alleles is not a sustainable option. Consequently, pan-
specific methods have been developed. These methods trans-
fer knowledge from alleles with a large training set to related
alleles with no or few data available. To this end, they take the
peptide and the modular structure of the HLA peptide bind-
ing groove into account [38]. In 2005, Zhang and colleagues
publishedMULTIPRED [39], one of the first pan-specific pre-
dictors. Other pan-specific methods are netMHCpan [40],
Pick-Pocket [41], TEPITOPEpan [42], ADT [43], UniTope
[44] and KISS [45]. MULTI-PRED trains one predictor per
super-class (alleles with similar binding properties), whereas
PickPocket and TEPITOPEpan calculate the binding specific-
ities of the HLA molecule by comparing the pocket-
residues with the HLAs in their library and calculating
a weighted average score, and KISS is SVM based. In
contrast to all other methods, netMHCpan allows the
user to make predictions for arbitrary HLA class I se-
quences. In 2009, Zhang and colleagues [38] compared
three different pan-specific methods: netMHCpan, ADT
and KISS. In this large-scale benchmark, netMHCpan
performed best among the studied methods. Pan-specific
predictors have also been evaluated together with allele-
specific predictors in the same benchmarks and com-
monly perform similar or even better than allele-specific
methods [37]. Besides these very good prediction results,
it should be mentioned that, although the binding affinity
is crucial for epitope prediction, many peptides with pre-
dicted high affinity scores are not immunogenic. Some
30 % of these so-called ‘holes in the T-cell repertoire’ can
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be explained by considering the binding stability of the
peptide–HLA complex [46]. As there are only few data
available for the binding stability, there has only been
an account of a single tool published so far (NetMHC-
stab [47]).
HLA class II
HLA class II ligand prediction is more difficult than
class I prediction owing to the unknown position of the
binding core within the generally longer peptides. As
for HLA class I, SYFPEITHI [14] was one of the first
PSSM-based predictors. Another PSSM approach is
netMHCII/SMM-align [48], which was updated to use
ANNs in 2009 [49]. Other HLA class II epitope predic-
tors are ProPred [50], RANKPED [27], TEPITOPE [51],
SVRMHC [8], MHC2MIL [52] and MHC2pred.
All of these tools have some predictors for the HLA-

DR locus. netMHCII, RANKPED and MHC2MIL also
provide predictions for HLA-DQ and DP. In general,
the coverage of the DQ and DP loci is lower than for
the DR locus. In 2008, Gowthaman and Agrewala pub-
lished a benchmark paper in which they conclude that
HLA class II methods are not good enough to select
peptides for the development of vaccines [53]. None of
the compared predictors had an MCC higher than 0.8,
and, for most considered alleles, the MCC was less than
0.5. Another benchmark from 2008, based on 10,017
peptide-binding affinities for 16 HLA class II alleles [54],
concluded that the best mean AUC (0.73) was achieved
by ProPred and SSM-align/netMHCII. Recently, up-
dated versions of NetMHCII appear to perform even
better [49].
As for HLA class I, the huge amount of new HLA

class II types cannot be handled by allele-specific
methods any more. Similarly to HLA class I, MULTI-
PRED [39] was one of the first pan-specific methods.
MHCIIMulti uses multiple-instance learning to over-
come the scarcity of data [55]. In 2012, Zhang and col-
leagues extended TEPITOPE to TEPITOPEpan, which
can also be used for HLA class II [42]. The most recent
tool is the updated version of netMHCIIpan [56]. While
all pan-specific predictors can predict the HLA-DR
locus, only netMHCIIpan makes predictions for HLA-DR
and HLA-DQ. Unfortunately, no pure pan-specific HLA
class II epitope-predictor benchmark is available, but
nevertheless, in most HLA class II benchmarks, allele-
specific and pan-specific methods perform comparably.
To sum up, HLA class II epitope predictors are still

not as good as HLA class I epitope predictors, and they
should be used carefully in the context of vaccine design
and treatment development. The methods are expected
to improve as more experimental high-throughput data
become available.
Consensus methods
To improve predictions in machine learning, multiple
predictors can be combined to perform a consensus pre-
diction. The most frequently used consensus methods
are CONSENSUS, which is hosted on the IEDB website
[57], and netMHCcons provided by Karosiene and col-
laborators [58]. Nevertheless, it should be noted that the
performance gain of these consensus methods over that
of the individual predictors is rather modest.

