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Abstract

Background: Obesity and type 2 diabetes (T2D) are linked both with host genetics and with environmental factors,
including dysbioses of the gut microbiota. However, it is unclear whether these microbial changes precede disease
onset. Twin cohorts present a unique genetically-controlled opportunity to study the relationships between lifestyle
factors and the microbiome. In particular, we hypothesized that family-independent changes in microbial composition
and metabolic function during the sub-clinical state of T2D could be either causal or early biomarkers of progression.

Methods: We collected fecal samples and clinical metadata from 20 monozygotic Korean twins at up to two time
points, resulting in 36 stool shotgun metagenomes. While the participants were neither obese nor diabetic, they
spanned the entire range of healthy to near-clinical values and thus enabled the study of microbial associations
during sub-clinical disease while accounting for genetic background.

Results: We found changes both in composition and in function of the sub-clinical gut microbiome, including a
decrease in Akkermansia muciniphila suggesting a role prior to the onset of disease, and functional changes
reflecting a response to oxidative stress comparable to that previously observed in chronic T2D and inflammatory
bowel diseases. Finally, our unique study design allowed us to examine the strain similarity between twins, and
we found that twins demonstrate strain-level differences in composition despite species-level similarities.

Conclusions: These changes in the microbiome might be used for the early diagnosis of an inflamed gut and
T2D prior to clinical onset of the disease and will help to advance toward microbial interventions.

Background
The human gut microbiota plays an important role in
health and disease [1, 2] and can be viewed as a mirror
into the host physiology. One of the primary roles of the
microbiota is energy harvest; thus, it is not surprising
that microbial dysbiosis has been associated with various
metabolic disorders, including type 2 diabetes (T2D) [3, 4]
and obesity [5–7]. T2D is often a consequence of obesity.
As the diagnosis is threshold-based, risk of developing
T2D in the near future correlates with high levels of two
biomarkers, fasting blood sugar (FBS) and HbA1c, even
when they do not meet the clinical criteria (HbA1c >6.5 %
or FBS >125). However, the microbial changes that occur

in the sub-clinical state, prior to the onset of disease, have
never been examined, but may potentially be used for
early diagnosis and intervention.
Previous profiles of the gut microbiome during

clinical T2D have found compositional changes be-
tween patients and healthy controls [3, 4], including an
obesity-related change in the abundance ratio of
Bacteroidetes:Firmicutes [5, 8], and a decreased abun-
dance of mucin-degrading Akkermansia muciniphila in
overweight children [9] and pregnant women [10, 11].
However, there is no strong consensus across studies in
taxa changing in obese versus lean individuals [12]. The
causes for this inconsistency may be either technical or
biological. From a technical standpoint, a lack of
consistent standard operating procedures for sample
preparation and sequencing can lead to great variance
between different labs and studies [12]. Biologically, the

* Correspondence: chuttenh@hsph.harvard.edu
1The Broad Institute, 415 Main St, Cambridge, MA 02142, USA
4Department of Biostatistics, Harvard School of Public Health, 655
Huntington Avenue, Boston, MA 02115, USA
Full list of author information is available at the end of the article

© 2016 Yassour et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Yassour et al. Genome Medicine  (2016) 8:17 
DOI 10.1186/s13073-016-0271-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-016-0271-6&domain=pdf
mailto:chuttenh@hsph.harvard.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


specific composition of the community may be much
less important than its overall functional capability.
Indeed, there is greater consensus between these studies

when microbial functional dysbioses are considered rather
than microbial composition [4]. The gut communities of
T2D patients showed increased capacity for oxidative
stress resistance, and a decreased capacity for flagellar
assembly and riboflavin metabolism [3, 4]. Interestingly,
oxidative stress resistance was also enriched in the guts
of patients with inflammatory bowel diseases (IBD)
[13], potentially indicating that the microbiome is gen-
erally stressed by low-level inflammation and immune
activation, which may be present at the sub-clinical
state of T2D as well.
Despite recent studies associating the microbiome with

T2D [3, 4] and obesity [6, 8], all previous work has exam-
ined individuals with well-established disease. These data
may be further influenced by additional factors, such as
decreased subject mobility, and it is difficult to conclude
from study design whether the observed microbial
changes preceded the onset of disease. Furthermore, these
studies have rarely taken into account the various genetic
backgrounds of the patients. We have addressed these is-
sues by performing the first metagenomic profile of the
gut microbiome of monozygotic (MZ) twins, spanning the
entire healthy range of T2D clinical indicators, including
body mass index (BMI) and fasting blood sugar (FBS).
Identifying gradient-like associations between these pa-
rameters and gut microbiome features in the sub-clinical
state of these diseases will open the way to discover poten-
tial markers for early diagnosis of T2D and obesity.
We found several taxa associated with sub-clinical

changes in BMI, blood pressure, sugar, and triglycer-
ides, including enrichment of the Roseburia genus and
depletion of the Akkermansia muciniphila species.
Additionally, riboflavin and NAD biosynthesis were
metagenomically enriched in participants with high
blood pressure and BMI values. Interestingly, similar
functional enrichments are shared with other gut inflam-
matory conditions such as IBD [13] and clinically-
established T2D [3], suggesting shifts in the gut microbial
population prior to full disease onset that may be either
causal or an early correlative indicator.
Finally, this cohort included a unique combination of

MZ twins and longitudinal sampling, which allowed us
to identify the degree to which specific microbial strains
were shared between the guts of siblings and maintained
over time. Despite the small size of this targeted cohort,
the deep metagenomic sequencing (mean 3.5 Gnt per
sample) combined with a focus on taxa of high relative
abundance (see Methods) enabled us to determine strain
similarity with high resolution in these data. MZ twins
have also been previously observed to share a greater
proportion of gut microbes than unrelated individuals

[6], and some strains appear to be maintained within
the guts of isolated individuals for months to years
[14]. Surprisingly, we observed that while twins in our
MZ cohort indeed share a substantial subset of micro-
bial species, strains within these species differ between
related twins. Thus, the gut microbial similarities of
twins may arise from sources such as genetic pressure
to acquire certain species (but not specific strains), or
from early colonization by the same strains, with subse-
quent genetic divergence over the course of a lifetime.

