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Abstract

Background: The heat shock transcriptional response is essential to effective cellular function under stress. This is a
highly heritable trait but the nature and extent of inter-individual variation in heat shock response remains
unresolved.

Methods: We determined global transcription profiles of the heat shock response for a panel of lymphoblastoid
cell lines established from 60 founder individuals in the Yoruba HapMap population. We explore the observed
differentially expressed gene sets following heat shock, establishing functional annotations, underlying networks
and nodal genes involving heat shock factor 1 recruitment. We define a multivariate phenotype for the global
transcriptional response to heat shock using partial least squares regression and map this quantitative trait to
associated genetic variation in search of the major genomic modulators.

Results: A comprehensive dataset of differentially expressed genes following heat shock in humans is presented.
We identify nodal genes downstream of heat shock factor 1 in this gene set, notably involving ubiquitin C and
small ubiquitin-like modifiers together with transcription factors. We dissect a multivariate phenotype for the global
heat shock response which reveals distinct clustering of individuals in terms of variance of the heat shock response
and involves differential expression of genes involved in DNA replication and cell division in some individuals. We
find evidence of genetic associations for this multivariate response phenotype that involves trans effects
modulating expression of genes following heat shock, including HSF1 and UBQLN1.

Conclusion: This study defines gene expression following heat shock for a cohort of individuals, establishing
insights into the biology of the heat shock response and hypotheses for how variation in this may be modulated
by underlying genetic diversity.

Abbreviations: ChIP-seq, Chromatin immunoprecipitation analysed by high throughput sequencing; EBV, Epstein-Barr
virus; eQTL, Expression quantitative trait locus; eSNP, Expression-associated SNP; FC, Fold change; FDR, False discovery
rate; GO, Gene ontology; GWAS, Genome-wide association study; HSE, Heat shock element; HSF1, Heat shock
factor 1; HSF2, Heat shock factor 2; IPA, Ingenuity Pathway Analysis; LD, Linkage disequilibrium; PLS, Partial least
squares; QC, Quality control; QTL, Quantitative trait locus; SNP, Simple nucleotide polymorphism; YRI, Yoruba from
Ibadan, Nigeria
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Background
The heat shock response is a highly conserved mechanism
found across organisms that ensures effective mainten-
ance of cellular function under stress. Transcriptional acti-
vation involving heat shock proteins (HSPs) was found to
underpin the seminal observation of expanded chromo-
somal puffs in Drosophila salivary glands following expos-
ure to heat [1], with subsequent studies in different
species highlighting not only changes in expression of
genes encoding these essential molecular chaperones but
also their regulators, proteins involved in proteolysis, tran-
scription factors and kinases, membrane transport, main-
tenance of cellular structures, metabolism and nucleic
acid repair [2–9]. As well as significant upregulation of
gene expression, involving rapid induction of HSP gene
transcription by activated heat shock factors (HSF) bind-
ing to promoter heat shock elements (HSEs), the coordi-
nated stress response is also recognised to involve
downregulation of a greater number of genes. However, to
date inter-individual variation in the heat shock response
at the level of transcription in humans remains largely un-
known, with studies defining the global transcriptome
based on specific cell lines or cells/tissue from particular
individuals [8, 9]. Further delineation of the nature and
variability in this response is important given the role of
HSPs in ensuring effective intracellular protein folding
during stress, protecting cells from denaturation, aggrega-
tion and apoptosis [4]. This is underlined by evidence link-
ing HSPs with ageing and cancer, as well as the response
to infection and immunity [10–13].
Genetic modulators of gene expression are important

determinants of inter-individual variation in diverse phe-
notypes and may only operate in specific cell types or
after particular environmental exposures [14, 15]. Map-
ping gene expression as a quantitative trait to identify
regulatory genetic variants has informed recent genome-
wide association studies (GWAS) of disease as well as
pathophysiology including the immune response to
endotoxin [16], sepsis [17], T-cell activation [18] or viral
infection [19, 20]. Expression of heat shock proteins is
highly heritable and has been mapped as a quantitative
trait in diverse organisms including Drosophila melano-
gaster [21–23], Caenorhabditis elegans [24] and the
Artic charr [25]. In resting (non-heat shocked) human
Epstein-Barr virus (EBV)-immortalised lymphoblastoid
cell lines (LCLs), expression of heat shock protein and
molecular chaperone genes shows high heritability on
eQTL mapping, with response to unfolded proteins
having the highest heritability of any biological process
on gene ontology (GO) analysis (H2 0.38) [26]. A previ-
ous QTL analysis of heat shock phenotypes in human
cells was restricted to the Hsp70 genes in the MHC
class II region and demonstrated a local eQTL for
HSPA1B [27].

