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Abstract

Background: Vaccines dramatically affect an individual’s adaptive immune system and thus provide an excellent
means to study human immunity. Upon vaccination, the B cells that express antibodies (Abs) that happen to bind
the vaccine are stimulated to proliferate and undergo mutagenesis at their Ab locus. This process may alter the
composition of B cell lineages within an individual, which are known collectively as the antibody repertoire (AbR).
Antibodies are also highly expressed in whole blood, potentially enabling RNA sequencing (RNA-seq) technologies
to query this diversity. Less is known about the diversity of AbR responses across individuals to a given vaccine and
if individuals tend to yield a similar response to the same antigenic stimulus.

Methods: Here we implement a bioinformatic pipeline that extracts the AbR information from a time-series
RNA-seq dataset of five patients who were administered a seasonal trivalent influenza vaccine (TIV). We harness
the detailed time-series nature of this dataset and use methods based in functional data analysis (FDA) to identify the
Abs that respond to the vaccine. We then design and implement rigorous statistical tests in order to ask whether or
not these patients exhibit a convergent AbR response to the same TIV.

Results: We find that high-resolution time-series data can be used to help identify the Abs that respond to an
antigenic stimulus and that this response can exhibit a convergent nature across patients inoculated with the
same vaccine. However, correlations in AbR diversity among individuals prior to inoculation can confound
inference of a convergent signal unless it is taken into account.

Conclusions: We developed a framework to identify the elements of an AbR that respond to an antigen. This
information could be used to understand the diversity of different immune responses in different individuals, as
well as to gauge the effectiveness of the immune response to a given stimulus within an individual. We also
present a framework for testing a convergent hypothesis between AbRs; a hypothesis that is more difficult to
test than previously appreciated. Our discovery of a convergent signal suggests that similar epitopes do select
for antibodies with similar sequence characteristics.

Background
Since the administration of the first designed vaccine
by Edward Jenner in 1796 [1], vaccines have proven in-
dispensable for both medicine and medical research.
Jenner’s work on vaccines are among the rare achieve-
ments of science that have fundamentally changed
modern life. Perhaps less well-known, vaccines also

provide a standardized, safe, and ethical way to directly
study human adaptive immunity [2]. Most vaccines
confer resistance to a given pathogen by stimulating
the patient’s population of B cells to produce anti-
bodies (Abs) against the inoculated antigens. Each
clonal lineage is composed of B cells that are related by
a single common naïve B cell ancestor and the con-
glomerate of B cells within an individual make up their
antibody repertoire (AbR).
Interestingly, the process by which Abs are adapted to

more specifically target an insulting antigen is an ex-
ample of evolution by natural selection. To wit, during B
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cell development a vast amount of genetic diversity is
generated by a series of somatic mutagenic steps, after
which variants that are able to bind an antigen strongly
will be positively selected to proliferate [3, 4]. The first
diversity-generating step in B cell development is a
process of somatic recombination that takes place in the
bone marrow. The mature Ab protein is composed of
two identical light chains and two identical heavy chains.
A light chain can be of either the lambda (IGL) or kappa
(IGK) variety, whereas the heavy chain has only one pos-
sibility (IGH), and the loci encoding these three chains
reside in distinct regions of the genome. Here, the Vari-
able (V), Diversity (D), and Joining (J) gene segments in
the IGH locus, and V and J gene segments in the light
chain loci will recombine [5–7]. Diversity is generated
both by selecting one combination out of all the possible
combinations of V, D, and J genes, as well as by the ran-
dom insertion and deletion of genetic information at the
junctions of these gene segments [8]. Further, once a
mature B cell binds an antigen, it will be recruited to a
lymph follicle and enter a structure known as the germi-
nal center where a process of somatic hyper-mutation
(SHM) takes place [3, 4]. Random point mutations are
smattered onto the variable region of the Ab locus—the
area that is responsible for binding antigen—and if these
mutations result in high binding affinity, the B cell clone
will receive signals to proliferate. This process generates
lineages of B cells specific for a given antigen. These mu-
tagenic steps together result in a high concentration of
mutations occurring in a region of the Ab called the
complementary determining region 3 (CDR3), which
happens to be the region of the Ab that tends to physic-
ally interact with antigen. Because of this, the sequence
encoding the CDR3 is often used for clonal analysis of
Abs, where Abs with the same CDR3 sequence are as-
sumed to be clones. The net effect of this evolutionary
process produces extreme temporal dynamism within
the AbR, as different lineages grow and shrink in re-
sponse to different antigenic stimuli [9].
Advancements in next-generation sequencing (NGS)

methods have led to recent work in characterizing the
AbR’s response to a variety of stimuli [9–21] (see Galson
et al. [2] for a review). However, most of this work has
focused on methods development, and there has been
comparatively little work focusing on what can actually
be learned from these data. Contrary to this trend,
Greiff et al. [22] recently employed a machine learning
approach to classify patients’ immune status using their
AbR sequence data. Much work remains to be done in
this relatively new area of research. For example, the
overall changes in a patient’s AbR could be used to
quantitatively assess the response to vaccination. Of
particular interest is the ability to use changes in the
frequency of individual Abs over time to identify which

specific monoclonal Abs (mAbs) respond to a given
antigen [23]. For example, if a particular Ab mRNA se-
quence exhibits a spike in expression in a time-series
RNA-seq dataset from peripheral blood, then this could
be indicative of a vaccine response for that Ab. To ad-
dress this gap in knowledge, we here seek to leverage
time-series information of five patients’ AbRs in order
to infer the elements that are responding to a trivalent
influenza vaccine (TIV).
A particularly useful and intuitive way to model

time-series data is to use methods within the greater
discipline of functional data analysis (FDA) [24, 25]. As
opposed to multivariate data analysis (MDA)—which
treats each datum as a finite dimensional vector of
observations—FDA treats each datum as a continuous
function over some dimension, which is often (as in
our case) time. FDA-based methods have a rich history
of being used for identifying differentially expressed
genes over time [26–29], and have the advantage of
easily incorporating uneven time-point sampling and
measurement error into each gene’s functional model.
FDA is also an intuitive way to model gene expression,
as each gene’s expression level in a tissue is indeed
continuously fluctuating over continuous time. Here,
we use an FDA-based method presented by Wu and
Wu [28] and apply it to time-series AbR data [30] to
identify the components of patients’ AbR that respond
to a standard TIV.
There is a plethora of time-series gene expression

