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Microbiome mediation of infections in the
cancer setting
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Abstract

Infections encountered in the cancer setting may arise from intensive cancer treatments or may result from the
cancer itself, leading to risk of infections through immune compromise, disruption of anatomic barriers, and
exposure to nosocomial (hospital-acquired) pathogens. Consequently, cancer-related infections are unique and
epidemiologically distinct from those in other patient populations and may be particularly challenging for clinicians
to treat. There is increasing evidence that the microbiome is a crucial factor in the cancer patient’s risk for infectious
complications. Frequently encountered pathogens with observed ties to the microbiome include vancomycin-
resistant Enterococcus, Enterobacteriaceae, and Clostridium difficile; these organisms can exist in the human body
without disease under normal circumstances, but all can arise as infections when the microbiome is disrupted. In
the cancer patient, such disruptions may result from interventions such as chemotherapy, broad-spectrum
antibiotics, or anatomic alteration through surgery. In this review, we discuss evidence of the significant role of the
microbiome in cancer-related infections; how a better understanding of the role of the microbiome can facilitate
our understanding of these complications; and how this knowledge might be exploited to improve outcomes in
cancer patients and reduce risk of infection.
Cancer-related infections
Many patients with neoplastic disease are at increased
risk for a variety of infections, either because of adverse
effects from cancer treatment or because of the under-
lying cancer itself. The nature of these infections is fre-
quently related to host insults such as immune
suppression, anatomic defects, and epithelial barrier
damage. Intensive treatments such as chemotherapy,
radiation, and major surgery may each give rise to specific
infectious risks. In response, broad-spectrum antimicro-
bials are commonly administered, which in turn have fur-
ther shaped and altered the epidemiologic profile of
cancer-related infections. As a result, management of in-
fectious complications in patients with cancer is a unique
and dynamic challenge for clinicians.
It is increasingly being recognized that the microbiome

may be particularly relevant in many cancer-related in-
fections. For example, infections in cancer patients more
frequently involve or originate from the intestinal tract
than those of non-cancer patients. Typical pathogens
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seen in cancer patients consist largely of microorganisms
originating from the intestinal tract, such as Escherichia
coli, Klebsiella spp., Enterococcus, viridans streptococci,
and Candida albicans [1, 2]. This contrasts sharply with
general hospitals, where Staphylococcus aureus is more
typically the most common pathogen encountered,
which preferably colonizes skin [3].
In this review, we examine the role of the microbiome

in cancer-related infections. Many non-infectious ties
have been made between cancer and the microbiome
but will not be discussed here specifically, though some
concepts may be overlapping. These include carcinogen-
esis [4–7], metabolism of immunosuppressants [8], and
graft-versus-host disease in hematopoietic stem cell
transplantation (HSCT) [9–11]. Here we focus on the
microbiome’s relevance to cancer patients in terms of in-
fectious complications and how the microbiome might
be exploited to improve outcomes for these patients.

Significance of the gut microbiome in cancer and
infectious implications of a disrupted microbiome
In the intestinal tract, significant disruption of microbial
populations due to cancer treatment may explain why
the microbiome may be central to understanding the
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development of infectious complications. One patient
group in which the microbiome has been well studied is
patients undergoing allogeneic HSCT (allo-HSCT), a
cancer treatment that simultaneously exposes patients to
cytotoxic chemotherapy, total body irradiation, immuno-
suppressants, and broad-spectrum antibiotics. Examin-
ation of the intestinal microbiome of such patients
through serially collected stool specimens at one cancer
center demonstrated significant changes in the microbial
population, marked by an overall reduction of microbial
diversity [12]. Subsequent study of these patients showed
that recipients with decreased gut microbial diversity
soon after stem cell transplantation were, on average,
more likely to die over the next 3 years than those with
high gut microbial diversity, independent of other
known mortality predictors in allo-HSCT, such as dis-
ease status, pre-transplant comorbidity, organ dysfunc-
tion, myeloablative intensity of treatment, and even
antibiotic administration [13]. More specifically, low gut
microbial diversity was primarily associated with
transplant-related deaths (death not related to relapse or
recurrence of the malignancy), suggesting that the gut
microbiome’s association with overall mortality is largely
related to complications of transplantation, namely
opportunistic infections and graft-versus-host disease,
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Significant disruption of gut inhabitants may explain