Ethical consent
Written informed consent was obtained from each partici-
pant. The study protocol was approved by the institutional
review board (IRB) of Samsung Medical Center, Busan
Paik Hospital, and Seoul National University (IRB No.
144-2011-07-11).

Methods
Study participants and specimen collection
The participants were MZ twins who enrolled for the
Healthy Twin study in Seoul and Busan, South Korea.
The zygosity of twins was determined using AmpFlSTR
Identifier Kit with 16 short tandem repeat markers (15
autosomal STR markers + one sex determining marker)
or a questionnaire with a validated accuracy of >90 %
[15]. Details on methodology of this cohort have been
previously described [16].
A total of 36 fecal samples from the participants were

collected: samples from two twin pairs were taken once
and those from eight twin pairs were obtained twice
with an average interval of 2 years. Twins were in the
age range of 30-48 years at the first sampling point.
Fecal samples were taken in conjunction with a health
examination and immediately stored at -25 °C. They
were subsequently transported to the two central clinics
and stored at -80 °C until DNA extraction. Blood sam-
ples were drawn by vein puncture after an overnight fast
and sent to a central laboratory to measure biochemical
factors.
During each visit, individuals also completed a ques-

tionnaire recording life style, medication, and dietary
habits. Anthropometrical measurements (height, weight,
waist circumference, and so on) and biochemical tests
(glucose, hsCRP, total cholesterol, HDL-C, LDL-C, tri-
glyceride, and so on) were also conducted (Additional
file 1: Table S1). The derived homeostasis model assess-
ment (HOMA) index uses the fasting blood sugar and
insulin to predict the insulin resistance of patients
[17] and was calculated as standard (insulin * glu-
cose)/405, both measured after fasting and glucose
levels measured in mg/dL [17].
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Nucleic acid extraction and metagenomic shotgun
sequencing
Total DNA was extracted from each fecal sample using
the MoBio Power Soil DNA Isolation kit (MoBio, Solana
Beach, CA, USA) according to the manufacturer’s instruc-
tions and stored at -80 °C until subsequent analysis. All
samples were sequenced using the Illumina Hiseq2000 in-
strument, which produced paired-end reads of 101 nt,
yielding average 3.5 Gnt per each of fecal samples.

Metagenomic shotgun sequences analysis
The gut microbial composition of each sample was pro-
filed using MetaPhlAn [18]. MetaPhlAn uses a unique
set of markers for each species (and higher level clades)
to estimate the abundance of species in each sample ac-
cording to the number of mapped reads to its markers.
The relative abundances of the gut microbial functional
pathways from metagenomically sequenced communities
were determined using HUMAnN [19]. HUMAnN maps
the sequenced reads to a non-redundant set of genes
extracted from the KEGG database [20] and estimates
the abundance level of each functional module by the
number of matches to member genes fully compatible
with it being carried out by one or more microbes.

Testing for significant associations with the clinical
metadata variables
To identify significant associations between microbial and
phenotypic variables, we applied a linear multivariate re-
gression model specifically adapted to microbiome data
(MaAsLin, Multivariate microbial Association by Linear
models [13]). MaAsLin constructs boosted, additive gen-
eral linear models to associate metadata and transformed
microbial taxonomic or functional relative abundances.
Since microbial community profiles are typically high-
dimensional, boosting is used for feature selection over
potential covariates to identify those most associated
with each microbial feature. Selected metadata are then
used in a general linear model with metadata as predic-
tors and arcsin-square root transformed microbial rela-
tive abundances as the responses. In this study, model
covariates of interest comprised of clinical variables in-
cluded in Additional file 1: Table S1, and each model also
included age, smoking status, sex, and twin as potential
confounders (the latter as a random effect to accommo-
date repeated longitudinal measures).

Comparing strains between samples
We performed taxonomic profiling with MetaPhlAn [18].
Briefly, MetaPhlAn operates by mapping raw sequence
reads to a database of pre-defined clade-specific marker
genes. Markers are those genes occurring in isolates from
a particular clade but not outside of that clade. After map-
ping reads to clade-specific marker genes, the resulting

raw counts are normalized for total marker gene length
and outliers, yielding profiles of: (1) clade relative abun-
dance; (2) marker gene presence/absence; and (3) marker
gene abundance (in reads-per-kb (RPK) units, where 10
RPK would correspond to about ×1 coverage, given our
100 bp reads). Due to gene gain and loss events, an indi-
vidual strain will not necessarily carry all of the markers
associated with its corresponding species. A specific pat-
tern of marker presence and absence can therefore be
used as a molecular ‘barcode’ to identify a strain across
samples. We next compared the marker gene abundance
profiles of various samples (unrelated, twin or self; with
median marker abundance >5 RPK) using a Bray-Curtis
distance.