data that have been used to identify genes involved in
pathogen defense [31], autoimmunity [31], and vaccine
response [30, 32]. The longitudinal and cross-sectional
nature of these studies allowed the authors to identify
the genes that were consistently differentially expressed
in response to the given antigenic stimulus across pa-
tients. One could perform a similar analysis using a
time-series AbR dataset to help identify the determi-
nants of immunity. However, with the exception of Liao
et al. [33], Laserson et al. [9], and more recently Hoehn
et al. [34], few detailed time-series datasets on the AbR
exist. If RNA-seq was performed on an antibody ex-
pressing tissue (for example, peripheral blood mono-
nuclear cells [PBMCs]), theoretically, many of the RNA
transcripts in the data would originate from Ab loci.
Should this be the case, much AbR information will exist
within the data that simply needs to be bioinformatically
mined out. This approach has been used in the context of
cancer research to identify the Ab sequence of the cancer-
ous B cell lineage in chronic lymphocytic leukemia pa-
tients [35] and to characterize both the AbR and T cell
receptor diversity in solid tumor samples [36, 37]. In this
study, we developed and implemented such a pipeline on
the Henn et al. 2013 transcriptomic dataset [30] in order
to probe the AbR’s response to a standard TIV.
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There have been several reports of convergent evolution-
ary signals between independent AbRs that were exposed
to a similar antigenic stimulus (recently reviewed by [38]).
While there exist relatively precise definitions for conver-
gence in evolutionary biology [39, 40], we define convergent
AbRs more loosely as those that develop similar character-
istics as a response to similar antigens. These characteristics
could include similar Ab DNA sequences, similar sets
of Ab genes, or similar structural characteristics, among
others. In this manuscript, we focus on convergence by
way of independent AbRs utilizing similar sets of Ab
genes and similar sequences of CDR3s to target the same
vaccine. AbR convergence has been shown in a variety of
contexts, including dengue virus infections [21], broadly
neutralizing Abs against Human Immunodeficiency Virus
[15, 18] and influenza vaccination [23, 41, 42]. With the ex-
ception of Parameswaran et al. [21] and Cortina-Ceballos
et al. [23], these studies relied largely on qualitative evi-
dence for convergence, where Ab sequences from inde-
pendent patients either cluster closely together on a
dendogram [15] or have strikingly similar sequence and/or
structural characteristics [18, 41, 42]. While these examples
of AbR convergence may be intuitively convincing, few
methods have been developed to statistically test for a con-
vergent AbR response across patients. The importance of
statistical analyses can be illustrated by the high correlation
of Ab gene expression in different individuals [43, 44]. That
is, if an Ab gene is expressed highly in one individual, it
will tend to also be highly expressed in another individual.
In order to soundly establish a convergent signal between
patients’AbRs, this correlation in background gene expres-
sion must be taken into account. Indeed, Childs et al. [45]
have used a computational modeling approach to show
that a large determinant of AbR diversity post inoculation
is its diversity state prior to inoculation. To resolve this, we
developed and implemented a statistical methodology that
incorporates the baseline similarity between individual
AbRs when testing for a convergent signal.
In this study, we first present a bioinformatic pipeline

for extracting AbR information from RNA-seq data. We
then go on to use FDA-based methods to characterize
the Ab response of several patients to a standard TIV.
Finally, we present and implement statistical tests for a
convergent Ab response between patients to the same
TIV. We find that a detailed time-series dataset can be
used to identify Abs that are putatively targeting a vac-
cine, and that—after controlling for background AbR
similarities—these vaccine responding Abs can exhibit
similar sequence characteristics across patients.

Methods
Data creation
The RNA-seq dataset for this study was generated by
Henn et al. [30] [GEO:GSE45764] [46]. The experimental

design was as follows: five patients were vaccinated with
the 2010 seasonal TIV and peripheral blood was drawn
from each patient for 11 days, from day 0 (the day of the
vaccination) to day 10 post vaccination. Each patient/
time-point sample was divided into two sample types:
PBMCs and sorted B cells. RNA-seq was performed on
both the PBMC and B cell sample types from each time
point for all patients. Importantly, the two different sam-
ple types from each sample provide relatively independent
technical replicates to gauge the accuracy of our bioinfor-
matic pipeline, described below.
For a detailed description of sample processing and

RNA-seq, see [30]. Briefly, PBMCs were isolated using
a discontinuous Ficoll gradient centrifugation, and B
cells were enriched from heparinized whole blood with
RosetteSep Immunodensity separation (Stemcell Tech-
nologies, Vancouver, BC, Canada). RNA was extracted
with the Qiagen RNeasy micro kit. Barcodes were
assigned to each patient/time-point/sample type and
sequencing libraries were prepared with Illumina Tru-
Seq RNA kits as recommended by Illumina, using 100
ng total RNA as input. The read length was 65 bases
and the mean read depth across patient/time-point/
sample types was 13,724,354.04 reads, with a range of
8,262,317–17,777,695 reads.

Computational pipeline
State-of-the-art tools for aligning RNA-seq reads to a
reference genome, such as TopHat2 [47], were not de-
signed, and are ill-equipped, to handle the various ec-
centricities of Ab RNA (such as VDJ gene segment
recombination, as well as the high number of mutations
expected from both VDJ recombination and SHM).
Similar to others [35, 36], we therefore developed a bio-
informatic pipeline that will harvest the Ab transcripts
buried in the multitude of reads from an RNA-seq
dataset. Conceptually, the pipeline consists of a nega-
tive selection step to weed out all non-Ab encoding
transcripts, followed by a positive selection step to
identify Ab encoding reads (Fig. 1a). For the negative
selection step, we first created a whole genome refer-
ence sequence where all Ab encoding loci in the gen-
ome were masked out. We then used TopHat2 to map
all reads to this masked-reference genome. Reads that
successfully mapped to the masked genome were dis-
carded. We hypothesized that some fraction of the
unmapped reads are true Ab sequences. To identify
them, we used IgBLAST [48] to positively select for
Ab encoding transcripts. We used a stringent threshold
(e-value ≤ 10−20) to select the best aligning germline Ab
gene (including V, D, and J genes). We also selected the
CDR3 sequence in the alignment (if present) using a less
stringent e-value threshold of 10−6 in order to retrieve a
sufficient number of CDR3 sequences.
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Overall Ab expression and V gene expression
We would like to measure the overall level of mRNA
expression of Abs, as well as the expression level of
individual V genes and CDR3 sequences in each
sample. By ‘expression’ we mean a quantitation of
the number of mRNA sequences that map to a given
Ab locus in this peripheral blood RNA-seq dataset.
We first would like to estimate the overall expres-
sion of Abs in each sample. To do this, we counted
the number of mRNA reads that mapped to any
gene (V, D, or J) in the variable regions of any Ab
locus (heavy, lambda, or kappa chains), and then
normalized this by the number of reads that map to
anything else in a given sample. We will henceforth
refer to this statistic as “overall Ab expression,” and
it was calculated as follows. Let T be the total num-
ber of days in the study, with t ∈ [0, T], and P be
the total number of patients, with i ∈ [1, P]. For a
given patient i and time-point t, if Mi,t is the total
number of reads that map to a V, D, or J gene with
an e-value ≤ 10−20, and Ni,t is the total number of
reads that map to anything in the Ab-masked gen-
ome (the red circle in Fig. 1a), then overall Ab ex-
pression, Ai,t, for that patient/time-point can be
calculated as

Ai;t ¼ Mi;t

Ni;t þMi;t
:

Because Mi,t was very small rative to Ni,t, we approxi-
mated overall Ab expression as

Ai;t ¼ Mi;t=Ni;t :

It is important to note that we do not attempt to map
reads to any of the constant regions of the Ab loci (IgA,
IgE, IgM, IgG, etc.), so our expression level estimates are
agnostic to this information. As such, overall Ab expres-
sion is a measure of the cumulative mRNA expression of
all isotypes in a sample.
Next, we would like to estimate the mRNA expression

level for each individual Ab gene. We achieved this by
counting the total number of reads that mapped to a
given Ab gene, then normalized by both the number of
reads that mapped to anything else (as was done for
overall Ab expression), as well as by the length of the
Ab gene. We will hereto refer to this statistic as “gene
expression” and it was calculated as follows. Let V be
the total number of unique genes that we detected be-
longing to a given Ab gene class (e.g. for IGHV, V = 68;
excluding alleles). For v ∈ [1, V], let Lv be the length of
gene v. If mv,i,t is the total number of reads that map to

Fig. 1 Bioinformatic pipeline. a Flow diagram of the steps in our bioinformatic pipeline for harvesting Ab reads from a RNA-seq dataset. The
pipeline consists of a negative selection step using TopHat2 [47] where non-Ab reads are mapped to a masked reference genome, followed
by a positive selection step using IgBLAST [48] where Ab reads are mapped to reference germline Ab sequences. b-d Fraction of reads
retrieved for certain steps in the pipeline, in three different tissues, out of the number of TopHat mapped reads (red). The colors of the bars
correspond to the colors of the steps in (a). b Sorted B cells from peripheral blood. c Peripheral blood mononuclear cells. d Human lung
fibroblasts from tissue culture
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Ab gene v with an e-value ≤ 10−20, then the gene expres-
sion level, Ev,i,t, of Ab gene v, in patient i at time-point t
was calculated as

Ev;i;t ¼ mv;i;t

Ni;tLv
⋅ 1000:

Lastly, we would like to estimate the mRNA expres-
sion level of a given CDR3 sequence. This statistic is re-
ferred to as “CDR3 expression,” and was calculated by
counting the number of times the CDR3 sequence was
observed in patient i at time-point t, normalized by Ni,t.