the observed importance of the microbiome in allo-
HSCT. Under normal circumstances, a healthy intestinal
microbiome is maintained and prevents infection by
promoting colonization resistance, thus blocking over-
growth and expansion of rogue pathobionts, which typ-
ically exist as minority members in the microbiota
(Fig. 1). This concept is not necessarily a new one and in
fact was realized to have important implications for can-
cer treatment over four decades ago. The term
colonization resistance was first used in 1971 by van der
Waaij [14], who observed that intestinal flora containing
anaerobic bacteria can resist colonization by E. coli,
Klebsiella pneumoniae, and Pseudomonas aeruginosa.
At the time, patients with leukemia and other malig-

nancies were being treated with increasingly effective
but intensive chemotherapeutic regimens. Patients were
highly susceptible to infectious complications and pre-
vention of these infections became an important focus.
This led to the use of strict protective isolation of patients
in sterile systems and routine decontamination of the
gastrointestinal tract and skin. These programs attempted
to keep patients under strict gnotobiotic conditions: sterile
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isolation rooms with laminar air flow units were used, all
food and water were sterilized, and skin and gut decon-
tamination was routinely performed using topical and
non-absorbable antibiotics [15]. Although there seemed to
be some initial evidence of benefit, subsequent larger
studies examining these measures failed to demonstrate
sufficient benefit to warrant continuation of these massive
efforts [16, 17], and these measures fell out of favor at
most cancer institutions.
The concept of colonization resistance gave rise to the

notion that infections related to cancer treatment could
be better prevented by a more judicious, selective inhib-
ition of microbes, rather than total decontamination. At-
tempts at prevention of infection turned to selective
decontamination of the digestive tract, in which more
targeted antibiotics were administered that could select-
ively remove potential aerobic pathogens yet retain
colonization resistance against new pathogens. This ap-
proach made use of antibiotics that have little impact on
anaerobic bacteria, such as nalidixic acid, trimethoprim-
sulfamethoxazole, or polymyxin B [15]. Later, fluoroqui-
nolones such as ciprofloxacin and levofloxacin were also
widely used for selective prevention of infection during
cancer treatment [18]. These prophylactic approaches
provided more effective protection and continue to be
practiced today.
More recent work suggests that promotion of

colonization resistance occurs through a variety of
mechanisms. These include direct inhibition of pathogens
by beneficial microbes, through the production of bacte-
riocins, and indirect mechanisms involving the host, such
as activation of immune defenses (for example, nucleotide-
binding oligomerization domain-containing protein 2
(NOD2), which is involved in the immune response to
bacterial infection) or enhancement of epithelium-derived
antimicrobial peptides (for example, regenerating islet-
derived III gamma (RegIIIγ)) [19]. In cancer, damage is
incurred to commensal bacteria, the immune system, and
gut epithelium, which explains the observed loss of
colonization resistance and subsequent enhanced suscepti-
bility to infection in afflicted patients.

Chemotherapy and bloodstream infections due to
mucosal barrier injury
Cytotoxic chemotherapy remains one of the mainstays
of treatment for a variety of cancers and may be given
either alone or as part of HSCT. As an adverse effect, it
causes varying degrees of damage to hematopoietic cells,
which commonly leads to neutropenia, which places the
patient at risk for certain infections. Although various
sources are possible, concurrent damage to the intestinal
mucosa is the singular most common source of infection
in neutropenic patients. Mucosal barrier injury by
chemotherapy is the earliest and most frequently
encountered breach in host defenses against pathogenic
microorganisms.
Sonis [20] described the dynamics of mucosal barrier

injury (also known as mucositis) as a sequential series of
stages, involving free radical generation, induction of in-
flammation and apoptosis, signal amplification leading
to more inflammation and apoptosis, discontinuity of
the epithelial barrier leading to translocation of microor-
ganisms, and subsequent spontaneous healing through
cell proliferation. Translocation of intestinal microorgan-
isms to the systemic circulation manifests as blood-
stream infection, which can be life-threatening if sepsis
ensues. Mucosal barrier injury and exposure to anti-
microbial agents probably explains the emergence of
most infections arising in neutropenic patients.
Despite the extensive damage to the gastrointestinal