Generating and analyzing the taxon-function correlation
matrix
Spearman correlation was calculated between the pro-
files of each microbe and each function to generate the
taxon-function correlation matrix. The KEGG database
[20] was used to identify the ‘encoded’ correlations, by
calculating the fraction of its reference sequences that
include sufficient genes for any given module. The mi-
crobial co-occurrence matrix was calculated using spear-
man correlation between all taxa profiles to identify the
‘associated’ correlations.

Comparing Korean and Western microbial populations
The prevalence and average abundances of all clades were
calculated within our cohort and the HMP [21], and these
were compared using Pearson correlation. Prevalence was
defined as percent of samples with >0.001 relative abun-
dance for each species, and average abundance was calcu-
lated only for samples passing that criterion.

Sequence accession numbers and availability
Sequences generated in this study are publicly available
at the European nucleotide archive (ERP002391).

Results
Monozygotic twin cohort and longitudinal metagenomic
profiles
We collected fecal samples from 20 MZ Korean twins
(10 twin pairs) at up to two time points each (12-44
months apart), resulting in 36 samples sequenced using
metagenomic shotgun sequencing. In addition, multiple
clinical parameters were measured at each sampling
point, including body mass index (BMI), fasting blood
sugar (FBS), cholesterol levels (LDL, HDL), fasting blood
insulin (FBI), and renal and liver function (Additional file
1: Table S1), spanning the typical healthy range of these
variables (Additional file 2: Figure S1). Species-level mi-
crobial abundance profiles were inferred using MetaPhlAn
[18], and functional gene and pathway abundance profiles
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were generated using HUMAnN [19]. These microbial
and functional profiles were tested for statistically signifi-
cant association with clinical parameters using the MaA-
sLin [13] sparse multivariate linear model (Fig. 1a).
As is typical in the gut, the taxa that vary most widely

in our cohort were members of the Bacteroidetes, Fir-
micutes, and at lower abundances the Esherichia, Metha-
nobrevibacter, and Bifidobacterium genera (Fig. 1b). The
x-axis depicts mostly the Firmicutes (left) to Bacteroi-
detes (ratio), as observed before [22], with a modest
positive association between Bacteroides and BMI (see
below). The y-axis is dominated by less prevalent or

more variable genera, like Methanobrevibacter (25 %
prevalence) and Bifidobacterium (2.7-3.3 coefficient of
variation; Additional file 3: Table S2). The Esherichia
and Prevotella genera are prevalent in our cohort (92
and 81 %, respectively, see Additional file 3: Table S2),
but only a few individuals have high abundances of one
or both genera, driving their contribution to population
variability. Overall, we found that the prevalence and
abundance profiles of the various taxa in our data are
consistent with those measured in Western populations
[21]; P value = 0.0001 by Pearson correlation; Additional
file 4: Figure S2).

a

b

c d

Fig. 1 Study design for sub-clinical gut microbiome analysis in obesity and type 2 diabetes. a Stool and blood samples were collected at one to
two time points from 10 MZ twin pairs. DNA was extracted from the stool samples and used for shotgun metagenomic sequencing, from which
community composition and function were profiled using MetaPhlAn [18] and HUMAnN [19], respectively. Clinical biomarkers including sugar
metabolism measurements (fasting blood sugar (FBS) and insulin (FBI)), inflammation markers (hsCRP) and others (Additional file 1: Table S1) were
derived from accompanying blood samples. Finally, we determined significant associations between these clinical biomarkers and microbial taxa
and functions using MaAsLin [13]. b Overall covariation of taxonomic profiles and the clinical biomarkers and taxa enriched among distinct sam-
ple subsets. Points represent samples ordinated using metric multidimensional scaling (MDS) by Bray-Curtis dissimilarity, colored by twin pair, with
lines connecting samples from the same individual at different time points. Taxa and metadata are labeled at the point of maximum enrichment
among samples. c Absolute BMI differences between any two ‘Unrelated’ (at time point 1), ‘Twins’ (at time point 1), and the same individuals at the
two different time points (‘Self’). Comparisons are colored by the maximal BMI of the participants involved; P values were calculated using a
t-test. d Taxonomic profile similarities of unrelated, twins, and individuals over time. Comparisons are colored by the maximal age of the
participants involved; P values were calculated using a t-test
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In our cohort, clinical parameters such as BMI (Fig. 1c)
and microbial community composition (Fig. 1d) were both
more similar between twins than between unrelated indi-
viduals, and both were self-similar over time. BMI is most
stable between ‘self ’ samples, especially since no individual
has become obese during this study, and indeed, twins are
more concordant on BMI compared to unrelated [6].
When comparing their microbial composition we found
that, as expected, twins were somewhat more similar
than unrelated [6], but self-samples were significantly
more stable [21], indicating that for both clinical and
microbial phenotypes, longitudinal samples were more
similar than twins, which were in turn more similar
than unrelated.