Ab diversity
We used the CDR3 sequences in our dataset to esti-
mate AbR diversity. We calculated the mean pairwise
genetic distance (commonly referred to as π in popula-
tion genetics) as our diversity statistic. However, there
were different numbers of total reads sequenced for
each patient/time-point and comparing diversity esti-
mates across differing sample sizes is problematic, as
the variance of the estimate can change dramatically.
To account for this, we down-sampled our data until
the number of reads for each patient/time-point was
equal to the time-point with the least reads. We then
calculated diversity from this down-sampled data. To
account for possible stochastic effects of down-
sampling, we analyzed the mean of ten independently
down-sampled diversity estimates.
Let Ci,t be the total number of unique CDR3 se-

quences found in patient i at time-point t, with c ∈ [1,
Ci,t]. Let di,t,c be the number of times the CDR3 se-

quence c was found in patient i at time-point t, with Ui;t

¼
XCi;t

c¼1

di;t;c being the total number of CDR3 sequences

detected. Additionally, let si,t be a list of inferred CDR3
sequences. Antibody diversity, πi,t, for patient i at time-
point t was estimated as

πi;t ¼
XCi;t−1

j¼1

XCi;t

k¼jþ1
di;t;j⋅di;t;k⋅G si;t;j; si;t;k

� �
Ui;t

2

� � :

Where G(x, y) gives the genetic distance between the
two CDR3 sequences, x and y. This was accomplished
using the Needleman-Wunsch algorithm encoded by
“needle” in the EMBOSS package to globally align se-
quences x and y. We then calculated “genetic distance”
by finding the percent of mismatches in this alignment,
including gaps.
In words, π can be thought of as the genetic distance

that would be expected if one were to randomly pull two

CDR3 sequences from a population. Thus, if there are
many unique CDR3 sequences, yet only a small subset
of these sequences have a high frequency, then π will be
relatively low; conversely, if there are the same set of
unique CDR3 sequences but their frequencies are evenly
distributed, π will be relatively high.

Comparing B cell and PBMC CDR3 populations
We used a random sampling approach to test whether
or not the CDR3 sequences from B cell and PBMC sam-
ple types were samples from the same population. Spe-
cifically, for a given patient we randomly chose a time-
point, then within this time-point, we selected one
CDR3 sequence from the B cell dataset and one from
the PBMC dataset, where the relative frequency of the
CDR3 sequences determined the probability of selection.
We then calculated the genetic distance between these
two sequences using G(x, y), as was done in the diversity
calculation. This process was done 1000 times to create
a distribution of genetic distance values. To create null
distributions, we repeated this workflow, except sampled
pairs of CDR3 sequences from the same population. We
used the Mann–Whitney U test to determine if the B
cell/PBMC distribution of genetic distances was signifi-
cantly different from either of the nulls. This process
was done for each of the patients.

Test for identifying TIV-responding Abs
The following method was used to identify both TIV-
responding V genes and TIV-responding CDR3 sequences,
so we shall henceforth use the notation “Ab-element” to
refer to either V gene or CDR3 sequence. For a detailed
description of this FPCA based test, see Wu and Wu [28]
and associated R code [49]. Briefly, the test functions by
first converting each of the Ab element’s expression tra-
jectories into a continuous function over the time-
course, t, which we will call an “expression function.”
This is accomplished by finding the linear combination
of the naïve basis functions that best fit the observed
Ab-element’s expression data. These expression func-
tions, X(t), can be expressed as

X tð Þ ¼ μ tð Þ
Xb
l¼1

αlλl tð Þ:

Where μ(t) is a constant function that is equal to the
mean Ab-element expression over the time-course, αl is
the weight given to basis function λl(t), and b is the
number of basis functions in the model.
FPCA is then performed on this set of expression

functions. We then identified the first set of eigenfunc-
tions that explain at least 90 % of the variance in the
data. Once this is done, X ' (t) can be re-expressed as a
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linear combination of this set of eigenfunctions that best
fits the observed data.

X
0
tð Þ ¼ μ tð Þ

Xc

l¼1

ξ lϕl tð Þ;

Where ξl is the weight for each eigenfunction, ϕl(t),
which is often referred to as the functional principal
component score, and c is the number of eigenfunctions
that together explain at least 90 % of the variance in the
data (such that their eigenvalues are non-increasing).
Once this is done, the task is then to determine if X

'(t) is a better fit to the data than the null hypothesis.
The null in this case is that the Ab-element’s true ex-
pression function is μ(t) (where the observed deviation
around the mean is due to random error). Thus, the null
hypothesis is X0(t) = μ(t). It is then determined which of
the two hypotheses better fit the data by measuring the
residual sum of squares (RSS) for the two models, RSS'
and RSS0. The test statistic is given by

F ¼ RSS0−RSS
0

RSS
0 þ δ

:

Where δ is a small constant that is meant to stabilize
the variance of F and is set to equal the variance of the
Ab-elements’ observed expression values around its esti-
mated expression function. Finally, in order to produce a
null distribution of the test statistic, a permutation-
based approach is used. The time-points are shuffled
and this process is repeated. The Ab-elements whose F
statistics were significant relative to the null distribution
were deemed TIV-responding. A Benjamini Hochberg
correction for multiple tests was used on the p values
within a patient/gene class.

Generation of literature-curated dataset of flu-targeting Abs
In order to characterize the diversity of Abs that have
been reported to physically bind influenza, we scanned
the literature and recorded the germline gene identity of
all influenza-binding Abs that we found. The generation
of this literature-curated dataset qualifies as a meta-
analysis, so we created a separate Preferred Reporting
Items for Systematic Reviews and Meta-Analyses
(PRISMA) [50] statement that explicitly addresses
each item in the PRISMA checklist in order to clearly
outline the criteria used to select the studies that con-
tributed to this meta-analysis. See Additional file 1:
PRISMA statement and Additional file 2: PRISMA
Flow Diagram in the supplemental information for de-
tails on this meta-analysis.

Test for a globally convergent V gene response
To determine if patients tend to use similar sets of genes
to target TIV, we developed a statistic, which we refer to
as “sum of gene significances” (SGS) and is defined as
the number of patients in which a given gene was found
to be significant. Because we have five patients in our
data, SGS is bound between 0 and 5. We computed the
SGS value for each gene, and then compared the ob-
served SGS distribution to its null. Our task was then to
generate a proper null distribution that takes into ac-
count the baseline frequencies at which the different V
genes are expressed in a given patient, prior to vaccin-
ation. We chose to use a simulation-based null model,
where we use day 0 gene frequencies to simulate artifi-
cial sets of TIV-responding genes.
These null simulations are best explained by example.