tract, symptoms are frequently not localized; fever may
often be the only symptom manifested. In current clin-
ical practice, fever in the setting of neutropenia is suffi-
cient to warrant prompt initiation of empiric systemic
antibiotics. Antibiotics are primarily selected to target
potentially pathogenic bacteria and fungi that may reside
in the gut. These include aerobic Gram-negative bacteria
such as E. coli, K. pneumoniae, or P. aeruginosa, Gram-
positive bacteria such as viridans streptococci and En-
terococcus spp., and fungi such as Candida albicans. Al-
though these oxygen-tolerant pathobionts are thought to
originate from the intestinal tract, they exist in low rela-
tive abundance within the gut lumen under normal cir-
cumstances. Notably, obligate anaerobic bacteria, which
are typically far more abundant in the large intestine and
other parts of the intestinal tract, are rarely seen as
bloodstream infections in this setting. Antibiotics with
anti-anaerobic activity are therefore not required in the
empiric treatment of fever and neutropenia, which is
reflected in current clinical practice standards [21].
Systemic bloodstream infection due to mucosal barrier

injury and subsequent bacterial translocation has been
shown more recently to be closely related to dynamic
changes in the intestinal microbiome. In one study of 94
patients undergoing allo-HSCT at a transplant center,
serial fecal specimens showing loss of microbial diversity
demonstrated a concurrent increased abundance and
overgrowth of certain pathogenic bacteria [12]. The most
common bacteria observed were vancomycin-resistant
Enterococcus (VRE), Enterobacteriaceae such as E. coli and
Klebsiella spp., and viridans streptococci. Interestingly,
these organisms were the most common bloodstream iso-
lates recovered from patients undergoing allo-HSCT at
this institution [22–24]. Expansion and domination of
these pathogens in the gut was associated with subsequent
systemic infection with the corresponding pathogen in
blood; patients who developed VRE bloodstream infection
had a preceding domination of the intestinal microbiome
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by VRE and patients who developed Gram-negative
bloodstream infections had a preceding domination by
proteobacteria (the phylum of bacteria containing many
known aerobic Gram-negative pathogens).
This provided confirmation that bloodstream infections

during neutropenia arise largely from a gut source and
that translocation of bacteria is preceded by a transforma-
tive process in the gut microbiome, in which colonization
resistance is promptly lost, leading to overgrowth by a sin-
gle species (Fig. 1). This provides a potential explanation
for why anaerobes are not commonly encountered in sys-
temic infections, despite their overwhelming presence in
the gut under normal circumstances. If bloodstream infec-
tions during fever and neutropenia occurred merely be-
cause of a cancer-treatment-related breach in the intestinal
mucosa, one might have expected a greater predominance
of anaerobic infections.
These microbial changes took place a median of 7 days

before the onset of detectable bacteremia, raising the
question of whether examination of the fecal microbiota
could forewarn of impending systemic infection in these
patients. Perhaps not surprisingly, administration of an-
tibiotics, specifically those with anti-anaerobic activity,
was correlated with subsequent expansion of pathogenic
bacteria [12]. Other factors, such as chemotherapy, may
contribute to disruption of the microbiota, either by
damaging host mechanisms that would normally help to
maintain microbial populations and enhance colonization
resistance or through direct killing of bacteria. Although
currently not known, it may be the case that preservation
or repair of a functionally intact microbiota may help to
prevent the progression of mucosal barrier injury. Van
Vliet and colleagues [25] proposed several mechanisms by
which intestinal bacteria might serve to interfere with
damage to intestinal tissues, building on the original Sonis
[20] model of mucositis. These proposed mechanisms in-
clude: (1) modulation of inflammation and oxidative stress
through a variety of mechanisms by beneficial members
such as Bacteroides thetaiotaomicron, Clostridium cluster
XIVa, and Faecalibacterium prausnitzii; (2) attenuation of
intestinal permeability by members such as bifidobacteria
and lactobacilli, which increase tight junction expression;
(3) maintenance of the mucus layer, for example, by vari-
ous Lactobacillus species, which upregulate mucin pro-
duction; (4) stimulation of epithelial repair through
butyrate and other factors generated by symbiotic bacteria;
and (5) regulation of immune effector molecules such as
RegIIIγ and IgA, which promote intestinal homeostasis
and colonization resistance.