Phylogenetic and functional diversity in the Korean gut
microbiome
Several organisms were prevalent (present in >50 % of in-
dividuals) in this cohort, although often at relatively low
abundance levels. Some of these are shared with other glo-
bally surveyed populations, while others were unusually
prevalent in this population (Fig. 2a). Shared organisms
included Eubacterium rectale, Roseburia intestinalis, and
Faecalibacterium prausnitzii, which are similarly prevalent
in our cohort and in Western population (94-96 %, 83-
89 %, and 96-97 %, respectively) and with similar relative
abundances (5 %, approximately 1 %, and 2-4 %, respect-
ively), confirming the similarity between this cohort and
Western population.

b

c

a
Samples

B
2(

t2
)

H
2(

t1
)

H
2(

t2
)

H
1(

t2
)

F
2(

t1
)

H
1(

t1
)

E
1(

t2
)

I2
(t

2)
I1

(t
2)

G
1(

t1
)

F
2(

t2
)

B
1(

t2
)

E
1(

t1
)

E
2(

t2
)

A
1(

t1
)

J1
(t

2)
F

1(
t1

)
F

1(
t2

)
D

1(
t2

)
D

2(
t1

)
D

2(
t2

)
D

1(
t1

)
C

2(
t1

)
J2

(t
2)

A
1(

t2
)

C
1(

t2
)

E
2(

t1
)

C
1(

t1
)

B
2(

t1
)

B
1(

t1
)

G
2(

t2
)

C
2(

t2
)

G
1(

t2
)

G
2(

t1
)

A
2(

t1
)

A
2(

t2
)

Bacteroides unclassified
Methanobrevibacter smithii
Megamonas hypermegale
Catenibacterium mitsuokai
Prevotella copri
Bacteroides coprocola
Escherichia coli
Eubacterium rectale
Bacteroides plebeius
ClusterA (e.g., Bifidobacterium adolescentis, Faecalibacterium prausnitzii)
Ruminococcus bromii
ClusterB (Bacteroides vulgatus,Alistipes putredinis)
Eubacterium hallii
ClusterC (e.g., Deltaproteobacteria, Akkermansia muciniphila)
Bacteroides xylanisolvens

ClusterD (e.g., Putative multiple sugar TS, Methionine degradation)
ClusterF (e.g., Glutamate/aspartate TS, AI-2 TS, GABA biosynthesis) 
ClusterE (e.g., Citrate cycle (TCA cycle, Krebs cycle))
M00026:Histidine biosynthesis
M00311:2−oxoglutarate:ferredoxin oxidoreductase
ClusterB (e.g., Peptides/nickel TS)
ClusterC (e.g., Pentose phosphate pathway)
ClusterA (e.g., Ornithine biosynthesis)
M00048:Inosine monophosphate biosynthesis
ClusterI (e.g., Adenine ribonucleotide biosynthesis)
ClusterH (e.g., F−type ATPase, ATP synthase, NAD- and Riboflavin biosynthesis)
ClusterG (e.g., Threonine biosynthesis)
ClusterJ (e.g., Pentose phosphate pathway)
ClusterK (e.g., Gluconeogenesis, Glycolysis)
ClusterL (e.g., Aminoacyl−tRNA biosynthesis, Ribosome)

B
2(

t2
)

H
2(

t1
)

H
2(

t2
)

H
1(

t2
)

F
2(

t1
)

H
1(

t1
)

E
1(

t2
)

I2
(t

2)
I1

(t
2)

G
1(

t1
)

F
2(

t2
)

B
1(

t2
)

E
1(

t1
)

E
2(

t2
)

A
1(

t1
)

J1
(t

2)
F

1(
t1

)
F

1(
t2

)
D

1(
t2

)
D

2(
t1

)
D

2(
t2

)
D

1(
t1

)
C

2(
t1

)
J2

(t
2)

A
1(

t2
)

C
1(

t2
)

E
2(

t1
)

C
1(

t1
)

B
2(

t1
)

B
1(

t1
)

G
2(

t2
)

C
2(

t2
)

G
1(

t2
)

G
2(

t1
)

A
2(

t1
)

A
2(

t2
)

HDL/LDL
sex
Hb A1c
age at sampling
smoking
ALT
rGTP
triglyceride
Creatinine
Albumin
Uric acid
HOMA index
hsCRP
dbp
BMI

B
2(

t2
)

H
2(

t1
)

H
2(

t2
)

H
1(

t2
)

F
2(

t1
)

H
1(

t1
)

E
1(

t2
)

I2
(t

2)
I1

(t
2)

G
1(

t1
)

F
2(

t2
)

B
1(

t2
)

E
1(

t1
)

E
2(

t2
)

A
1(

t1
)

J1
(t

2)
F

1(
t1

)
F

1(
t2

)
D

1(
t2

)
D

2(
t1

)
D

2(
t2

)
D

1(
t1

)
C

2(
t1

)
J2

(t
2)

A
1(

t2
)

C
1(

t2
)

E
2(

t1
)

C
1(

t1
)

B
2(

t1
)

B
1(

t1
)

G
2(

t2
)

C
2(

t2
)

G
1(

t2
)

G
2(

t1
)

A
2(

t1
)

A
2(

t2
)

0 3e-9 2e-3 9e-3 0.02 1
Relative abundance

0 0.0001 0.1 0.25 1
Relative abundance

Value

12
0

C
ou

nt

highlow

twin

A B C D E F G H I J

Fig. 2 Taxonomic and functional profiles of twin gut microbiomes accompanied by T2D/obesity clinical indicators. a Clustered taxonomic profiles,
discretized and with groups of tightly covarying taxa binned into 15 clusters for visualization. Each row represents a cluster of one or more species,
and each column is one sample colored by the twin variable. Values indicate relative abundances from the medoid member of each cluster (see
Additional file 5: Figure S3 for full matrix). b As (a) for metabolic modules derived from metagenomic functional profiling. Sample clustering retains
ordering from (a). c Corresponding clustering of selected discretized clinical biomarkers, again retaining ordering from (a)
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Less prevalent organisms included Methanobrevibacter
smithii, the predominant archaeon in the human gut
[23] with the important role of reducing the hydrogen
via methanogenesis. M. smithii here mirrored its rela-
tively low prevalence as seen in Western populations
(25 %, compared to 21 % in the Human Microbiome
Project (HMP)) [21], but with higher average relative
abundance when present (9 %, compared to 0.3 %) [21].
Despite the major differences in the Korean diet and en-
vironment, M. smithii is still the major microbe likely re-
sponsible for this function.
Several organisms, including Bifidobacterium longum,