Here we report the genome-wide changes to gene ex-
pression induced by heat shock in HapMap cell lines
from Yoruba (YRI) individuals and perform analysis to
identify genes and pathways involved in the human heat
shock response. To further elucidate underlying mecha-
nisms, we present an analysis of genetic variants modu-
lating the global heat shock transcriptional response.

Methods
Cell culture and heat shock
The 60 founder YRI HapMap cell lines (Coriell) [28]
were cultured. These anonymised cell lines were estab-
lished by the International HapMap Project and made
available for use by the scientific research community
[29]. LCLs were maintained in RPMI 1640 medium sup-
plemented with 10 % fetal calf serum and 2 mM L-glu-
tamine at 37 °C in 5 % humidified CO2. Growth rates
were determined after 72 h in culture for each cell line
to ensure the cells were at comparable densities and
total numbers when harvested. Trypan blue staining was
used to define cell viability. Cells were subject to heat
shock at 42 °C for 1 h and then allowed to recover for
6 h in a 37 °C, 5 % CO2 incubator. 2 × 107 cells were
harvested for each of the two paired experimental condi-
tions (i.e. heat shock stimulated and basal un-stimulated
culture conditions) per individual cell line and stored in
RLT buffer with β-mercaptoethanol at −80 °C. Total
RNA was purified using QIAGEN RNeasy Mini purifica-
tion kit following manufacturer’s instructions, including
on-column DNase digestion.

Gene expression pre-processing and quality control
Genome-wide gene expression analysis was carried out
using the Illumina Human-HT-12 v3 Expression Bead-
Chip gene expression platform comprising 48,804
probes. Probe intensities for resting and stimulated cells
were imported into R for further processing together
with associated metadata. Annotations for all probes
were obtained via the illuminaHumanv3.db Bioconduc-
tor package [30]. Only probes considered to be of perfect
or good quality according to these annotations were
taken forward for analysis. Additionally, all probes map-
ping to more than one genomic location or to a location
that contains a known single nucleotide polymorphism
(SNP) were excluded. Probes were required to exhibit
significant signal (detection p value <0.01) in at least ten
samples and samples with less than 30 % of the
remaining probes providing significant signal were ex-
cluded (together with the paired sample from the same
cell line). Samples showing exceptionally low variation in
probe intensities (standard deviation of the log inten-
sities of all retained probes below 0.8) were also re-
moved. After filtering 12,416 of 48,803 probes (25.4 %)
remained.
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Normalising gene expression estimates
Probe intensities were normalised with VSN [31] and
outlier samples removed. The remaining 43 samples
were normalised separately for each BeadChip and dif-
ferences between groups corrected with ComBat [32],
preserving differences due to heat shock stimulation
(Additional file 1: Figure S1).

Differential expression analysis
Following quality control (QC), samples were analysed
for differences in gene expression levels between the
basal and stimulated states, i.e. pairing samples from the
same individual, using the limma Bioconductor package
[33]. Individual probes were associated with correspond-
ing genes by comparing probe positions as provided by
the illuminaHumanv3.db Bioconductor package [30]
with transcript coordinates obtained via the TxDb.Hsa-
piens.UCSC.hg19.knownGene Bioconductor package
[34]. One of the genes (N4BP2L2) had two probes with
opposite effects in terms of differential expression and
these probes were excluded from further analysis. For all
other genes with multiple differentially expressed probes,
the direction of the effect was consistent between
probes.

GO enrichment and pathway analysis
GO enrichment analysis was carried out using the
Bioconductor package topGO [35]. Fisher’s exact test was
used to determine enrichment separately for significantly
upregulated and downregulated genes (false discovery rate
(FDR) <0.01 and >1.2 fold change (FC)). Biological path-
ways, function enrichment and prediction of upstream
regulators were generated for these genes using Qiagen’s
Ingenuity Pathway Analysis (IPA) (www.qiagen.com/in
genuity, QIAGEN Redwood City). For the shortest path
analysis, we used the path explorer tool. Here, if two mol-
ecules do not have specific direct connections in the In-
genuity Knowledge Base, this tool will define how many
and which molecules can be added to the pathway to cre-
ate the shortest path between them.

Gene functional annotations with heat shock
We investigated which differentially expressed genes we
identified had been previously associated with the heat
shock or, more generally, stress response. We used the
set of genes previously linked directly to heat shock [4]
and from this created an extended set based on GO
terms and PubMed articles linking differentially
expressed genes to heat shock response and closely re-
lated processes. As a first step in highlighting genes not
previously known to play a role in this context, we iden-
tified all significantly upregulated genes that lack GO an-
notations of obvious relevance to heat shock response.
In addition to terms related to stress response and

protein folding, we also explored an extended set that
included terms related to cell death and proliferation.
To account for the presence of EBV in these cell lines,
we excluded all genes annotated with terms related to
viral infections. Finally, any remaining genes related to
regulation of gene expression were considered to be
likely to be explained by the large-scale changes in gene
expression that are taking place in response to heat
shock and also included in the extended set. All genes
not annotated with obvious GO terms were subjected to
a PubMed search to find publications that link the gene
to heat shock or stress response.