Clostridium difficile infection
C. difficile infection has perhaps one of the clearest ties
to the microbiome, as it is known to result from disrup-
tion of normal intestinal bacteria following antibiotic
administration and other perturbations of the gut flora.
In certain cancer patient populations, rates of C. difficile
infection are particularly high. This may be related to a
combination of factors, including frequent use of
broad-spectrum antibiotics, immune suppression, pro-
longed or frequent hospitalizations, and chemotherapy,
which has been observed to cause C. difficile infection
by itself [26, 27].
In patients undergoing treatment with HSCT, high

rates of C. difficile infection have been observed, typic-
ally ranging from 12 to 30 % [28–32]. These rates far
exceed those in the general patient population, where
incidence is generally less than 1 % [33]. This may be a
reflection of the extreme degree of microbial dysbiosis
experienced by these patients over the course of
transplantation.
In one study of C. difficile infection in patients hospi-

talized to undergo HSCT, examination of fecal samples
revealed that about 40 % of patients were asymptomati-
cally colonized with toxigenic C. difficile at the start of
transplant hospitalization [34]. C. difficile infection oc-
curred in this subset of pre-colonized patients, suggest-
ing that the high rates of infection are not well explained
by nosocomial (hospital-acquired) transmission.
A subsequent study of this cohort [35] compared

microbiome profiles of patients who developed clinical
infection with those of asymptomatic carriers without
clinical infection, using a time series modeling approach.
Results from this study showed protective effects from
Clostridium scindens, a non-pathogenic intestinal species
within the bacterial family Lachnospiraceae (Clostridium
cluster XIVa). In the same study, colonization of mice
with C. scindens conferred protection against C. difficile
[35]. It was further shown that the likely mechanism of
protection occurs through production of secondary bile
acids, which inhibit vegetative growth of C. difficile [36,
37]. Results from other microbiome studies have also
provided evidence that Lachnospiraceae confers protect-
ive effects against C. difficile infection by promoting
colonization resistance [38].
Bacteria from the Bacteroidetes phylum also appear to

have durable protective effects against C. difficile in-
fection; in patients with recurrent C. difficile infection
who were cured using fecal microbiota transplantation
(FMT), examination of the microbiota before and
after FMT revealed that the most obvious microbial
change was significant colonization with Bacteroi-
detes, where it had been previously completely lacking
[39, 40]. Further evidence can indirectly be seen with
fidaxomicin treatment, which was shown to be non-
inferior to oral vancomycin for the treatment of C.
difficile infection, but with fewer observed recurrences
[41]. This is hypothesized to be related to fidaxomi-
cin’s narrower spectrum of activity; a previous study
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suggested that this drug spares Bacteroides spp. dur-
ing treatment [42].
Given the high rates of C. difficile infection in at-risk

populations such as HSCT patients, FMT and fidaxomi-
cin treatment have both been raised as possible thera-
peutic strategies to prevent this complication during
cancer treatment. Therapeutic clinical trials for both are
ongoing [43, 44].

Other microbiota links to cancer-related infections
Infections outside the gut
The microbiome may influence risk for cancer-related
infections at sites other than the intestinal tract. One re-
cent study examining the impact of the gut microbiome
on lung complications in recipients of allogeneic HSCT
showed that disruption of the microbiota and over-
growth and domination by Gammaproteobacteria was
associated with an increased risk of subsequent pulmon-
ary complications [45]. The reasons for this association
are still unclear; these findings may be due to bacterial
translocation to the lungs during early HSCT or in-
creased inflammation signaled by an aberrant gut or
lung microbiome.

Anatomic disruptions that affect microbiota compositions
In cancer, mechanical defects in intestinal anatomy are
not uncommonly encountered. These may be caused by
locally infiltrating cancer itself, radiation damage, or sur-
gical interventions performed as part of cancer treat-
ment. The impact of these anatomic derangements on
the composition of the microbiota is unknown, but
could have relevance to the overall outcome for these
patients.
In patients with ileostomy or colostomy, the gut mi-