Escherichia coli, Prevotella copri, and Bacteroides ple-
beius, were significantly more prevalent in our popula-
tion compared to that of the HMP (Additional file 3:
Table S2). It has been previously shown that Prevotella
is more common in international cohorts [24], and in-
deed we found P. copri present in 81 % of our samples,
compared to 16 % in the HMP [21]. Moreover, we found
lower abundance of P. copri in our cohort when present
(approximately 10 % relative abundance), unlike the high
37 % relative abundance found in the individuals who
carry it in the HMP’s Western population [21], although
the overall average of P. copri relative abundance in all
individuals is similar between cohorts (6-8 %).
Another difference between the Korean and Western

populations was Bifidobacterium longum, a microbe that
ferments sugars into lactic acid noted as one of the first
colonizers of the infant gut [25]. It was carried at an un-
usually high prevalence of 94 % (with average relative
abundance of 2.5 %), in contrast to its presence in the
HMP of 59 % prevalence and 0.4 % relative abundance
[21]. Bacteroides plebeius was likewise enriched here,
with 97 % prevalence in our cohort and only 9 % in the
HMP [21]. P. plebius has been previously found in Japa-
nese populations, likely due to its capability to break down
complex carbohydrates specific to seaweed [26], and it
may play a similar role in the guts of Koreans, as this is a
major staple of their diet.
As has been previously observed [21], despite variability

in the composition of the microbiome among these indi-
viduals, the distribution of microbial metabolic processes
remained relatively stable (Fig. 2b, Additional file 5: Figure
S3). One of the most variable modules was the transport
system of autoinducer-2 (AI-2), a quorum-sensing signal-
ing molecule traditionally associated with the Enterobacte-
riaceae and Vibrionaceae [27] and recently characterized
in some Bifidobacterium species [28]. We also see striking
variability in the biosynthesis of GABA, a major neuro-
transmitter in the central nervous system that has also
been recently shown to be produced by some Bifidobac-
terium species [29]. Both these modules had a striking 3.8
coefficient of variance and approximately 18 % prevalence
(compared to 94 % and 60 % in Western population,

respectively) and shared similar abundance profiles in
our data, suggesting a potential link between the two
processes, perhaps through carriage by specific Bifido-
bacterium strains. As a control, we also see several ubi-
quitous ‘housekeeping’ processes such as the ribosome
and translation, glycolysis, and gluconeogenesis were
present at high levels with low variability among indi-
viduals (>4 % average relative abundance and 100 %
prevalence, Additional file 3: Table S2 and Additional
file 5: Figure S3).

Host factors such as BMI associate with some microbes
and processes in a graded fashion
We investigated the relationship between host clinical
phenotype and the gut microbiome by identifying signifi-
cant multivariate linear associations using MaAsLin [13]
(Fig. 3, Additional file 6: Table S3). This model associates
microbial clade or pathway abundances with metadata of
interest (for example, BMI, FBS, triglyceride) while ac-
counting for other covariates (in this case sex, smoking,
age, and the twin pairing; see Methods and Additional file
7: Figure S4). The abundance of Akkermansia muciniphila
was negatively correlated with BMI, FBS, and insulin
levels, for example, all in gradients ranging continuously
over the ranges of these clinical variables and its relative
abundance. This mucin-degrading microbe has been ob-
served to be reduced in the guts of obese mice [30], preg-
nant women [10, 11], and overweight children [9], but this
is the first time this trend has been observed in non-
pregnant adults, especially within the normal range of
BMI and FBS. This suggests the organism may represent
one aspect of the obese gut microbiome that may be of
specifically sub-clinical significance.
Other continuous associations of clades with pheno-

types included a positive correlation between the Bacter-
oides genus and BMI, again spanning a range of the latter
outside of clinical obesity. The Bacteroidetes:Firmicutes
ratio is one of the earliest features of the gut microbiome
suggested to associate with obesity in mice [31], but in this
and other studies [11, 32, 33] associating an increase in
Bacteroidetes with obesity rather than an increase in Fir-
micutes. Both positive and negative associations with the
Bacteroidetes have been found in human populations [34],
suggesting that this finding is not generalizable and de-
pends greatly on factors that may include the underlying
demographics, diet, sample preparation, and analysis (see
Discussion).
We found multiple associations between microbial mo-

lecular function and clinical phenotypes (Fig. 3, Additional
file 6: Table S3), including an increase in riboflavin-,
NAD-, and tetrahydrofolate-biosynthesis and a decrease
in pyruvate ferredoxin oxidoreductase accompanying in-
creasing BMI levels (Fig. 3). Riboflavin and NAD are both
required for the biosynthesis of the reduced form of
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glutathione (GSH) [35], an important antioxidant that al-
leviates the damage done by reactive oxygen species, and
indeed we found that glutathione biosynthesis also in-
creased at higher BMI levels (Additional file 6: Table S3).
The direction of these associations suggests that the gut
microbiota is producing more glutathione, and potentially
processing more from the host, to relieve the increased
oxidative stress at high levels of BMI.
Besides the gradient associations discussed above, we

also identified two unusual threshold-like associations:
BMI with Eubacterium siraeum and blood pressure with
Methanobrevibacter smithii. In both these cases, the mi-
crobe is present only below a certain threshold (22.5 BMI,
and 70 diastolic blood pressure, respectively). Interest-
ingly, these trends do not appear in data collected for the
human microbiome project (Additional file 8: Figure S5)
and maybe unique to our cohort. Such discrete associa-
tions can be very interesting to investigate further, to po-
tentially reveal the mechanism underlying the microbe’s
sensing of host conditions.