Prediction of class I antigen processing
HLA ligand binding is the most selective step leading to
epitope presentation, but other parts of the class I anti-
gen processing pathways can have an impact as well
(Fig. 2). The key steps to take into account are proteaso-
mal cleavage and transport of peptides into the endoplas-
mic reticulum (ER) by TAP. Both steps can be combined
with prediction of HLA binding. The promise of these
methods is a more accurate prediction of what is truly
presented by HLA.

Proteasomal cleavage prediction
The first step of the antigen processing pathway is the
proteasomal cleavage of the intracellular protein. Methods
for prediction of proteasomal cleavage can be trained
using in vitro or in vivo data. In vitro data can be created
with purified proteasomes in the laboratory, whereas
in vivo data are harder to collect. In the living cell, several
different proteasomes with unique cleavage specificities
are formed by distinct combinations of subunits [59].
The C-terminus of the peptides is commonly determined
by proteasomal cleavage, whereas the N-terminus can
undergo further trimming by proteases located in the
cytosol or ER. Therefore, indirect evidence from naturally
presented HLA class I epitopes is most commonly used
for in vivo prediction. Predictors for in vitro cleavage are
netChop 20S [60], PCM [61], FragPredict [62], Pcleavage
[63] and PAProC [64]. Owing to the scarcity of data, few
predictors for in vivo cleavage are available. The two
most popular predictors are netChop Cterm [60] and
ProteaSMM [65]. The first benchmark for proteasomal
cleavage predictors was published in 2003 [66], and this
compared PAProC, FragPredict and NetChop. None of
the predictors achieved an MCC above 0.3. Calis and
colleagues [59] more recently demonstrated that pre-
dictions based on in vitro and on in vivo data yield dif-
ferent results. Apparently, the in vitro data do not
capture the full complexity of proteasomal processing
in vivo. The value of predictions of proteasomal cleav-
age is thus rather limited.

TAP transport prediction
After proteasomal cleavage, the next important step in
the prediction of T-cell epitopes is the prediction of
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peptide transport to the ER by TAP. Primarily owing to
the scarcity of data, there are few published methods on
TAP transport prediction. One of the first was produced
by Daniel and colleagues [67] and is based on peptides
with experimentally measured binding affinities. These
binding affinities to the TAP transporter were found to
correlate with transport rates, but they are easier to de-
termine and thus usually preferred [68]. In 2003, Peters
and colleagues [30] published a matrix-based approach,
and, in 2006, Zhang et al. released PredTAP [69]. Pre-
dTAP uses a combination of HMMs and ANNs. Another
matrix-based method is SVMTAP, which was published
as a part of WAPP [61]. No unbiased blind benchmarks
for TAP transport methods have been published so far,
and a comparative assessment of the various methods is
thus currently difficult.
Tools for integrated processing prediction
With the availability of prediction methods for all major
steps of the HLA class I processing pathway, it became
possible to model the whole pathway. The promise of
these combined models was of course an improved pre-
diction accuracy of the presented ligands: only those li-
gands with C-termini created by the proteasome and that
are transported by TAP should be loaded to HLA and
thus presented onto the cell surface. In this way, it should
be possible to reduce the number of false-positive predic-
tions of presented peptides.
Several tools combine proteasomal cleavage prediction

and TAP transport in a filtering scheme: only peptides
possessing correctly cleaved C-termini and with suffi-
cient affinity to TAP are then subjected to the HLA pre-
diction. Examples of tools implementing this approach
are EpiJen [70] and WAPP [61], both based around
already existing prediction methods. NetCTL [71] and
NetCTLpan [72] chose a different approach. Here, in-
stead of a step-wise filtering, the scores of the different
predictors are combined into one final score.
The success of these combined predictors was, however,