crobial composition has been studied and noted to be
much more predominantly aerobic [46]. In small bowel
transplant patients, presence of a temporary ileostomy
was associated with a more dramatic shift in microbiota
than small bowel transplant itself [47]. Beneficial anaer-
obes such as Bacteroides and Clostridia were largely
missing in patients with ileostomy, and instead the gut
microbiotas of these patients were dominated by facul-
tative anaerobes [47]. Presumably this is related to
increased oxygen content in the bowel following ileos-
tomy. In this study, metabolomic profiling further
showed increased metabolites derived from the Krebs
cycle. It is unclear what the implications of this compos-
itional shift are; the authors noted cases of sepsis due to
enteric pathogens in patients with ileostomy [47]. If it is
true that a colonic shift away from obligate anaerobic
bacteria imparts increased risk of domination by poten-
tial pathogens and subsequent systemic infection in
these patients, a re-evaluation of the indications for ile-
ostomy might be considered.
Balancing of antibiotics in cancer
Over the course of cancer treatment, antibiotics are ad-
ministered frequently. Given the increased susceptibility
of cancer patients to infection, antibiotic treatments may
entail prolonged courses or may involve agents with a
broad spectrum of activity, given either as treatment or
as prevention in a high-risk patient. The heavy use of
antibiotics in cancer care is likely to make the micro-
biome particularly clinically relevant in these patients.
The gut microbiome works to prevent infection by

contributing to colonization resistance against pathogens
and by stimulating host immune responses to infection.
Paradoxically, although antibiotics are given to combat
infection, these treatments can serve to harm natural
host defenses against infection by disrupting beneficial
bacteria that previously supported these host defenses.
Early microbiome studies of healthy volunteers have
suggested that even short courses of antibiotics can have
a substantial impact on the gut microbiome [48]. With
careful stewardship, however, antibiotics are still an es-
sential part of patient care in current medicine.
Realizing that antibiotics remain a necessary evil, it is

useful to note that antibiotics vary greatly in terms of
their spectrum of activity not only against pathogens,
but also against non-pathogenic beneficial microbes. For
example, in recipients of allo-HSCT, metronidazole ad-
ministration was associated with an increase in the
abundance of intestinal VRE, which in turn preceded
systemic infection with VRE in the setting of neutropenia
and mucosal barrier injury [12]. However, ciprofloxacin
administration successfully prevented an increase in the
number of pathogenic Gram-negative bacteria such as En-
terobacteriaceae, without significant disruption of healthy
anaerobes, such as Clostridia or Bacteroides, which con-
tribute to colonization resistance and protection against
increasing numbers of pathobionts [12, 49, 50].
In addition to the spectrum of activity, antibiotics may

differ greatly in terms of impact on gut microbiota be-
cause of penetration and route of administration. For in-
stance, vancomycin administered orally remains confined
to the gut, with little to no systemic absorption, and it has
been observed to have profound inhibitory impact on
beneficial gut microbes, including Bacteroidetes and other
anaerobic bacteria [51]. In contrast, vancomycin given
intravenously penetrates poorly into the gut lumen [52]
and, therefore, has far less impact on the intestinal micro-
biota than when administered orally. Indeed, both micro-
biome studies and previous clinical studies have found no
association between administration of intravenous vanco-
mycin and colonization or infection with VRE, despite
concerns to the contrary [12, 53, 54].
Based on these observations, each antibiotic’s spectrum

of activity and pharmacologic distribution in the body
clearly are important determinants of its impact on the
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microbiome. Given that antibiotics can range greatly from
having profound deleterious effects on the microbiome to
having little to no impact, antibiotics should be more
clearly and precisely characterized as to their effect on the
microbiota and clinicians should incorporate this know-
ledge into their therapeutic considerations.

Conclusions and future steps
These studies suggest that the microbiome is an essen-
tial mediator in various infections encountered in the
cancer setting. A normally functioning microbiota estab-
lishes an intricate relationship with its host, creating sta-
bility and preventing infection by promoting colonization
resistance; however, these microbial populations can be
completely disrupted with cancer treatment, giving rise to
susceptibility for infection by opportunistic pathobionts.
Microbiome studies of cancer patients will lead to a

better understanding of the role of the microbiota in
cancer-related infections and will provide insight into
how therapeutic interventions might be designed to ex-
ploit the benefits of commensal and symbiotic bacteria.
For example, further studies should be done to explore
the use of ‘microbiota-sparing’ antibiotics, which can ef-
fectively prevent or treat infections that arise during
cancer treatment but at the same time preserve benefi-
cial microbes that enhance host defenses and promote
colonization resistance against infection. In addition, re-
pair of damaged microbial populations through interven-
tions such as FMT or bacteriotherapy should also be
further explored to improve defenses in cancer patients
where treatment-related disruption of the microbiome
may be unavoidable. These approaches have been pro-
posed as interventions that could be performed safely
and effectively [55, 56]. An enhanced understanding of
the microbiome will allow us to improve our manage-
ment of cancer-related infectious complications.