Contribution of specific microbes to overall gut
community function
To better understand the relation between the taxo-
nomic compositional profiles and function, we corre-
lated the profiles of each clade with the profiles of each
module (Fig. 4, selected individual scatter plots appear
in Additional file 9: Figure S6). This allows us to
hypothesize which microbes contribute to, depend on,
or associate with specific metabolic and biomolecular
processes carried out by the gut microbiota. In particular,
a positive correlation between a module and microbe can
have two explanations. In some cases, the function may be

encoded in the microbe’s genome (referred to as ‘directly
encoded’ correlations, Additional file 10: Figure S7A). Al-
ternatively, a microbe might correlate with a function not
because it carries it itself, but because it associates with
other microbes that encode it (‘indirectly associated’ corre-
lations). The former indicates microbes that perform a
particular molecular process, the latter those that depend
on its presence elsewhere in the community.
As expected, many ‘encoded’ correlations are found

in our data and each of them induces others that are
‘associated’, based on the species co-occurrence network
as computed using Spearman correlation (Additional
file 10: Figure S7B). One interesting ‘encoded’ example
is a set of archaeal functions, such as coenzyme M bio-
synthesis and archaeal RNA polymerase and ribosome,
correlated with the archaeal species Methanobrevibacter
smithii and Methanosphaera stadtmanae (Fig. 4 Box A).
Correspondingly, we found ‘associated’ correlations be-
tween these archaeal functions and the abundance of
Deltaproteobacteria, Akkermansia muciniphila and Eu-
bacterium siraeum, which co-occur with the archaeal spe-
cies in our data (Fig. 4 Box A; Additional file 10: Figure
S7B Box A). We do not yet know why particularly these
microbes would tend to share the archaeal environment,
but it is interesting to examine if this relationship holds in
other cohorts as well.
Additionally, three metal transport systems (TSs) were

correlated with specific taxa. The manganese/zinc/iron TS
M00319 is an ABC transporter, comprising four proteins,
found originally in Treponema pallidum [36], and this
specific TS is encoded only in the Veillonella species in
our data. In addition to ‘encoded’ correlations between
this TS and three Veillonella species, we identified two
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‘associated’ correlations with Streptococcus salivarius and
Haemophilus parainfluenzae, co-occurring species with
the Veillonella (Fig. 4 Box B; Additional file 10: Figure S7B
Box B). Similarly, the cobalt/nickel TS M00245 is another
four-protein ABC transporter, estimated to be the most
widespread uptake system for the two metals [37]. This
module is encoded in many microbial species, and spe-
cifically in Eubacterium hallii and Ruminococcus obeum
[38] in our communities, resulting in those encoded

correlations. These were accompanied by additional ‘as-
sociated’ correlations with co-occurring species includ-
ing Dorea longicatena (Fig. 4 Box C; Additional file 10:
Figure S7B Box C). Lastly, two modules involving nickel
TSs (cobalt/nickel M00245 and peptide/nickel M00239),
together with sugar and amino acid metabolism and TS
modules, were ‘encoded’ correlations found in the Bifi-
dobacterium species. Methionine degradation M00035
was also encoded by these organisms, which generates

Fig. 4 Association of taxa with microbial metabolic modules. The relative abundances of 56 total species were Spearman correlated against those
of 87 functional profiles to identify covariation between taxa and metabolic modules (either due to genetic carriage or shared environment).
Pluses and stars indicate nominal P value <0.01 or FDR q-value <0.2, respectively. Yellow marks indicate correlations also found in the corresponding
analysis of HMP data [21] (see Additional file 11: Figure S8). Highlighted boxes are discussed in the main text
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S-adenosyl-L-methionine (SAM), a major methyl donor
in the cell [39], and Bifidobacterium is used outside of
the gut as a source of SAM in the functional food
industry [40].
This cohort’s microbial co-occurrence network

(Additional file 10: Figure S7B) can also explain some
of the negative associations found in our data. For example,
the abundance of Bacteroides xylanisolvens is negatively
correlated with several taxa, including Methanosphaera
stadtmanae and Ruminococcus obeum (Additional file 10:
Figure S7B Box D), resulting in a negative correlation
between these species and modules encoded by B. xyla-
nisolvens, like NAD-, tetrahydrofolate-, and biotin bio-
synthesis (Fig. 4 Boxes D, E, F). Another example is the
negative correlation between Roseburia intestinalis and
E. coli (Additional file 10: Figure S7B Box E), resulting in
the negative associations between E. coli and the Shikimate
pathway, encoded in R. intestinalis genome sequence (Fig. 4
Boxes G, H). Such negative associations can also be the re-
sult of conflicting functionalities between certain microbes
and metabolic functions not present in their genomes.
Interestingly, some correlations are neither ‘encoded’