Heat shock factor binding
Using binding sites derived from ChIP-seq data obtained
from the K562 immortalised leukaemic cell line [36], we
annotated our list of differentially expressed genes by
cross-referencing it with the list of HSF-binding genes.
Groups of genes corresponding to upregulated or down-
regulated genes as well as those with existing heat
shock-related annotations and those without were tested
for enrichment of HSF-binding genes using Fisher’s
exact test. In addition to the direct evidence from the
ChIP-seq data, we carried out a scan for the presence of
HSF-binding motifs in the promoter region (1200 bp up-
stream–300 bp downstream of the transcriptional start
site (TSS)) of differentially expressed genes. The scan
was based on the position weight matrices (PWM) de-
fined by SwissRegulon [37] and carried out with the
Bioconductor package PWMEnrich [38].

Multivariate global heat shock response phenotype
The global heat shock response was summarised using
partial least squares (PLS) regression (generated as de-
tailed in ‘Results’). Using the first two PLS components
with respect to the treatment, i.e. the two components
of the gene expression space that maximise the variation
between basal and stimulated samples, we defined the
response for each individual as the combination of the
vector between the basal and stimulated sample for
this individual in the space spanned by the first two
PLS components and the location of the basal sample
in the same space. Hierarchical cluster analysis was
used to investigate grouping of individuals following
heat shock and differential gene expression between
clusters analysed.

Genotype QC
Genotype data provided by the HapMap project [39]
were processed with Plink [40] to restrict the data to au-
tosomes and remove SNPs with low genotyping rate and
those with a minor allele frequency of less than 10 % in
our sample set. This resulted in the exclusion of 794,511
of 2,582,999 SNPs (30.76 %). Estimation of the
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proportion of identity by descent for all sample pairs
demonstrated three pairs showing evidence of higher
than expected relatedness (Additional file 2: Figure S2)
which was supported by IBS nearest neighbour calcula-
tion. As a result, samples NA18913, NA19192, NA18862
and NA19092 were excluded.

Genotypic association with gene expression
The multivariate global heat shock response phenotype
was tested for association with SNPs within a 10 kb win-
dow either side of the probe location using the MultiPhen
R package [41], 10 kb selected as informative for including
functional elements interacting with a gene [42, 43]. All
differentially expressed probes and all probes involving
predicted upstream regulator genes were analysed but
only genotyped SNPs that passed QC were considered.
The GRCh37 coordinates for SNPs were obtained via the
SNPlocs.Hsapiens.dbSNP142.GRCh37 Bioconductor pack-
age [44] and gene coordinates via the TxDb.Hsapiens.
UCSC.hg19.knownGene package [34]. The significance of
the observed associations was assessed through a permu-
tation test to account for the structure inherent to the
data. To this end the observed global response phenotype
for each individual and covariates used in the model were
randomly assigned to one of the observed set of genotypes
1000 times and p values for the joint model were com-
puted for each permutation. From these we computed
FDRs by comparing observed p values to the empirical
distribution of minimum p values from each permutation.
We tested for associations between genotype and heat
shock response (log2 FC) for individual genes using a lin-
ear model as implemented in Matrix-eQTL [45], correct-
ing for sex as well as the first two principal components of
the treatment response to capture confounding variation,
an approach which enhances eQTL mapping [46–48].

Results
Transcriptomic response to heat shock
We aimed to establish the nature and extent of inter-
individual variation in the genome-wide transcriptomic
response to heat shock for a panel of LCLs established
from unrelated individuals of African ancestry for whom
high-resolution genotyping data are available (Inter-
national HapMap Project, YRI population) [28]. We cul-
tured the LCLs and exposed cells to heat shock at 42 °C
for 1 h and harvested after recovery at 37 °C for 6 h. We
then quantified genome-wide gene expression using
Human-HT-12 v3 Expression BeadChips (Illumina). Fol-
lowing QC and processing, paired expression data (baseline
and following heat shock) were available for 12,416 probes
on 43 individual cell lines.
We found that 500 probes (4 % of all analysed probes,

corresponding to 465 genes) were differentially expressed
(FDR <0.01 and >1.2 FC) with 249 probes (226 genes)