Say the number of TIV-responding V genes for patients
1 through 5 were: 3, 6, 4, 7, and 4, respectively. The first
step is to sample, without replacement, three genes from
patient 1’s day 0 distribution of gene frequencies. Here,
the probability of sampling a given gene for patient 1 is
equal to that gene’s relative frequency at day 0. We then
complete the same process in the other patients by sam-
pling six genes from patient 2’s day 0 gene frequency
distribution; four genes from that of patient 3; seven
genes for patient 4; and four genes for patient 5. We
now have “null sets” of V genes from each patient, where
the composition of these sets only reflect the gene ex-
pression levels prior to vaccination. We can then calcu-
late SGS values for each V gene by counting the number
of times each gene is present in a “null set.” For ex-
ample, if IGHV3-23 was sampled in all patients, then it
would have an SGS value of 5, and if IGHV4-59 was
sampled in patient 1 and patient 4 then it would have an
SGS value of 2. We store these SGS values as a long list
of integers. We then repeat the sampling process from
each patient’s day 0 gene frequency distribution 1000
times, and after each trial we append the resulting SGS
values for each gene to our long list of integers. Once
this is done, we can convert this long list of SGS values
into a distribution, where this distribution serves as our
null, and reflects the SGS values that one might expect
to get if they were to randomly sample genes from each
patient prior to vaccination. We can then use a multi-
nomial G test to compare our observed SGS distribution
to the null.
To generate the “naïve” null distribution, we treated

each patient independently and then simulated SGS
statistics under this model. We did this by first estimat-
ing the probability that a gene will be significant (i.e.
deemed TIV-responding) in each of the patients. This
was done by dividing the number of V genes found to
be TIV-responding in a patient by the total number of
V genes found in that patient. Once the probability of
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significance was estimated in all patients, we simulated
SGS values based upon these probabilities. This was ac-
complished by walking through each patient and ran-
domly assigning them a “1” or a “0” (i.e. significant or
non-significant), where the probability of getting a “1”
is equal to the probability of significance that was pre-
viously estimated for that patient. For example, if 3/
10 V genes were found to be TIV-responding in patient
1, then this patient would have a probability of 0.3 (3/
10) of being assigned a “1.” This assignment of either
“0”s or “1”s was completed for each patient, and by tak-
ing the sum across patients we get a simulated SGS
value. We then repeat this process 10,000 times to ar-
rive at the distribution of SGS values that one might ex-
pect if the probability that a gene is significant in one
patient is independent of all the other patients.

Test for convergent response in individual V genes
This test is similar in spirit to the global test for V gene
usage convergence (above), where the day 0 V gene
usage is used to generate the null distribution. However,
instead of a simulation based approach to generating
this null distribution we develop a closed form solution.
P is again the total number of patients in the study (5 in
our case), and pi is the relative proportion of a given V
gene at day 0 in the ith patient (where i ∈ [1, P]). S is
the set of identifiers for each patient, so S = {1, 2, …, P},
and Sk is the set of all subsets of S that are of size k, so
Sk = {x|x ⊂ S, |x| = k}, which represents all the different
ways to choose k patients from S. If X is the random
variable that describes the number of patients in which a
given V gene is significant, then the probability of X
under the null hypothesis is given by,

PrðX ¼ xÞ ¼
X
y∈Sx

hY
i∈y

Y ðpi; giÞ
Y

j∉y∣j∈S

1−Y ðpj; gjÞ
i
:

Where Y(a, b) is a function that gives the probability a
gene will be found to be TIV-responding in a single pa-
tient, given that that patient has a day 0 gene frequency
of a, and b V genes were observed to be TIV-responding
in this individual. Y(a, b) is given as

Y a; bð Þ ¼ 1− 1−að Þb:

Essentially this can be thought of as a traditional urn
problem in probability, where each patient is an urn
that contains a given proportion of red balls. The prob-
ability of selecting a red ball from an urn is the prob-
ability of selecting a given V gene from a patient at day
0. The null distribution is modeled as follows: if gi is
the number of draws made from each urn i (the num-
ber of TIV-responding genes found for patient i), and
pi gives the probability of drawing a red ball from urn i

(the relative frequency of the Ab gene in question at
day 0), and X describes the number of urns from which
red balls are drawn (the number of patients in which a
particular V gene is identified as TIV-responding); then
the probability of X is the null distribution for SGS.

Power simulations for global V gene convergence test
In order to assess the statistical power of our SGS based
tests for convergence, we ran simulations of the data
over different parameter values to see how often the
simulated data were different than the corresponding
null distribution. More specifically, we simulated SGS
values for each V gene and our simulations had two pa-
rameters that were varied over a range of possibilities.
These parameters were: number of truly convergent
genes and number of patients in the study. These simu-
lations are best illustrated by example.
Say we wish to run simulations where there are seven

patients, and two truly convergent genes. The first step
is to create “simulated” patients. Here, since we already
have five observed patients, we will only need to create
two additional “simulated” patients. For the purposes of
the global V gene response convergence test, each pa-
tient needs two qualities: a distribution of day 0 gene
frequencies and a number of genes that were found to
be TIV-responding for that individual. Both of these
values are found by randomly selecting from the five
existing observed patients. That is, each gene’s day 0 fre-
quency for the simulated patient is found by randomly
selecting from the day 0 frequencies for that gene of
the five observed patients. All of the randomly selected
day 0 gene frequencies in the simulated patient are then
re-normalized by their sum to make them relative pro-
portions. The number of TIV-responding genes is also
randomly selected from the existing values of the ob-
served patients. This is done independently for each
simulated patient. The next step is to simulate conver-
gent genes. Two V genes are randomly selected (regard-
less of their day 0 frequencies) to be truly “convergent.”
This means that they are significant in all patients (i.e.
their SGS value is set to equal 7). For each patient, the
remainder of V genes are then randomly selected to be
TIV-responding based upon their day 0 frequencies,
until the number of genes selected for a given patient
equals the total number of number of TIV-responding
genes for that patient. For example, if patient 1 had five
genes that were found to be TIV-responding, then two
of these genes are set to be truly convergent (i.e. signifi-
cant in all patients), and the remaining three are ran-
domly drawn from patient 1’s day 0 distribution of gene
frequencies, just as was done for our null distribution.
Once this is completed for each patient, we have simu-
lated SGS values for each gene, and thus can arrive at a
simulated distribution of SGS values. We then compare
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this simulated distribution to a null distribution, which
is generated the same way as described above, except
no “truly convergent” genes are assigned and genes are
instead solely sampled based upon their day 0 frequen-
cies. This entire process is then run 10,000 times and
power is calculated as the proportion of simulations
that yield SGS distributions that are significantly differ-
ent from the null distribution.

Power calculations for individual V gene convergence test
We calculated power over a range of parameter values
for the convergence test for individual genes. The pa-
rameters that we varied for this test were: number of pa-
tients in the study and day 0 gene frequency. Because we
have a closed form solution for the null distribution of
this test, it is not necessary to run simulations, and we
can instead calculate power directly from our equation,
albeit with a few simplifying assumptions. For this test,
each patient needs two qualities: a day 0 gene frequency
and number of genes found to be TIV-responding. We
assume the day 0 frequency for a gene to be the same
across all patients and we set the number of significant
genes for each additional patient, beyond the five ob-
served, to be the nearest integer to the mean of the five
observed values. We then plug these values into our equa-
tion and find the probability that a gene would be found
to be significant in all the patients, given a starting fre-
quency and a given number of patients. This provides the
probability of the null hypothesis, and we calculate statis-
tical power by subtracting this value from 1.

Test for convergent CDR3 response
To test if two patients have sets of TIV-responding
CDR3s that are more similar to each other than would
be expected by chance, we again utilized a methodology
that hinges on sampling from the day 0 distribution.
First, we calculate π (the mean pairwise genetic dis-
tance) between the two patients’ observed set of TIV-
responding CDR3s. If X is the set of TIV-responding
CDR3 sequences in patient x, and Y is that of patient y,
then πx,y between patient x and y was calculated as

πx;y ¼
X

i∈X

X
j∈Y

GðXi;Y jÞ
jXj⋅jY j :

We then generate the null distribution for πx,y by ran-
domly sampling (without replacement) from the popu-
lation of CDR3 sequences at day 0 for both patients x
and y, where the frequency of each CDR3 sequence de-
termines the probability that it will be sampled. The
number of sequences that are sampled for each patient
are equal to the number of CDR3 sequences that were
found to be TIV-responding for that patient. These sets
of CDR3 sequences form a null set and are solely

informed by the baseline CDR3 expression level of the
sequences prior to vaccination. We then calculate πx,y

between the two null sets from patients x and y and re-
peat this sampling process 1000 times to get a distribu-
tion of null πx,y values. We can then assess significance
of an observed πx,y value between two patients by com-
paring it to the respective null distribution.