Abbreviations
Allo-HSCT: allogeneic hematopoietic stem cell transplantation; FMT: fecal
microbiota transplantation; VRE: vancomycin-resistant Enterococcus.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors read and approved the final manuscript.

References
1. Velasco E, Byington R, Martins CAS, Schirmer M, Dias LMC, Gonçalves VMSC.

Comparative study of clinical characteristics of neutropenic and non-neutropenic
adult cancer patients with bloodstream infections. Eur J Clin Microbiol
Infect Dis. 2006;25:1–7.

2. Koll BS, Brown AE. The changing epidemiology of infections at cancer
hospitals. Clin Infect Dis. 1993;17:S322–8.

3. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB.
Nosocomial bloodstream infections in US hospitals: analysis of 24,179
cases from a prospective nationwide surveillance study. Clin Infect Dis.
2004;39:309–17.
4. Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and
mucosa-associated microbiota in patients with colorectal cancer. PLoS One.
2012;7:e39743.

5. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al.
Genomic analysis identifies association of Fusobacterium with colorectal
carcinoma. Genome Res. 2012;22:292–8.

6. Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev
Cancer. 2009;9:57–63.

7. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer.
2013;13:800–12.

8. Lee JR, Muthukumar T, Dadhania D, Taur Y, Jenq RR, Toussaint NC, et al. Gut
microbiota and tacrolimus dosing in kidney transplantation. PLoS One.
2015;10:e0122399.

9. Jenq RR, Van den Brink MR. Allogeneic haematopoietic stem cell
transplantation: individualized stem cell and immune therapy of cancer. Nat
Rev Cancer. 2010;10:213–21.

10. Shono Y, Docampo MD, Peled JU, Perobelli SM, Jenq RR. Intestinal
microbiota-related effects on graft-versus-host disease. Int J Hematol.
2015;101:428–37.

11. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, et al.
Regulation of intestinal inflammation by microbiota following allogeneic
bone marrow transplantation. J Exp Med. 2012;209:903–11.

12. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, et al. Intestinal
domination and the risk of bacteremia in patients undergoing allogeneic
hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55:905–14.

13. Taur Y, Jenq RR, Perales M-A, Littmann ER, Morjaria S, Ling L, et al. The
effects of intestinal tract bacterial diversity on mortality following allogeneic
hematopoietic stem cell transplantation. Blood. 2014;124:1174–82.

14. van der Waaij D, Berghuis-de Vries J, Lekkerkerk-Van der Wees J. Colonization
resistance of the digestive tract in conventional and antibiotic-treated mice. J
Hygiene. 1971;69:405–11.

15. Bodey GP. Fever and neutropenia: the early years. J Antimicrob Chemother.
2009;63:i3–13.

16. Bodey GP, Rodriguez V, Cabanillas F, Freireich EJ. Protected environment-
prophylactic antibiotic program for malignant lymphoma. Randomized trial
during chemotherapy to induce remission. Am J Med. 1979;66:74–81.

17. Dietrich M, Gaus W, Vossen J, Van der Waaij D, Wendt F. Protective isolation
and antimicrobial decontamination in patients with high susceptibility to
infection. Infection. 1977;5:107–14.

18. Bucaneve G, Micozzi A, Menichetti F, Martino P, Dionisi MS, Martinelli G,
et al. Levofloxacin to prevent bacterial infection in patients with cancer and
neutropenia. New Engl J Med. 2005;353:977–87.

19. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against
intestinal pathogens. Nat Rev Immunol. 2013;13:790–801.

20. Sonis ST. The pathobiology of mucositis. Nat Rev Cancer. 2004;4:277–84.
21. Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, et al.

Clinical practice guideline for the use of antimicrobial agents in neutropenic
patients with cancer: 2010 update by the infectious diseases society of
America. Clin Infect Dis. 2011;52:e56–93.

22. Kamboj M, Chung D, Seo SK, Pamer EG, Sepkowitz KA, Jakubowski AA, et al.
The changing epidemiology of vancomycin-resistant Enterococcus (VRE)
bacteremia in allogeneic hematopoietic stem cell transplant (HSCT)
recipients. Biol Blood Marrow Transplant. 2010;16:1576–81.