upregulated and 251 probes (238 genes) downregulated
(Fig. 1, Table 1, Additional file 3: Table S1). The majority
of the most significantly differentially expressed probes
were upregulated, including 18 of the top 20 genes, of
which nine encoded known heat shock proteins. The most
significant difference in expression was seen for HSPA1B
(22.2 FC, FDR 1.4 × 10−48).
To further investigate the patterns of transcriptional

response, we carried out a GO enrichment analysis for
differentially expressed genes (>1.2 FC, FDR <0.01). This
demonstrated significant enrichment among upregulated
genes (seven categories with an FDR <0.05 on Fisher’s
exact test) but no significant enrichment for downregu-
lated genes (Table 2, Additional file 3: Tables S2 and S3).
Considering the top categories, we found that genes up-
regulated following heat shock were predominantly re-
lated to the response to heat (including GO:0009408) and
to unfolded protein (GO:0006986), together with negative
regulation of inclusion body assembly (GO:0090084),
endoplasmic reticulum stress (GO:1903573) and cell death
(GO:0060548).
We then performed pathway analysis of differentially

expressed genes. Using IPA we found that the most sig-
nificantly enriched canonical pathway among upregu-
lated and downregulated genes (>1.2 FC, FDR <0.01)
was the unfolded protein response (p value 6.8 × 10−8).
We also found that heat shock factor 1 (HSF1) was the
most significant upstream regulator (p value 2.5 × 10−13).
Further investigation established that 81 % of observed
differentially expressed genes were linked to HSF1 dir-
ectly or through one additional molecule based on short-
est path analysis using the Ingenuity Knowledge Base
(Additional file 4: Figure S3). In addition to networks
involving heat shock protein genes, this analysis
highlighted the role of ubiquitination (UBC) and sumoy-
lation (SUMO2, SUMO3) as well as transcription factors
(including NFkB, JUN, ATF2, CEBP) and cytokines (IL6
and TNF) in the observed heat shock response at the
transcriptional level (Additional file 4: Figure S3). In
terms of biological functions, we resolved using IPA that
cell death (p value 2.2 × 10−8), cell proliferation (p value
3.6 × 10−8), apoptosis (p value 8.2 × 10−8), cell cycle (p value
2.6 × 10−7) and gene expression (p value 6.6 × 10−7) were
most significantly enriched. Upregulated and downregu-
lated genes were found to cluster in a number of highly
enriched networks constructed from the Ingenuity Know-
ledge Base (Additional file 3: Table S4).

Heat shock factor recruitment
Of the 226 significantly upregulated genes following heat
shock, 24 genes have been previously directly linked to
the heat shock response. We found that there was sig-
nificant enrichment for genes associated with GO terms
that clearly relate to heat shock response with 98 genes
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annotated with such terms (p value 2.3 × 10−10, Fisher’s
exact test) and 21 otherwise linked to the heat shock re-
sponse as revealed by a text mining strategy (detailed in
‘Methods’). Additionally, 30 genes were annotated with
other relevant processes. This leaves 53 genes with no
obvious previous association to heat shock.
To further establish links between differentially expressed

genes and heat shock response, we considered the evidence
for binding of HSF1 and HSF2 in the promoter regions
of upregulated genes using ChIP-seq data obtained for
K562 cells following heat shock [36]. Overall there was
significant enrichment of HSF1 (51 genes, p 4.7 × 10−10

on Fisher’s exact test, odds ratio (OR) 3.0), HSF2 (55
genes, p 9.4 × 10−9, OR 2.6) and binding of both HSF1
and HSF2 (46 genes, p 9.1 × 10−15, OR 4.5) among up-
regulated genes following heat shock. Of the nine
upregulated genes following heat shock without an
established role where we find evidence of HSF binding

on ChIP-seq (Additional file 3: Table S5), four have
HSF-binding motifs in the promoter region (Additional
file 3: Table S6).

Variation in the global heat shock response
To assess the global difference in gene expression in-
duced by heat shock, we carried out PLS, using the
treatment state (basal or following heat shock) as a bin-
ary response variable and all gene expression probes that
passed QC as explanatory variables (12,416 probes tar-
geting 10,214 genes). PLS has been previously used to
identify differentially expressed genes [49] and coordi-
nated expression profiles [50] including global response
phenotypes [51]. The supervised PLS approach identifies
variance components that differentiate treatment groups.
This contrasts with principal component analysis (PCA),
which considers overall variance irrespective of any
known groupings. The PLS analysis demonstrated that

(See figure on previous page.)
Fig. 1 Heat shock response in LCLs. a Volcano plot showing differentially expressed genes following heat shock (42 °C for 1 h with 6 h recovery)
in LCLs. Probes with an adjusted p value below 0.01 and a log FC of at least 0.5 are shown as yellow and red dots. Probes showing particularly
strong evidence of changes in gene expression through a combination of p value and FC are labelled with the corresponding gene symbol.
b Heatmap comparing gene expression for differentially expressed genes between basal and stimulated samples. Samples were clustered by
gene with heat shocked (red) and basal (blue) samples forming two distinct groups. Expression estimates for each gene were scaled and centred
across samples. Blue cells correspond to lower than average expression and red cells correspond to higher than average expression