Data and software availability
Data for the immunological assays performed by [30]
are available at the ImmPort repository [ImmPort
:SDY224],[51]. RNA-seq data generated by [30] are
available at the GEO repository [GEO:GSE45764],[46].
The anonymous patients in this study have different
naming schemes in different contexts. In this study, pa-
tient 1, patient 2, patient 3, patient 4, and patient 5
equates to samples T12, T13, T14, T15, and T16 in the
GEO repository; as well as equates to patient IDs S04,
S06, S02, S03, and S05 in the Henn et al. study, respect-
ively. All software associated with the analyses herein
are available on the GitHub repository (https://github.-
com/nbstrauli/influenza_vaccination_project) [52].

Results
In this study, we implemented a pipeline to extract Ab
sequences from RNA-seq data in order to take advan-
tage of a unique densely sampled time-series dataset
comprising RNA-seq data from PBMCs and sorted B
cells of five patients vaccinated with the 2010 seasonal
TIV over a time-course of 11 days [30] (Additional file
3: Figure S1). We use the high-resolution temporal infor-
mation in these data in order to infer the elements of
the AbR that are putatively responding to TIV. We then
go on to test if the patients in this dataset exhibit more
similar responses to TIV than would be expected by
chance. That is, we test if these distinct AbRs exhibit
convergence in response to the same vaccine.

Quality control of bioinformatic pipeline
First, we validated that our bioinformatic pipeline (Fig. 1a,
see “Methods” for a detailed description) extracts mean-
ingful AbR information from RNA-seq data. We hypothe-
sized that the proportion of Ab encoding reads detected
should correlate with the expected number of B cells in a
given sample type. We arbitrarily chose the day 7 time-
point from patient 1 and applied our pipeline to the RNA-
seq data from isolated B cells and PBMCs for this patient/
time-point. As a negative control, we also applied our
pipeline to RNA-seq data from human tissue cultured
lung fibroblasts [53]. Our expectation was that the num-
ber of Ab sequences would decrease from B cells to
PBMCs and cultured lung fibroblasts would serve as a
negative control with essentially no Ab sequences. Con-
sistent with our expectation, we found that 1.25 % of all
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reads from isolated B cells encode Ab (206,797 of 1.7 ×
107 total reads), PBMCs yielded 0.12 % Ab encoding reads
(16,214 of 1.4 × 107 total reads), and cultured lung fibro-
blasts produced < 0.001 % Ab encoding reads (25 of 3.0 ×
107 total reads) (Fig. 1b).

Broad AbR characteristics
We next sought to characterize how the AbR broadly be-
haves in response to TIV. To this end we measured overall
Ab expression as the number of Ab mapped reads nor-
malized by the number of non-Ab mapped reads, see

“Methods” (Fig. 2a). Ab diversity was measured as mean
pairwise CDR3 genetic distance (see “Methods”) in each
of the patients over the time-course (Fig. 2b). We found
that each patient had a characteristic peak in overall Ab
expression around day 7, although the timing and severity
of this peak varied dramatically across patients. Patient 3
had the most dramatic response, which had entirely sub-
sided by day 7, while the response for patient 5 was much
more gradual and less pronounced. We note that patient
3 was the only patient to have received the seasonal influ-
enza vaccine for each of the prior 3 years, and received an

Fig. 2 AbR response to TIV across patients. Different metrics were measured for each patient and at each time-point. Metrics are delineated by
row, and patients are delineated by column. a Overall Ab expression for each patient/time-point. b CDR3 diversity for each patient/time-point. B
cells and PBMCs are shown in red and blue, respectively. c, d Stacked area charts showing the gene expression level for each IGHV gene for each
patient/time-point. Colors, corresponding to IGHV genes, are comparable between patients and sample types, and were sorted by absolute range
(max–min). c B cell. d PBMC data. Complete definitions for the y-axis units in (a, b, c, and d) can be found in methods. e ELISA results giving the
concentration of Abs that bind TIV for the A, M, and G Ab isotypes (red, blue, and green, respectively). f Hemagglutinin inhibition assay results for
the three different virus strains in the administered TIV, A/C: A/California/7/2009; B/B: B/Brisbane/60/2008; A/P: A/Perth/16/2009. Data for (e) and
(f) were generated by [30], and downloaded from ImmPort [51], [ImmPort:SDY224]. *Patient 2 PBMC data at day 8 were unavailable due to sample
processing error [30]
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additional monovalent vaccine the year prior to the study
[30]. The monovalent and seasonal 2009 vaccines had epi-
topes from two of the strains that were included in the
TIV used in this study (Additional file 3: Table S1).
These results are consistent across both the B cell and

the PBMC RNA-seq sample types. Indeed, overall Ab
expression and diversity levels for each of the patients
and time-points are highly correlated between the two
sample types (overall Ab expression: Kendall’s tau =
0.639, p = 8.715e-12, Ab diversity: Kendall’s tau = 0.366,
p = 8.083e-05; Additional file 3: Figure S2), suggesting
that the overall signal represents the underlying AbR di-
versity and expression patterns.

Comparing B cell and PBMC CDR3 populations
Because B cells are a subset of PBMCs, we can expect
that the RNA-seq data from these two sample types
should yield similar Ab sequences. By checking to see if
this is indeed the case in our data, we have another
means to check the accuracy of our pipeline. In order to
quantify the similarities between the B cell and PBMC
sample types, we focused on CDR3 sequence sets. Spe-
cifically, we statistically tested whether the CDR3 se-
quences from the B cell and PBMC datasets are drawn
from the same population. We did this by finding the
distribution of genetic distances between CDR3 se-
quences from different sample types and compared this
to the same distribution from CDR3s in the same sample
type (see “Methods”). We found that none of these three
distributions are significantly different in any of the pa-
tients (p >0.07, see Additional file 3: Figure S3). We thus
conclude that PBMC and B cell datasets can reliably be
used to extract Ab sequences from RNA-seq data.

V gene and CDR3 usage analysis
We next sought to analyze how each Ab gene is
expressed over the time-course after vaccine administra-
tion. We calculated the mRNA expression level of each
gene (as number of reads mapped to a given Ab gene
normalized by the number of non-Ab mapped reads, see
“Methods”) in each of the patients and at each time-
point. We analyzed each class of Ab gene that could
produce reliable alignments: V gene heavy chain (IGHV),
V gene lambda light chain (IGLV), and V gene kappa
light chain (IGKV). We were unable to detect an appre-
ciable number of reads aligning to D or J genes with
high confidence, which is likely due to their short
lengths. We then generated stacked area charts to ob-
serve how the cumulative and individual V gene expres-
sion changes over time (Fig. 2c, d for IGHV; Additional
file 3: Figure S4 for IGLV and IGKV). We find that the
patients with the most dramatic Ab response (patients 1
and 3) also seem to have the largest gene expression in-
creases in very few V genes and that the increase in

these few genes seem to explain a large portion of their
rise in overall Ab expression. This is particularly well il-
lustrated in patient 1, where the peak in overall Ab ex-
pression is entirely explained by an increase in gene
expression of 2–3 V genes. Moreover, this expression in-
crease coincides with a dip in CDR3 diversity. Together,
this suggests that patients 1 and 3 had largely a mono-
clonal response to TIV. We also note that the other pa-
tients showed signs of a predominantly polyclonal Ab
response that did not substantially affect diversity.
Though we cannot draw strong conclusions about the
causes of a polyclonal or monoclonal response in this
small sample size, future studies of larger cohorts could
elucidate the causes behind this heterogeneity.
We performed an analogous analysis using CDR3 se-