23. Almyroudis N, Fuller A, Jakubowski A, Sepkowitz K, Jaffe D, Small T, et al.
Pre-and post-engraftment bloodstream infection rates and associated
mortality in allogeneic hematopoietic stem cell transplant recipients.
Transplant Infect Dis. 2005;7:11–7.

24. Weinstock DM, Conlon M, Iovino C, Aubrey T, Gudiol C, Riedel E, et al.
Colonization, bloodstream infection, and mortality caused by vancomycin-
resistant enterococcus early after allogeneic hematopoietic stem cell
transplant. Biol Blood Marrow Transplant. 2007;13:615–21.

25. Van Vliet MJ, Harmsen HJ, de Bont ES, Tissing WJ. The role of intestinal
microbiota in the development and severity of chemotherapy-induced
mucositis. PLoS Pathog. 2010;6:e1000879.

26. Anand A, Glatt AE. Clostridium difficile infection associated with
antineoplastic chemotherapy: a review. Clin Infect Dis. 1993;17:109–13.

27. Cudmore MA, Silva J, Fekety R, Liepman MK, Kim K-H. Clostridium difficile
colitis associated with cancer chemotherapy. Arch Intern Med. 1982;142:333–5.

28. Alonso CD, Treadway SB, Hanna DB, Huff CA, Neofytos D, Carroll KC, et al.
Epidemiology and outcomes of Clostridium difficile infections in
hematopoietic stem cell transplant recipients. Clin Infect Dis. 2012;54:1053–63.



Taur and Pamer Genome Medicine  (2016) 8:40 Page 7 of 7
29. Leung S, Metzger BS, Currie BP. Incidence of Clostridium difficile infection in
patients with acute leukemia and lymphoma after allogeneic hematopoietic
stem cell transplantation. Infect Control Hosp Epidemiol. 2010;31:313–5.

30. Chopra T, Chandrasekar P, Salimnia H, Heilbrun LK, Smith D, Alangaden GJ.
Recent epidemiology of Clostridium difficile infection during hematopoietic
stem cell transplantation. Clin Transplant. 2011;25:E82–7.

31. Chakrabarti S, Lees A, Jones S, Milligan D. Clostridium difficile infection in
allogeneic stem cell transplant recipients is associated with severe
graft-versus-host disease and non-relapse mortality. Bone Marrow
Transplant. 2000;26:871–6.

32. Willems L, Porcher R, Lafaurie M, Casin I, Robin M, Xhaard A, et al.
Clostridium difficile infection after allogeneic hematopoietic stem cell
transplantation: incidence, risk factors, and outcome. Biol Blood Marrow
Transplant. 2012;18:1295–301.

33. Lessa FC, Gould CV, McDonald LC. Current status of Clostridium difficile
infection epidemiology. Clin Infect Dis. 2012;55:S65–70.

34. Kinnebrew MA, Lee YJ, Jenq RR, Lipuma L, Littmann ER, Gobourne A, et al.
Early Clostridium difficile infection during allogeneic hematopoietic stem
cell transplantation. PLoS One. 2014;9:e90158.

35. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al.
Precision microbiome reconstitution restores bile acid mediated resistance
to Clostridium difficile. Nature. 2015;517:205–8.

36. Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for
Clostridium difficile spores. J Bacteriol. 2008;190:2505–12.

37. Sorg JA, Sonenshein AL. Chenodeoxycholate is an inhibitor of Clostridium
difficile spore germination. J Bacteriol. 2009;191:1115–7.

38. Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB. Suppression of
Clostridium difficile in the gastrointestinal tracts of germfree mice
inoculated with a murine isolate from the family Lachnospiraceae. Infect
Immun. 2012;80:3786–94.

39. Khoruts A, Dicksved J, Jansson JK, Sadowsky MJ. Changes in the
composition of the human fecal microbiome after bacteriotherapy for
recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol.
2010;44:354.

40. Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, et al.
Treating Clostridium difficile infection with fecal microbiota transplantation.
Clin Gastroenterol Hepatol. 2011;9:1044–9.

41. Louie TJ, Miller MA, Mullane KM, Weiss K, Lentnek A, Golan Y, et al.
Fidaxomicin versus vancomycin for Clostridium difficile infection. New Engl
J Med. 2011;364:422–31.