Table 1 Top 20 differentially expressed genes following heat shock

Gene EntrezID logFC FC Average expression t p value Adjusted p value B

HSPA1B 3304 4.5 22.2 11.9 53.9 1.1E-52 1.4E-48 105.5

DNAJB1 3337 3.7 12.7 10.9 42.2 1.8E-46 1.1E-42 93.4

CLK1 1195 1.8 3.5 10.8 41.1 8.4E-46 3.5E-42 92.0

HSPA6 3310 4.2 18.3 9.4 29.9 7.8E-38 2.4E-34 75.2

HSPH1 10808 1.2 2.3 12.7 23.3 8.2E-32 2.0E-28 61.9

ZFAND2A 90637 1.9 3.8 9.5 23.2 9.8E-32 2.0E-28 61.8

TNFSF14 8740 1.4 2.7 9.4 23.0 1.4E-31 2.5E-28 61.4

HSPA6 3310 2.8 6.8 7.8 21.9 2.3E-30 3.6E-27 58.7

FXR1 8087 0.9 1.9 9.9 20.8 3.3E-29 4.5E-26 56.1

SERPINH1 871 1.9 3.7 8.7 20.4 8.6E-29 1.1E-25 55.2

TDG 6996 −0.9 0.5 10.7 −20.4 1.1E-28 1.2E-25 55.0

CCL3 6348 −1.3 0.4 11.4 −19.8 5.1E-28 5.2E-25 53.4

KIAA0907 22889 0.9 1.9 9.5 19.5 1.0E-27 9.9E-25 52.7

HSPA4L 22824 0.9 1.9 9.3 19.2 2.2E-27 2.0E-24 52.0

JUN 3725 1.2 2.3 9.2 19.0 3.5E-27 2.9E-24 51.5

CACYBP 27101 0.9 1.9 11.4 18.9 5.7E-27 4.2E-24 51.1

DNAJB4 11080 1.3 2.4 7.2 18.9 5.8E-27 4.2E-24 51.0

IER5 51278 1.4 2.6 10.5 18.1 4.3E-26 2.8E-23 49.1

LMAN2L 81562 0.8 1.7 8.4 18.1 4.9E-26 3.1E-23 48.9

BANP 54971 0.8 1.8 10.8 18.0 5.9E-26 3.47E-23 48.8

The most significant differentially expressed genes for a panel of LCLs exposed to heat shock (42 °C for 1 h, 6 h recovery) and assayed by microarray are shown
following limma analysis
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there is a considerable change in overall gene expression
in response to heat shock with the first two PLS compo-
nents together accounting for 96.1 % of the variation ob-
served and providing clear separation of the two
treatment groups (Fig. 2).
In addition to the pronounced shared response to heat

shock that is largely accounted for by the first compo-
nent, a further effect related to differences in the individ-
ual response is noticeable in the second component.
This manifests in a visually striking grouping of samples
into three clusters post treatment (Fig. 2). To further
characterise the difference between these clusters we
carried out a differential expression analysis between the
two clusters that differ most with respect to the second
PLS component. Using an FDR threshold of 0.01 and

requiring a FC of at least 1.2, this identified 1094 differ-
entially expressed probes (Additional file 3: Table S7). Of
these 681 are upregulated and 415 are downregulated in
cluster 2 compared to cluster 1 (Fig. 2).
To further investigate which biological processes

underlie the observed differences, we carried out a GO
analysis of genes exhibiting significantly increased ex-
pression in either cluster. GO categories enriched in the
set of genes upregulated in cluster 2 are largely similar
to those identified in the analysis of genes that show in-
creased expression in response to heat shock, including
response to unfolded protein (GO:0006986) and re-
sponse to topologically incorrect protein (GO:0035966)
(Additional file 3: Table S8). In contrast, genes with
higher expression in cluster 1 are enriched for GO

Table 2 GO categories enriched for upregulated and downregulated genes

GO ID Term Annotated
genes

Significant Expected Rank in
downregulated
genes

p value (FDR)
for upregulated
genes

p value (FDR) for
downregulated
genes

(A) Top GO categories enriched for upregulated genes

GO:0009408 Response to heat 70 13 1.51 2483 5.7 × 10−8 (2.3 × 10−4) 0.87 (1)

GO:0006986 Response to unfolded protein 97 15 2.09 2757 7.1 × 10−8 (2.7 × 10−4) 1 (1)