limited. While performance improvements were observed,
the gains were rather modest (up to a few percent of ac-
curacy). These approaches could thus not replace the sim-
pler HLA-binding prediction methods. Reasons for this
lack of success are most likely the low quality of the pro-
teasomal cleavage and TAP transport predictors. But there
are also more-fundamental reasons. Both proteasomal
cleavage and TAP transport are, by biological necessity,
less specific than HLA binding. It is thus not surprising
that their influence on ligand selection is much less
pronounced than that of HLA binding. In addition,
some HLA alleles are known to be TAP inefficient and
thus do not rely on TAP as their main route for HLA
loading [73].
From ligands to epitopes
The presentation of a ligand on HLA does not guarantee
that it is recognized by the TCR. Therefore, understanding
the mechanism of immunogenicity helps to define which
ligands are epitopes. To train a predictor for T-cell reactiv-
ity, a large dataset of peptides and their immunogenicity is
needed. One of the first methods was POPI, which is an
SVM-based predictor developed by Tung and Ho [74]. An
improved version, POPISK [75], uses a weighted-degree
string kernel to achieve a better performance. Recently,
Calis and colleagues [76] presented a predictor that is
based on a very simple model, but trained on a larger
data-set. The current performance of immunogenicity
predictors is certainly not satisfying. The amount and reli-
ability of experimental data on T-cell reactivity is certainly
one reason for this. But clearly our lack of understanding
of the details of the processes leading to central and per-
ipheral tolerance hamper the development of more-
predictive methods too [44].

B-cell epitope prediction
Prediction of B-cell epitopes is fundamentally different
from T-cell epitope prediction. T-cell epitopes are short,
linear peptide sequences, whereas B-cell epitopes are not
necessarily continuous in sequence. The complex struc-
ture of folded proteins can lead to spatial proximity of
amino acids that can be remote in the antigen sequence.
An estimated 85 % of documented B-cell epitopes can
be considered as continuous in sequence [77] and could
thus, in principle, be predicted by methods similar to
those of T-cell epitope prediction. The underlying hy-
pothesis of most B-cell epitope predictors is that certain
amino acids have a higher likelihood of being part of a
B-cell epitope. In part, this also reflects the predispos-
ition of specific amino acids to be overrepresented at the
protein surface (a necessary precondition for recogni-
tion). As prediction of continuous epitopes is clearly the
simpler problem, many approaches have tried to address
this problem. Recently published predictors for continu-
ous epitopes are COBEpro [78], BCPRed and FBCPred
[79]. Overall, the performance of the methods is still far
from the quality achievable in T-cell epitope prediction.
In 2005, Blythe and Flower discussed some of the chal-
lenges and concluded that fundamentally new approaches
were required [80].
The prediction of discontinuous B-cell epitopes is more

difficult than that of continuous ones, primarily because
classic ML-based methods require continuous sequence
data. Therefore, few predictors for discontinuous B-cell
epitopes have been developed. A good review, including a
benchmark, for discontinuous epitopes was published by
Yao and colleagues in 2013 [81]. Yao et al. tested predic-
tions based on antigen protein structures. EPMeta [82]
achieved the best AUC (0.638) for conformational B-cell
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epitope prediction and an overall accuracy of 25.6 %. All
other predictors had AUCs lower than 0.6 and an accuracy
worse than 25 %. These AUCs have to be treated with cau-
tion as Kringelum and colleagues showed that bench-
marking of B-cell epitope predictions often leads to many
artificial false positives [83]. Furthermore, Kringelum et al.
presented DiscoTope 2.0, which achieves an AUC of 0.731
in their benchmark. In general, prediction of B-cell epi-
topes is a largely unsolved problem, and discontinuous B-
cell epitopes cannot yet be predicted reliably at all.
Owing to the current lack of high-throughput methods
to elucidate the true (three-dimensional) structure of B-
cell epitopes, this is unlikely to change any time soon.

Integration and application of immunoinformatics
tools
The tools described above cover a wide range of individual
immunoinformatics problems. Many clinical or transla-
tional applications, however, require the integration of sev-
eral tools into more-complex workflows.
With the availability of large-scale NGS data, a num-

ber of novel applications are now within reach. The full
genomic sequence of pathogens together with informa-
tion on genomic variability (e.g., from high-throughput
sequencing of a large number of strains) can be used to
design prophylactic vaccines based on sequence data
alone. The combination of T-cell epitope prediction
tools as discussed above to predict transcripts or poten-
tial antigen sequences results in a set of potential
epitopes for a given set of HLA alleles. Several ap-
proaches have been suggested to select an optimal set of
such epitopes for epitope-driven vaccines. This turns out
to be an interesting combinatorial optimization problem:
select the minimal set of epitopes maximizing the overall
immunogenicity. Heuristic [84] and optimal solutions
for solving this problem have been suggested [85]. While
these approaches permit the optimization of a vaccine
for a specific population (i.e., a predefined HLA allotype
distribution), the problem can also be reformulated to
design a ‘universal vaccine’: a vaccine that provides max-
imum coverage on the whole world population (again,
represented by its global allele frequencies) [2]. These
approaches combine the NGS-based information on
pathogen genomes and on patient genomes (for the
HLA allotype distributions) in an ideal fashion.
Another obvious translational application is personal-