nor ‘associated’, and we can only hypothesize as to
their cause. One such example is the correlation be-
tween the archaeal functions mentioned above and
abundance of Bacteroides fragilis, Odoribacter splanch-
nicus and Parabacteroides merdae (Fig. 4 Box I). Al-
though these functions are not encoded in any of these
genomes, the gene comB (2-phosphosulfolactate phos-
phatase), which belongs to the coenzyme M biosynthesis
module, is encoded in the genome of Parabacteroides
merdae [38], potentially explaining this association. Such a
correlation might arise due to these organisms’ metabolic
dependence on a function encoded by diverse organisms
in different hosts.
Another interesting example is the positive correlation

between riboflavin biosynthesis and the abundance of
Bacteroides xylanisolvens (Fig. 4 Box E). As discussed
above, we found several compositional and functional
associations with BMI, including Bacteroides, riboflavin-,
NAD-, and tetrahydrofolate- biosynthesis. Indeed, the
latter two are ‘encoded’ correlations with B. xylanisol-
vens, suggesting that the increase in this species abun-
dance in higher levels of BMI is contributing to the
increase in NAD- and tetrahydrofolate- biosynthesis.
Additionally, riboflavin biosynthesis may also be an
‘encoded’ association of B. xylanisolvens and we failed
to identify it as such, potentially due to the incomplete-
ness of current functional databases.
Finally, additional ‘encoded’ correlations were found be-

tween various amino acid transport systems and E. coli
(Fig. 4 Box K). Many of these were detected in at least
some strains of E. coli, due to the combination of E. coli’s
very large pan-genome and the extent to which its strain

variation space is well-covered by the many available refer-
ence genomes. Many of these correlations, like all of this
cohort’s microbe-function correlations, were also found in
the HMP [21] (yellow marks in Fig. 4, and Additional file
11: Figure S8). This suggests both that simple ‘encoded’
correlations recur across populations, as expected, and
that more subtle ‘associated’ microbial dependencies may
be consistent among diverse gut ecologies.

Microbial species, but typically not strains, are shared
between twins
Several studies have observed that related individuals, and
particularly twins, carry more similar microbial communi-
ties than do unrelated individuals [6], and we reproduce
this finding in our cohort (Fig. 1d). However, it has not
been previously determined whether this similarity is due
to ecological pressures that select for similar microbes
among individuals, dispersal effects that cause the acquisi-
tion of identical microbes, or other factors. In cases where
twins in this study shared similar taxonomic profiles and
identical species, we thus tested whether these species
were of the same strain. Defining microbial clades at
genus-, species-, or strain- level is a difficult task [11, 41],
and here we chose to define a strain as a combination of
genomic markers, allowing us to identify dominant, near-
clonal populations. Microbes were strain-typed within
samples by identifying conserved or differential patterns
of unique mobile element loss and gain using MetaPhlAn
(see Methods), which has previously been successful in
differentiating strains among individuals and over time
[21, 42]. In particular, individuals were shown in these pre-
vious analyses to often carry a single dominant strain of
most species [42] and for that strain to be significantly
stable over time [14, 21] (Additional file 12: Figure S9).
Applying this method to our data allowed us to determine:
(1) when twins shared the same strain, in addition to the
same species; and (2) when these strains were retained
within an individual over time.
Remarkably, twins were not significantly more similar

than unrelated in their strain composition (P = 0.15 by
t-test), although (as expected) samples from the same
individual over time were significantly similar (P = 1.34e-7;
Fig. 5a). This suggests that either there is a genetic ten-
dency for twins to retain broadly similar microbial
compositions - but that this does not extend exert se-
lective pressure at the strain level - or that identical
strains acquired earlier in life during colonization have,
by adulthood, evolved sufficiently to differ at multiple
genomic elements. Only in rare cases did strains differ
within individuals over time (Additional file 13: Figure
S10), concordant with occasional sweeps of a replace-
ment strain due to, for example, gene acquisition/loss
or transfer from an external source.
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We quantified the degree to which each microbial
species was represented by the same or different strains
among twins, specifically by calculating for each mi-
crobe the mean distance across genomic elements of all
sample pair-wise comparisons (Additional file 14: Figure
S11, see Methods). While some species retained very simi-
lar strains among twins (for example, Methanobrevibacter
smithii, Fig. 5b), others consistently had more distinct
strains (for example, Prevotella copri, Fig. 5c). While this
detailed analysis is only possible in microbes that are par-
ticularly abundant in multiple samples, it raises the intri-
guing possibility that identical strains acquired early in life
persist in the gut, but evolve rapidly through the gain and
loss of genetic elements.

Discussion
Here, we analyzed metagenomes from 36 fecal samples
drawn from healthy Korean MZ twins over time, identi-
fying associations between T2D-related biomarkers (for
example, BMI, FBS) and microbial clades and functions.
We found, among other examples, that BMI was nega-
tively correlated with the abundance of Akkermansia
muciniphila and positively correlated with riboflavin
and NAD biosynthesis. These associations occurred
over both the pre- and post-onset range of T2D clinical
markers, suggesting that the microbiota may contribute
to or react to changes in the host environment prior to
the onset of disease. Furthermore, functional changes
in the gut microbiome at higher sub-clinical values of
BMI, FBS, and triglycerides resembled the signatures
found in patients with established IBD or T2D, suggest-
ing a shared response to oxidative stress in the gut, in-
duced even at low levels of inflammation or immune
activation. Finally, we found that while twins were more
similar than unrelated individuals in microbial compos-
ition, they often carried different strains of these species.
The computational framework presented here can be eas-
ily applied to other MZ twin cohorts, identifying early mi-
crobial markers of various other diseases, even in their
sub-clinical phase.
Obesity and metabolic syndrome have long been as-