GO:0006457 Protein folding 133 17 2.87 1600 1.7 × 10−7 (6.4 × 10−4) 0.52 (1)

GO:0035966 Response to topologically incorrect
protein

106 15 2.29 2368 2.4 × 10−7 (9.4 × 10−4) 0.81 (1)

GO:0009266 Response to temperature stimulus 96 13 2.07 2257 2.5 × 10−6 (9.8 × 10−3) 0.76 (1)

GO:0042026 Protein refolding 11 5 0.24 2758 6.7 × 10−6 (0.028) 1 (1)

GO:0034605 Cellular response to heat 50 9 1.08 2759 8.6 × 10−6 (0.035) 1 (1)

GO:0043618 Regulation of transcription from
RNA polymerase II promoter in
response to stress

35 7 0.76 1907 4.3 × 10−5 (0.18) 0.63 (1)

GO:1900034 Regulation of cellular response to
heat

26 6 0.56 2760 6.6 × 10−5 (0.27) 1 (1)

GO:0043620 Regulation of DNA-templated
transcription in response to stress

39 7 0.84 2008 9 × 10−5 (0.37) 0.67 (1)

(B) Top GO categories enriched for down regulated genes

GO:0051225 Spindle assembly 37 6 0.82 1 1 (1) 5.4 × 10−4 (1)

GO:0043207 Response to external biotic stimulus 342 20 7.59 2 0.63 (1) 1.6 × 10−3 (1)

GO:0051707 Response to other organism 342 20 7.59 3 0.63 (1) 1.6 × 10−3 (1)

GO:0045931 Positive regulation of mitotic
cell cycle

64 7 1.42 4 1 (1) 2.1 × 10−3 (1)

GO:0007049 Cell cycle 1037 45 23.02 5 0.69 (1) 2.2 × 10−3 (1)

GO:0007143 Female meiotic division 10 3 0.22 6 1 (1) 2.3 × 10−3 (1)

GO:0009607 Response to biotic stimulus 355 20 7.88 7 0.54 (1) 2.6 × 10−3 (1)

GO:0032496 Response to lipopolysaccharide 128 10 2.84 8 0.49 (1) 3.3 × 10−3 (1)

GO:1903047 Mitotic cell cycle process 552 27 12.26 9 0.78 (1) 3.7 × 10−3 (1)

GO:0002237 Response to molecule of
bacterial origin

134 10 2.98 10 0.52 (1) 4.6 × 10−3 (1)

GO:0008219 Cell death 1022 43 22.69 11 4.3 × 10−3 (1) 4.9 × 10−3 (1)

The most significant GO categories for differentially expressed genes following heat shock in LCLs are shown. Numbers of significant and expected genes shown,
together with p values (Fisher’s exact test)
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Fig. 2 (See legend on next page.)
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annotations relating to DNA replication and cell division
including DNA recombination (GO:0006310) and DNA
replication (GO:0006260) (Additional file 3: Table S9).
To explore to what extent this response is modulated

by genetic variation, we used the length and direction of
the response vector, i.e. the vector between the basal and
stimulated sample for each individual in the space
spanned by the first two PLS components, together with
the location of the basal sample in the same space, as a
multivariate phenotype. This was then tested for associ-
ation with genotypes for SNPs within a 10-kb window of
differentially expressed genes following heat shock or
genes encoding predicted upstream regulators of differ-
entially expressed genes identified by IPA analysis. This
revealed two significant associations (Fig. 3). The first in-
volved rs10509407 (FDR 0.021), a promoter variant of
MINPP1 (encoding endoplasmic reticulum luminal en-
zyme multiple inositol polyphosphate phosphatase),
which was in complete linkage disequilibrium with three
further SNPs. The other association we identified in-
volved rs12207548 (FDR 0.064), a regulatory variant lo-
cated in a CTCF binding site 1.14 kb downstream of
CDKN1A. CDKN1A is an important regulator of cell
cycle progression. The SNP rs12207548 shows significant
variation in allele frequency between human populations
(Fig. 3) with an estimated FST of 0.142 (the FST providing
a summary of the genetic differentiation between these
populations).
To explore the observed association between heat

shock response and genotypes at these two loci, we pro-
ceeded to test for association with differential expression
(FC) following heat shock for individual genes with the
two identified variants. We found evidence that both
SNPs show trans association with differential induction
of UBQLN1 after heat shock (rs10509407 FDR 0.011,
beta 0.232; rs12207548 FDR 0.010, beta –0.238) (Fig. 3).
UBQLN1 encodes ubiquilin, which is involved in protein
degradation by linking the ubiquitination machinery to the
proteasome. We found that rs12207548 was also associ-
ated with a trans network involving differential expression
of six further genes: HSF1 (FDR 0.00075, beta –0.643);

TNFRSF8 (FDR 0.00075, beta –0.477); EPHB1 (FDR
0.00075, beta –0.532); SHC1 (FDR 0.0031, beta –0.456);
ZC3HAV1 (FDR 0.0036, beta –0.399) and ABCD3 (FDR
0.010, beta –0.279) (Fig. 3). Network analysis using IPA
highlights the relationship of these trans genes, either
directly or involving additional molecules, with CDKN1A
(Fig. 3).