ized immunotherapy, which is currently being pursued
in many labs worldwide. The key idea in these ap-
proaches is the use of tumor neo-antigens — that is,
antigens specific to the tumor arising from somatic var-
iants — to mount an immune response against the
tumor cells. Exome sequencing and/or transcriptome se-
quencing of both normal and tumor tissue can reveal these
somatic variants and their relative expression levels. HLA
allotype inference tools can then deduce the patient’s HLA
types. By combining this with T-cell epitope prediction, it
becomes possible to predict potential neo-epitopes pre-
sented specifically on tumor cells [86]. These neo-antigens
are currently of great interest for personalized vaccination
of patients with tailor-made peptide cocktails [3].
The necessary efficient and fast processing of these

high-throughput datasets requires the integration of a
large number of bio/immunoinformatics tools into com-
plex data-analysis pipelines. There are many different
issues that need to be addressed to make that happen,
from usability tools, to interoperability, and also the con-
nection to clinical data management. Different solutions
have been developed to address these issues. While web-
servers might be easy to use for a single, well-specified
purpose, they can drastically hamper tool integration.
However, web services with an abstract description of
the interface (e.g., RESTful interfaces, representational
state transfer used by IEDB [15]) enable the integration of
these tools into complex workflows driven by tailor-made
code. Other options are toolboxes for rapid software
prototyping integrating a larger number of algorithms into
convenient scripting languages such as Python [87]. Fur-
thermore, graphical workflow engines such as Galaxy [88]
do not require programming skills. EpiToolKit 2.0, for
example, offers an immunoinformatics workbench with a
wide range of functionalities in a single coherent graphical
user interface [89].

Conclusion and future directions
The advent of high-throughput methods provides immu-
noinformatics with new challenges and opportunities.
High-throughput HLA binding assays have brought the
quality of class I binding predictions to a point where lit-
tle further improvement is possible. Genomic data on
pathogens and pathogen genomic variation provide new
options for the rational design of prophylactic vaccines.
For these applications, the high quality of T-cell epitope
prediction methods available today and design tools for
epitope-based vaccines is crucial.
Perhaps the biggest change in immunoinformatics

arises from the routine sequencing of individual human
genomes. Tens of thousands of genomes are publicly
accessible through international consortia (e.g., ICGC).
The large-scale sequencing efforts have drastically in-
creased the number of known HLA allotypes, but also
shed light on natural genomic variation and its impact
on the immune system.
Analysis of tumor genomes can not only be used for

personalized chemotherapies, but also provides an entire
range of new therapeutic options through personalized
immunotherapies. While these options are currently still
experimental, interest in this area is rapidly growing.
Judging from the number of recent publications in this
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area, there is a marked shift towards translational appli-
cations of immunoinformatics tools — and this shift is a
clear indication of the maturity of the field. Nevertheless,
there are still many open issues. HLA class II binding
predictions are not as accurate yet, and HLA-type infer-
ence tools often cannot deal with class II. Besides the
greater complexity of class II (less-specific peptide bind-
ing mode, more-complicated genomic structure of the
allotypes), there is still a distinct lack of data. This is one
of the areas where the increasing amount of high-
throughput data (genomic data and HLA ligandome
data) will most likely lead to improvements within the
next few years. Other problems are harder to tackle. B-
cell epitope prediction is still basically an unsolved prob-
lem. Also the prediction of T-cell reactivity is currently
at a point where prediction quality is not yet convincing.
It is unclear to what extent high-throughput data can
help to solve these issues — a better understanding of
the underlying immunobiology will be just as pivotal.
All in all, immunoinformatics has received a tremen-

dous boost through the availability of high-throughput
methods. It is — and will remain — an indispensable
tool in research and clinical applications.
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