sociated with chronic, low-grade inflammation [43]. For
example, macrophages of obese individuals accumulate
in adipose tissue, where they express pro-inflammatory
cytokines such as TNFa, IL6, and INOS [44], and the
gut microbiota can initiate the inflammation and insu-
lin resistance associated with obesity [34]. Interestingly,
although there was no indication of host inflammation
in our data (as measured by hsCRP), we observed the
microbiome responding to this in the form of decreased
abundance of Akkermansia muciniphila and increased
NAD- and riboflavin-biosynthesis. This collection of
functional changes together specifically enables the re-
charging of glutathione to its reduced form, promoting

redox homeostasis in microbes potentially exposed to an
increasingly hostile, inflammatory, oxidatively stressed en-
vironment the gut.
It is likely that additional compositional and functional

shifts accompany this low-grade inflammation in T2D
and related conditions, which will be better detected in
other, larger cohorts capturing an even broader range of
phenotypes and disease states. Finding common microbial
changes is an important step towards understanding the
cross talk between the gut microbiota and the diseased
host, but whether these shifts are causal, responsive, or
both remains an open question. For example, the micro-
bial response to redox stress is more likely to be reactive,
but microbes that are robust to this environment may
promote its maintenance and thus contribute to immune
activation or obesity. A combination of interventions in
model systems and longitudinal prospective cohort studies
of high-risk individuals, identifying the microbial changes
that occur before the onset and during the early progres-
sion of the diseases, will enable us to determine whether
the microbial shifts trigger host symptoms, or vice versa,
and potentially by what specific molecular mechanisms.
This pattern of microbial functional enrichments dur-

ing inflammation has now been consistent across mul-
tiple studies regardless of their potential causality,
including in other diseases like IBD (Fig. 6), suggesting
a common signature of gut response to low-grade in-
flammation. Interestingly, several studies have exam-
ined whether inflammation can lead to obesity [45–47]
and T2D [48–50] in mice, finding that inflammation
drives the development of insulin resistance (potentially
through the phosphorylation of insulin receptor 1 by a
TNF-α mediated response [51]) and suggesting that
particular intestinal microbial configurations can pro-
mote immune responses driving metabolic dysfunction
[51]. The extent to which the gut microbiota causes
obesity is an area of active research. Many mouse
models, including Lepob, consistently demonstrate an
elevated Firmicutes:Bacteroidetes (F:B) ratio in obese
animals [5, 31]. In contrast, in human cohorts, the rela-
tionship has been much less consistent. The relation-
ship between obesity and the F:B ratio has been
reported as increased [5, 8], decreased [34], and others
have reported no relationship [21, 52], indicating there
is still great variability in current studies. This may
arise either from technical issues, like different sample
or data handling protocols, or from biological reasons,
like true variation between the various cohorts.
Many microbial genes, particularly housekeeping

genes, are transcribed at a basal level, and thus their
measured DNA and RNA levels are well-correlated. In
contrast, other classes of genes such as vitamin and
amino acid biosynthesis are much more dynamically
regulated, so DNA and RNA levels are less correlated
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[53]. While this study measured only DNA abundance
of genes, concurrent examination of the subclinical bio-
marker meta-transcriptome would be an informative
extension of this work.
Finally, a unique dataset comprising shotgun meta-

genomes of MZ twins over time enabled us to find that
although twins are more similar in their species com-
position, they often harbor different strains. This unex-
pected discrepancy between the microbial population
structures of strains versus species in the human
microbiome should be further explored, as it can be
explained by a variety of very distinct ecological and
molecular hypotheses. Hosts with similar genetic pro-
files may exert a modest but continuous selective pres-
sure for the acquisition and maintenance of similar
species in the gut, which could be tested by collecting
data on the degree of shared early life and persistent
environment versus genetics. Alternatively, initially
identical strains acquired from a shared environment,
possibly in early life, may be maintained but diverge
through fixation of genetic drift and laterally trans-
ferred elements over time. Occasional strain differ-
ences within the same individual over time suggest a
fast divergence rate; however, a larger study, with tem-
porally dense sampling of both adults and infants, will
be needed to address this question.

Conclusions
To conclude, this study provides evidence of low-grade
inflammation of the gut with increasing values of obes-
ity- and T2D-related biomarkers. Compositional and
functional microbial signatures indicate the presence of
sub-clinical inflammation in adults increasingly at risk
of these conditions, even before they are reflected by
clinical markers. If these microbial shifts play a causal
role in the onset of obesity or T2D, they may represent
not only novel markers for early diagnosis, but also a
target for preventative therapeutic intervention. Even if
these shifts are not ultimately the primary causal agents
behind their associated diseases, microbial dysbioses
may still be manipulated to avert disease onset, and
their specifics are likely to improve our mechanistic un-
derstanding of host-microbiota interaction and its role
in disease prevention and treatment.

Additional files

Additional file 1: Table S1. The clinical markers collected at each time
a sample was taken. (XLSX 36 kb)

Additional file 2: Figure S1. Distributions of selected clinical variables
in our data (colorful) and as collected by the human microbiome project
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Additional file 12: Figure S9. Marker genes abundance profiles for the
Human Microbiome Project data [21] of (A) Akkermansia muciniphila and
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Additional file 13: Figure S10. Marker genes abundance profiles of
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Additional file 14: Figure S11. The strain similarity of present microbes
in our data, estimated by the Bray-Curtis distance between self-samples
over time (x-axis) and twin samples (y-axis). Species highlighted in bold
are shown in detail on Fig. 5b and c and Additional file 13: Figure S10.
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