Discussion
We have generated a comprehensive catalogue of differ-
ential gene transcription following heat shock for human
LCLs, significantly expanding the number of genes
recognised to be upregulated and downregulated by ex-
posure of cells to heat shock [4, 8, 9]. We have shown
how this relates to HSF1 and HSF2 recruitment and de-
termined several key nodal molecules in the observed
pattern of differential expression using a network ap-
proach. This includes a role for ubiquitin C and small
ubiquitin-like modifiers SUMO2/3 as well as heat shock
proteins, transcription factors (NFkB, CEBP, JUN) and
cytokines (TNF, IL6). Given that transcriptomic differ-
ences may not be reflected at a protein level [52], com-
plementary proteomic analysis such as used to define
stress-independent HSF1 activation in a ligand-mediated
cell line model system would be informative [53].
We have investigated variation in the global heat shock

response across individual LCLs, defining a multivariate
phenotype using PLS which revealed evidence of cluster-
ing with relative predominance of differential expression
of genes involved in DNA replication and cell division in
some individuals. We further investigated specific geno-
typic associations with the observed variation which re-
vealed associations with putative regulatory variants,
tagged by rs10509407 and rs12207548 located in/near
the genes MINPP1 and CDKN1A, key genes involved in
cell growth and survival. These SNPs show trans associ-
ation with differential expression following heat shock of
UBQLN1 (ubiquilin), an important mediator of degrad-
ation of proteins in the stress response [54] implicated
in Alzheimer’s disease [55], and a network of six further
genes including HSF1. However, we did not observe cis-

(See figure on previous page.)
Fig. 2 Variance in the global heat shock response. a Modelling of the genome-wide transcriptional response to heat-shock (component plot)
based on PLS to identify latent structures in the data for cohort of 43 LCLs. The x-axis represents the first PLS component which segregates basal
samples (left) and heat shocked samples (right). The y-axis represents the second PLS component which involves variation between cell lines in
basal and heat shock response states. Each cell line’s basal and heat shock samples are similarly coloured and paired samples are connected with
an arrow, which represents the vector used as quantitative trait in the genetic association test for genetic modulators of the global heat shock
response. The average response is indicated by a black arrow. Overall, samples separate clearly by treatment, showing a consistent global effect on
gene expression from heat shock. Heat shock stimulated samples show evidence of three distinct clusters (indicated by shaded ovals). b Unsupervised
hierarchical cluster analysis with heat shock stimulated samples showing evidence of three distinct clusters (indicated on panel A by shaded ovals).
Below the cluster dendrogram is a heatmap showing differential gene expression. Expression estimates for each gene were scaled and centred
across samples. Blue cells correspond to lower than average expression and red cells correspond to higher than average expression. c Volcano
plot of differential expression results between clusters 1 and 2. Probes with an adjusted p value below 0.01 and a log FC of at least 0.5 are
shown as yellow and red dots
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associations with expression of MINPP1 and CDKN1A
which leaves unresolved the cis-drivers of the observed
trans associations. This may require additional time
points of sampling to capture such cis-effects, as illus-
trated by our recent studies of trans-eQTL following
endotoxin induction [16].
Our results are necessarily exploratory given the mod-

est sample size of this study requiring further validation
and functional characterisation to establish mechanism.
If functionally validated, the geographic distribution of
the major and minor alleles of rs12207548 suggests se-
lection may be operating on such variants. We recognise
that there may be cell type-specific differences in heat
shock response not captured by our analysis in LCLs, in-
cluding differences in HSF binding from the K562 cell
line, and that there may also be population specific differ-
ences in terms of regulatory variants with the data pre-
sented here generated in cells from individuals of African
ancestry. We elected to follow a focused high-level ap-
proach in this paper as we are not adequately powered for
a systematic QTL analysis of all individual genes.
Our approach to analysing the global transcriptional

response to stimuli or treatment as a multivariate pheno-
type provides a single global phenotype for analysis, rather
than several thousands of gene-level phenotypes, which is
more robust to probe-level technical artefacts and reduces
the number of multiple comparisons as well as computa-
tional cost of eQTL analysis, especially for omics-scale
data. We suggest it is broadly applicable and relevant to
other phenotypes in which modulation by genetic vari-
ation may be sought. These are highlighted by recent work
that has demonstrated the context-specificity of regulatory
variants including different disease contexts through QTL
approaches in patient samples [15]. For the inflammatory
response, these can be complemented by analysis ex vivo
of specific phenotypes such as heat shock.