quence data. We gathered all unique CDR3 sequences
for each patient/time-point sample and calculated their
mRNA expression level (see “Methods”). We again gen-
erated stacked area charts to observe how the predomin-
ant sequences change in CDR3 expression over time
(Additional file 3: Figure S5). We found that these data
largely recapitulate the gene expression data, where
CDR3 expression expansions tend to occur around the
same time as the increases in V gene expression. Patient
1 again shows a dramatic expansion in the expression of
a single CDR3 sequence, providing further support for a
largely monoclonal response.
There are two factors that contribute to an Ab’s

mRNA expression level: the number of B cells harboring
the Ab and the rate of Ab expression for each of these B
cells. Because RNA-seq was performed on a heteroge-
neous population of B cells in the peripheral blood, we
cannot distinguish between the two. Further, these two
factors are highly dynamic over time, where B cells are
constantly migrating in and out of the peripheral blood,
in addition to dramatically varying their rate of Ab tran-
scription. Thus, the population of B cells that we sample
on day 7 is likely very different from that of day 0. How-
ever, whether due to a clonal expansion or an increase
in transcription rate, if an Ab gene or CDR3 sequence
increases in expression level, it is largely indicative that
at least a subset of the B cells harboring this gene or
CDR3 are responding to some antigenic stimulus.

Immunological assays
Given the robust signal in our V gene and CDR3 usage
analyses, we sought to validate that the expansions we ob-
served in our data were indeed in response to TIV. Henn
et al. [30] performed a variety of immunological assays
using the sera from each patient/time-point sample. We
downloaded these data from [51], [ImmPort:SDY224] to
determine if the patients gain immunological reactivity
against influenza around the same time as the V gene and
CDR3 expression level expansions occur in our data. The
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results show that vaccine-binding immunoglobin tended
to increase around the same time as V gene and CDR3 ex-
pansions (Fig. 2e). We next sought to establish that the V
gene and CDR3 response conferred protectivity against in-
fluenza virus. Data from hemagglutinin inhibition (HAI)
analyses using the three strains of influenza virus included
in the TIV showed that protection to at least one of the
strains was gained around the same time as the spike in V
gene and CDR3 expression levels (Fig. 2f). Together these
data suggest that the V gene and CDR3 expression level
expansions we observe in our data are direct immuno-
logical responses to TIV.

Identifying TIV-responding V genes
Given the robust signal that we saw in the V gene
expression time-course data, we next established a
methodology to systematically identify the V genes that
appear to be responding to TIV. We utilized a method

based on functional principal component analysis
(FPCA), which was designed to identify differentially
expressed genes over a time-course [28] (see “Methods”
for description). We found that it was often the case
that the first eigenfunction explained over 90 % of the
variance in the data (Fig. 3a and c). From this method
we were able to identify the genes that seem to be
most dramatically responding to TIV (Fig. 3b, d;
Table 1). In almost all patients, the top genes identi-
fied in the B cell dataset (Fig. 3b) are replicated in the
PBMC dataset (Fig. 3d). We deem the V genes identi-
fied by this test to be “TIV-responding.” It is import-
ant to note that while the results of this test provide
evidence that these genes are “responding” to TIV,
functional validation is required to establish that they
actually target TIV. We then assessed whether or not
these sets of TIV-responding genes, are more similar
across patients then would be expected by chance.

Fig. 3 Identifying putative TIV-responding V genes. a First eigenfunction in the B cell data for each patient and each V gene class. The proportion
of the total variance explained by the first eigenfunction is listed in the legend after each respective class of V gene. b The top five scoring IGHV
genes from the FPCA based test to identify TIV-responding V genes; in the B cell data. The points show the observed data, and the solid lines
show the best fitting gene expression function over time. V genes in legend are ordered by p value, with lowest on top. P values are based on a
permutation test, see Wu and Wu [28] for details. c, d Same as (a, b) but from the PBMC data. Colors corresponding to IGHV genes in (b, d) are
comparable within a patient. Eigenfunction plots (a, c) were generated using the “eigens” output from the FPCA-based test. IGHV gene expression
functions (b, d) were plotted using the “fda” package for the R programming language and using a smoothing parameter, “lambda” = 0.66
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Testing for a convergent V gene response
Recently there have been several studies that have re-
ported independent AbRs showing signals of sequence
convergence when challenged with a similar antigenic
stimulus [15, 21, 41, 42]. This suggests that independent
patients may use the same V genes to target similar anti-
gens. Consistent with this, we found that V genes tend
to have similar FPCA-based test scores across patients
(Additional file 3: Figure S6). This suggests that the pa-
tients in our data are indeed using similar V genes to
target TIV.
However, the sets of TIV-responding V genes were sta-

tistically inferred using time-series data, and were not
shown to physically bind TIV. To validate these findings,
we searched the literature for Abs that have been experi-
mentally shown to bind either an influenza vaccine or
the influenza virus itself. Since most publications do
not provide sequence information for the Abs they find,
our analysis is limited to the germline genes from
which the Abs originated. Our search resulted in 464
Abs that have been shown to bind influenza vaccine or in-
fluenza virus (Additional file 3: Tables S2 and Additional
file 4: Table S3). We then compared the TIV-responding
V genes identified by our FPCA based test to the fre-
quency of each V gene from our literature-curated dataset.
Specifically, since each patient is approximately independ-
ent, we used Fisher’s method to combine FPCA-based p
values across patients. This results in a single p value for
each gene, where significance is increased if a gene is
inferred to target TIV in multiple patients. Conversely,
significance is diminished if a gene is heterogeneous
across patients (Additional file 5: Table S4).
We found that these combined p values are correlated

with IGHV gene frequency in the literature-curated
dataset (Kendall’s Tau, B cell p = 3.115e-5, PBMC p =
2.502e-5). Moreover, we find that ~60 % of all Abs in
our literature-curated dataset were composed of V genes

that were inferred to be TIV-responding across all pa-
tients in our analysis (Fig. 4a). In particular, we find that
the genes IGHV1-69 and IGHV3-7, which have been
shown to consistently target influenza epitopes in several
independent studies [41, 54–58] have the second and
fourth lowest p values in the B cell data (Table 1), and first
and second lowest p values in the PBMC data (Additional
file 5: Table S4), respectively. One of the publications that
contributed to our literature-curated dataset used a com-
binatorial phage display library to select for influenza-
targeting Abs (Throsby et al. [54]). This is different from
the in vivo selection process that occurs in humans and
thus could introduce unknown bias in the Abs from this
study. We removed the data from this study and saw no
qualitative difference in the outcome (Additional file 3:
Figure S7). Together, these data show that: (1) the V genes
that we identify as TIV-responding with our pipeline are
consistent with previous findings in the literature; and (2)
that the patients from the Henn et al. dataset, as well as
those from several other studies, tend to use similar V
genes to target the influenza vaccine.
There are two reasonable explanations for this obser-

vation. The first is that some V genes have properties
that make them naturally better at targeting TIV than
others and are thus more likely to show a response
across patients. The second is that patients tend to have
similar V gene expression levels prior to vaccination,
such that the Abs that are selected to respond to TIV
tend to have similar V genes across patients simply due
to this prior baseline similarity. We argue that this latter
explanation has been underappreciated and thus merits
further scrutiny.
Suppose V gene expression levels are correlated across

patients, independent of any antigenic stimulus. If Ab
lineages were randomly selected to respond to an anti-
genic stimulus (the null expectation), then we would ex-
pect to see similar V genes responding to said antigenic

Table 1 Top ten TIV-responding heavy chain V genes

Gene name Lit Ab Freq. Combined Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