42. Louie TJ, Emery J, Krulicki W, Byrne B, Mah M. OPT-80 eliminates Clostridium
difficile and is sparing of bacteroides species during treatment of C. difficile
infection. Antimicrob Agents Chemother. 2009;53:261–3.

43. Memorial Sloan Kettering Cancer Center. Autologous fecal microbiota
transplantation (auto-fmt) for prophylaxis of clostridium difficile infection in
recipients of allogeneic hematopoietic stem cell transplantation (2000).
https://clinicaltrials.gov/ct2/show/NCT02269150.

44. Sharp M, Corp. D. Safety and efficacy of fidaxomicin versus placebo for
prophylaxis against Clostridium Difficile-associated diarrhea in adults
undergoing hematopoietic stem cell transplantation (DEFLECT-1) (2000).
https://clinicaltrials.gov/ct2/show/NCT01691248.

45. Harris B, Morjaria SM, Littmann ER, Geyer AI, Stover DE, Barker JN, et al. Gut
microbiota predict pulmonary infiltrates after allogeneic hematopoietic
cell transplantation. Am J Respir Crit Care Med. 2016. doi: 10.1164/rccm.
201507-1491OC.

46. Finegold SM, Sutter VL, Boyle JD, Shimada K. The normal flora of ileostomy
and transverse colostomy effluents. J Infect Dis. 1970;122:376–81.

47. Hartman AL, Lough DM, Barupal DK, Fiehn O, Fishbein T, Zasloff M, et al.
Human gut microbiome adopts an alternative state following small bowel
transplantation. Proc Natl Acad Sci U S A. 2009;106:17187–92.

48. Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an
antibiotic on the human gut microbiota, as revealed by deep 16S rRNA
sequencing. PLoS Biol. 2008;6:e280.

49. Holt H, Lewis D, White L, Bastable S, Reeves D. Effect of oral ciprofloxacin on
the faecal flora of healthy volunteers. Eur J Clin Microbiol. 1986;5:201–5.

50. Donskey CJ, Helfand MS, Pultz NJ, Rice LB. Effect of parenteral
fluoroquinolone administration on persistence of vancomycin-resistant
Enterococcus faecium in the mouse gastrointestinal tract. Antimicrob
Agents Chemother. 2004;48:326–8.
51. Lewis BB, Buffie CG, Carter R, Leiner I, Toussaint NC, Miller L, et al. Loss of
microbiota-mediated colonization resistance to Clostridium difficile infection
is greater following oral vancomycin as compared with metronidazole.
J Infect Dis. 2015;jiv256.

52. Moellering RC. Pharmacokinetics of vancomycin. J Antimicrob Chemother.
1984;14:43–52.

53. Donskey CJ, Chowdhry TK, Hecker MT, Hoyen CK, Hanrahan JA, Hujer AM,
et al. Effect of antibiotic therapy on the density of vancomycin-resistant
enterococci in the stool of colonized patients. New Engl J Med.
2000;343:1925–32.

54. Pultz NJ, Stiefel U, Subramanyan S, Helfand MS, Donskey CJ. Mechanisms by
which anaerobic microbiota inhibit the establishment in mice of intestinal
colonization by vancomycin-resistant Enterococcus. J Infect Dis.
2005;191:949–56.

55. Van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM,
et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N
Engl J Med. 2013;368:407–15.

56. Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D, Daigneault MC, et al.
Stool substitute transplant therapy for the eradication of Clostridium difficile
infection: “RePOOPulating” the gut. Microbiome. 2013;1:1–12.

https://clinicaltrials.gov/ct2/show/NCT02269150
https://clinicaltrials.gov/ct2/show/NCT01691248
http://dx.doi.org/10.1164/rccm.201507-1491OC
http://dx.doi.org/10.1164/rccm.201507-1491OC

	Abstract
	Cancer-related infections
	Significance of the gut microbiome in cancer and infectious implications of a disrupted microbiome
	Chemotherapy and bloodstream infections due to mucosal barrier injury
	Clostridium difficile infection
	Other microbiota links to cancer-related infections
	Infections outside the gut
	Anatomic disruptions that affect microbiota compositions

	Balancing of antibiotics in cancer
	Conclusions and future steps
	Abbreviations
	Competing interests
	Authors’ contributions
	References