Conclusions
We have defined the global transcriptional response to
heat shock for a panel of human B lymphocyte cell
lines, establishing a comprehensive catalogue of differ-
entially expressed genes, pathways and networks of
broad utility to understand this highly conserved and
pathophysiologically significant response. We have also

explored the genetic basis for inter-individual variation
in the global response, highlighting putative regulatory
variants modulating ubiquilin and a further trans gene
network.

Additional files

Additional file 1: Figure S1. PCA plot of ComBat corrected gene
expression. PCA plot for gene expression in LCLs following heat shock
post microarray processing and QC with individual lines coloured by
BeadChIP. (PDF 166 kb)

Additional file 2: Figure S2. Dendrogram of individuals included in
study. Plot showing distances based on identity by state for LCLs from
HapMap (YRI) included in this study. Three pairs show clear indications of
increased relatedness. (PDF 131 kb)

Additional file 3: Table S1. Differentially expressed genes following
heat shock. Differentially expressed genes for a panel of 43 LCLs exposed
to heat shock (42 °C for 1 h, 6 h recovery) and assayed by microarray are
shown following limma analysis (FC >1.2, FDR <0.01). Table S2. GO
categories enriched for upregulated genes. GO categories for
differentially expressed genes upregulated following heat shock in LCLs
are shown. Numbers of significant and expected genes shown, together
with p values (Fisher’s exact test). Table S3. GO categories enriched for
downregulated genes. GO categories for differentially expressed genes
downregulated following heat shock in LCLs are shown. Numbers of
significant and expected genes shown, together with p values (Fisher’s
exact test). Table S4. Network analysis following heat shock. Networks
identified on IPA analysis of differentially expressed genes (FC >1.2, FDR
<0.01) following heat shock. Table S5. Genes with newly established
links to heat shock response. Genes listed together with FC and FDR
following heat shock, and p value for presence of the heat shock binding
motif. Table S6. Summary of HSF-binding evidence for the promoters of
novel and established heat shock response genes. Presence of ChIP-seq
peak for HSF1 or HSF2 and HSF1 motif indicated in relation to heat shock
genes. Table S7. Differential gene expression between PLS clusters. Differential
gene expression between samples assigned to PLS cluster 1 and 2 as assessed
by limma analysis is shown for all assayed probes. Table S8. GO categories
enriched for genes with increased expression in cluster 2. GO categories for
genes differentially expressed between PLS clusters. Categories enriched for
genes with increased expression in cluster 2 are shown. Numbers of significant
and expected genes shown, together with p values (Fisher’s exact test).
Table S9. GO categories enriched for genes with increased expression in
cluster 1. GO categories for genes differentially expressed between PLS
clusters. Categories enriched for genes with increased expression in cluster
1 are shown. Numbers of significant and expected genes shown, together
with p values (Fisher’s exact test). (XLSX 4875 kb)

Additional file 4: Figure S3. Network analysis of HSF1 and relationship
with observed differentially expressed genes in heat shock response. We
constructed a network between HSF1 and observed differentially
expressed genes following heat shock (1.2 FC, FDR <0.01) in LCLs using
IPA, with lines denoting the shortest path between HSF1 and a particular
molecule or the shortest path plus one molecule. Radial layout with the
names of molecules showing multiple (nodal) relationships highlighted.
Other individual molecules also shown. (PDF 546 kb)

(See figure on previous page.)
Fig. 3 Genotypic association with global heat shock response. a Standardized coefficients and adjusted p values for the top associated SNPs. b, c
The distribution of p values after permutation of the global response phenotype is shown for rs10509407 (b) and rs12207548 (c). d, e Global
response to heat shock showing individual LCLs by genotype for rs10509407 (d) and rs12207548 (e). Each individual is represented by two points
corresponding to basal and stimulated state with arrows connecting paired samples. Genotypes are indicated by colour with blue corresponding
to homozygous carriers of the major allele and red indicating the presence of at least one copy of the minor allele. Coloured arrows show the
average response for each group. The overall average is indicated in black. f Ancestral Allele Frequencies for rs12207548 from Human Genome
Diversity Project in 53 populations. g Circos plot showing trans associations for rs12207548. h Box plots for expression of UBQLN1, HSF1, TNFRSF8,
EPHB1, SHC1, ZC3HAV1 and ABCD3 by allele for SNPs as indicated. i Pathway analysis using IPA showing links between trans associated genes for
rs12207548 and CDKN1A
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