IGHV3-23 0.10345 1.08E-14 1.54E-05 4.55E-05 0.00529688 0.00010769 0.00015385

IGHV1-69 0.23707 5.04E-14 0.00043284 0.00290909 0.00028125 6.15E-05 1.54E-05

IGHV3-30 0.03879 7.19E-13 0.00153731 0.00154546 0.00025 0.00069231 1.54E-05

IGHV3-7 0.04310 1.15E-12 0.00020896 0.00792424 1.54E-05 0.00010769 0.00389231

IGHV4-61 0.00215 1.16E-12 0.00132836 7.58E-05 0.02834375 3.08E-05 0.00012308

IGHV4-31 0.00431 1.78E-12 0.00110448 0.00424242 0.0015625 3.08E-05 7.69E-05

IGHV3-48 0.01940 2.36E-12 0.00032836 0.00040909 0.0001875 0.00096923 0.00096923

IGHV4-59 0.15302 2.77E-12 0.00011940 0.00013636 0.01929688 4.62E-05 0.00195385

IGHV3-11 0.00431 3.14E-12 0.00037313 0.00074242 0.00025 0.00015385 0.00306154

IGHV3-30-3 0 4.71E-11 0.00219403 0.01130303 0.00153125 0.00115385 1.54E-05

Lists the top ten scoring IGHV genes in the FPCA-based test for the B cell data. “Lit. Ab Freq.” lists the frequency for each of the V genes in the literature-curated
dataset. “Combined” lists the p values for each of the V genes after using Fisher’s method to combine the p values from the FPCA-based test across all the
patients. Patient 1–5 lists the p values for each of the individual patients from the FPCA-based test. Genes are sorted by combined p value

Strauli and Hernandez Genome Medicine  (2016) 8:60 Page 12 of 18



stimulus across patients purely due to the underlying
correlation of V gene expression prior to inoculation.
We tested for correlations in V gene expression levels
prior to vaccination (day 0) and found that they are
highly correlated across patients (Additional file 3:
Figure S8). We therefore developed a statistical test
that will take into account the underlying similarity in
V gene expression prior to vaccination when deter-
mining if the patients in our data tend to use more
similar sets of V genes to respond to TIV than would
be expected by chance (see “Methods”). For each gene,
we find the number of patients in which the gene is
found to be significant by our FPCA test (referred to
as Sum of Gene Significances, or SGS, Additional file
6: Tables S5 and Additional file 7: Table S6). We then
compare the observed SGS distribution to a null. We
found that the observed SGS distribution was signifi-
cantly different than the null for IGKV from the
PBMC dataset (multinomial G-test, p = 0.005; Fig. 4b;
dashed green line vs. histogram) and we saw no evi-
dence for convergent gene usage for other classes of V
genes (Additional file 3: Figure S9). We then assessed
the possibility that this convergent signal was driven
by outlier genes that were deemed significant by the
FPCA-based test, but do not have expression trajectories
representative of a vaccine response (e.g. IGHV3-23 in pa-
tient 2, Fig. 3b). We performed a rather extensive outlier
removal analysis to address this, where we removed these
outliers in a variety of different ways (see Additional file 8:
Appendix for a detailed description). In short, our conver-
gent signal for IGKV was robust to all outlier removal
approaches.
Given the mixed evidence for a global convergent sig-

nal in V gene response to TIV, we investigated each V

Fig. 4 Identifying a convergent V gene usage signal across patients.
The x-axis for all plots is the sum of gene significances (SGS) statistic,
which is the number of patients for which a given Ab gene was
found to be significant. a Comparing our results for IGHV to the
literature. For each SGS bin, this shows the proportion of the Abs
in the literature-curated data that have V genes belonging to this
bin. Approximately 60 % of the influenza binding Abs in the
literature-curated dataset were composed of V genes that had an
SGS value of 5. b Comparing observed SGS to the null distribution. Blue
bars are a histogram showing the observed proportion of IGKV genes
from the PBMC data belonging to each SGS bin. Red dashed line shows
the “naïve” null distribution of SGS if each patient were independent
from one another (see “Methods”). The green dashed line shows the
null distribution of SGS if the baseline similarity in gene expression
at day 0 is taken into account. The p value in the legend shows
the result of using a multinomial G test to compare the observed
SGS distribution to that of the day 0 null. c Comparing the SGS
value for each IGKV gene from the PBMC data to that of their
respective null expectations. Color indicates the probability of the
observed SGS under the null model (p value, see “Methods” for
explanation of null model)

Strauli and Hernandez Genome Medicine  (2016) 8:60 Page 13 of 18



gene individually (i.e. we test whether a given V gene
was found to be TIV-responding in more patients than
expected by chance). Similar to our global V gene ana-
lysis, we used the gene frequencies at day 0 to construct
our null distribution (the null was solved in closed-form,
as opposed to simulating; see “Methods”). We found that
two V genes showed a significant convergent signal after
Bonferroni correction for multiple testing. These were
IGHV3-66 on the heavy chain and IGKV3-NL1 on the
kappa light chain, using the PBMC data (Additional file
9: Tables S7 and Additional file 10: Table S8). In general,
these significant V genes had a characteristic expression
level trajectory of low expression prior to vaccination,
and then increasing in expression post vaccination. This
character of trajectory made it unlikely that the V genes
would be selected to respond to the vaccine simply be-
cause they were abundant (or highly expressed) prior to
vaccination, yet their increase in expression level after
vaccination makes them likely candidates for responding
to the vaccine.
To our knowledge, neither IGHV3-66 or IGKV3-NL1

have been reported to have shown a convergent re-
sponse to TIV before and are absent from our literature-
curated dataset. Conversely, the V genes IGHV1-69 and
IGHV3-7—which have been reported in the past as
showing a convergent signal when targeting TIV—are
not significant in our test. This means that we cannot
reject the possibility that these genes were found to be
consistently targeting TIV simply due to their tendency
to be highly expressed prior to vaccination. While it is
possible that the reason for this initial high gene expres-
sion is because of prior convergences due to a similar
antigenic history, it is also possible that these V genes
are highly expressed independent of any antigenic history.
We cannot differentiate between these two possibilities, so
this baseline correlation must be corrected for.
Together, the results from our tests for a convergent

signal in V gene usage show that some patients tend to
use similar sets of V genes for particular gene classes
and that a couple of these V genes stand out. While only
a subset of our tests yielded a significant convergent sig-
nal, we found it notable that there was any convergent
signal at all, given the strong baseline correlations across
patients prior to vaccination.

Testing for a convergent CDR3 response
We hypothesized that if the patients within this dataset
are capable of using similar sets of V genes to target the
same vaccine, then they may use similar sets of CDR3
sequences to target TIV as well. To answer this, we
began by again using the FPCA-based test on our CDR3
expression data to identify the putative TIV-responding
CDR3 sequences. We were then left with a list of CDR3
sequences for each patient that appear to be responding

to TIV. Our task was then to determine if these lists
of TIV-responding CDR3s were more similar between
patients than would be expected by chance (see
“Methods”). We found that patients 1 and 4 seem to
have converged on similar CDR3 sequences to target
TIV, whereas patients 2 and 3, and patients 1 and 3
seem to have diverged (Fig. 5 and Additional file 3:
Figure S10).

Power calculations
In order to assess statistical power for our SGS based
tests for convergence, we calculated power over a range
of parameter values for both our global gene usage con-
vergence test as well as our individual gene convergence
test. See “Methods” for a detailed description of how this
was done
To calculate power for our global gene usage test, we

designed simulations where we can simulate a given
number of truly convergent genes, as well as simulate
additional patients. From this, we were able to deter-
mine how many truly convergent genes and how many

Fig. 5 Testing for convergent CDR3 sequences across patients. Black
points indicate the observed mean genetic distance between each
pair of patients for the TIV-responding CDR3 sequences in the B cell
data. Violin plots show the null distribution of mean pairwise distance
values for each patient comparison (see “Methods” for how the null
distribution was created). A point below the null distribution indicates
convergent TIV-responding CDR3 sequences and above indicates
divergent TIV-responding CDR3 sequences. Patient comparisons are
sorted by observed mean pairwise genetic distance and distributions
are colored by their empirical p value. P1 vs. P4 p value = 0.001
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patients are necessary to give sufficient power to differ-
entiate from the null distribution. For example, one can
imagine that if there were only five V genes that were
truly convergent, then it might be difficult for the
resulting distribution of SGS values to be statistically
different from the null. However, if there were 50 pa-
tients in the dataset, then it would be unlikely for all 50
of these patients to “choose” the five convergent genes
by chance and would allow for a statistical difference
from the null. We ran these power simulations over a
range of “number of patients,” and “number of conver-
gent genes” parameter values (Additional file 3: Figure
S11A). We found that in order to have strong power to
reject the null, if there are five patients (as in our ob-
served data), there must be greater than nine conver-
gent genes.
We also calculated power for our individual gene

convergence test over a range of parameter values.
Here, the parameters that we varied were “number of
patients” and “starting gene frequency” (frequency at
day 0). In this case, if a gene were highly expressed at
day 0 then it would be difficult for this gene to be sta-
tistically different from the null hypothesis, as it might
be relatively easy for many patients to “choose” this
gene to respond to TIV by chance. However, if there
were 100 patients in the study, then it may be unlikely
for this gene to be selected in all patients. We found
that if there are five patients in the study, a gene must
have a day 0 frequency lower than 0.06 in each of the
patients in order to reliably reject the null hypothesis
(Additional file 3: Figure S11B).

Discussion
We have mined and characterized the global AbR re-
sponse to TIV in five individuals from RNA-seq data.
We find that individuals exhibit a heterogeneous re-
sponse to TIV. Some of the patients showed characteris-
tics of a monoclonal response, while others responded
with much more of a polyclonal character. Interestingly,
patient 1, who demonstrated characteristics of the most
dramatic monoclonal response, was also the oldest pa-
tient (Additional file 3: Table S1). This is in line with
previous work showing that older humans tend to have
larger clonal expansions in their AbRs [12]. While all the
individuals’ overall Ab expression increased markedly
post vaccination, the timing and amplitude of this spike
was variable. It is important to note that the patient with
arguably the most dramatic Ab response to TIV also had
a relatively early spike in overall Ab expression, which
had almost completely subsided by day 7. This is the
time-point that immunologists typically collect samples
for vaccine response studies (see Galson et al. [2] and
Table 1 for examples) and in this individual’s case the
dramatic signal would have been all but lost if the

traditional study design of pre- and post-vaccination
time-points were used. This is consistent with the find-
ings of Henn et al. [30] and further exemplifies the util-
ity of study designs that emphasize dense, longitudinal
sampling rather than cross-sectional sampling, as much
of the signal would have been missed were there
sparser sampling in the time-course. Further, as one de-
creases the number of time-points, it may become in-
creasingly difficult to distinguish the signal from the
noise, which would decrease the power to identify the
elements responding to the stimulus.
While targeted sequencing of the Ab locus is unargu-

ably the best way to illustrate the AbR, we, and others
[35–37], have shown that a relatively simple bioinfor-
matic pipeline can be implemented to characterize the
AbR from RNA-seq data. This will hopefully provide in-
vestigators with the ability to leverage their RNA-seq
data even further. Sequencing costs continue to plum-
met each year, however they still remain prohibitive for
performing both targeted sequencing and RNA-seq for
the average project budget. If one were interested in
overall, population level statistics of the AbR, such as
abundance or diversity, or if one were interested in
finding/observing the Abs that are highly expressed in
the AbR, we would argue that RNA-seq data are more
than sufficient for these purposes. However, if one were
interested in identifying rare Abs in the population, or
needed full Ab sequences, then targeted sequencing of
the Ab locus would be advised. In addition to prohibi-
tive sequencing costs, targeted, deep-sequencing of the
AbR remains a highly skilled method that involves a
great deal of optimization, whereas RNA-seq has well
vetted and broadly used protocols. In short, we hope
that our method opens up the field of AbR analysis to a
broader array of researchers.
The unique, densely sampled time-series dataset from

Henn et al. [30] provided us with the ability to use func-
tional data analysis methods to statistically identify puta-
tive TIV-responding V genes. We found V genes that
were commonly TIV-responding across all patients in
our dataset and that these commonly used V genes were
also prevalent in influenza targeting Abs collected from
the literature. This finding suggests that we have identi-
fied V genes that indeed function to target TIV. This
also raises the intriguing possibility that some V genes
are inherently better than others at targeting TIV, as in-
dependent patients seem to be selecting the same V
genes to respond to the vaccine. If this were true, it
would have interesting implications for the natural de-
sign and function of the diversity of genes in the AbR.
For example, it could imply that instead of the different
V genes providing the basis for an otherwise random ex-
ploration of sequence space when optimizing Abs, they
could perhaps have evolved as “specialists” for particular
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classes of antigens, such that when an Ab is comprised
of a particular V gene it is pushed in a particular direc-
tion of antigenic space.
As interesting as a convergent signal may be, one must

exercise great caution when searching for one. If correla-
tions between individuals exist prior to the selection
event, then these correlations must be controlled for in
any convergence test. For example, consider a V gene
that is highly expressed in many individuals prior to vac-
cination and imagine that this V gene was found to be
TIV-responding in many patients. As we have pointed
out, one does not know if the reason that this V gene
was found to be TIV-responding across patients is be-
cause it actually has a greater propensity to target TIV
than other V genes or because it was selected randomly
due to its high prevalence in the individuals. It is cer-
tainly possible that the highly expressed V genes have a
greater propensity to target TIV. Indeed, it is possible
that the reason they are highly expressed is because of
prior vaccinations/antigenic exposure. However, we
argue that it is equally possible that some Ab genes have
a high endogenous expression level independent of any
antigenic stimulus. Because of this, we do not have the
statistical ability to de-convolute these two possibilities.
Increasing the number of patients in these types of
studies would help ameliorate this problem. However,
as we show with our power calculations, one experi-
ences diminishing returns in statistical power with add-
ing patients to the study (Additional file 3: Figure S11).
Alternatively, a synthetic AbR could be created that has
a relatively even distribution of Ab elements and tested
for activity against TIV (or other antigens as well).
Despite the strong correlations across patients in V gene

expression levels prior to vaccination, we found statisti-
cally significant convergent signals in a subset of our tests.
We observed global convergence for the IGKV genes, as
well as convergence in the individual V genes, IGHV3-66
and IGKV3-NL1. As Dunand and Wilson [38] point out
in their review, the V genes IGHV1-69 and IGHV3-7 have
been implicated in convergent signals in a huge variety of
contexts, including chronic lymphocytic leukemia [59, 60],
Sjögren’s syndrome [61], and influenza [41, 55–58, 62–64]
(for both IGHV1-69, and IGHV3-7), as well as human
immunodeficiency virus [65–67] and hepatitus C virus
[68] (for IGHV1-69 alone). Given that these genes were
not significant in our convergence tests, and given the
vast array of disparate antigens that these genes have
been shown to “converge” towards, it seems that per-
haps the simpler explanation may in fact be that these
genes have high endogenous expression independent of
any antigenic stimulus and are simply found to consist-
ently respond to a diverse array of antigens by chance.
This is a hypothesis that we feel deserves further scru-
tiny in future studies.

Our method for testing for a convergent signal in the
AbR could be easily extendable to other systems. For ex-
ample, this approach could be applied to meta-genomic
microbiome data in order to identify taxa that are con-
sistently responding to some stimulus. It could also be
applied to infections in order to see which sequence
characteristics of a given pathogenic population are con-
sistently responding to (or resisting) a drug.

Conclusions
We have shown that AbR information can be harvested
from RNA-seq data, that a densely sampled time-series can
be used to identify the Ab elements that are responding to
a stimulus, and that patients tend to use similar Ab ele-
ments to target the same vaccine, albeit in certain cases.
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