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Abstract

Background: Klebsiella pneumoniae is a leading cause of bloodstream infection (BSI). Strains producing extended-
spectrum beta-lactamases (ESBLs) or carbapenemases are considered global priority pathogens for which new
treatment and prevention strategies are urgently required, due to severely limited therapeutic options. South and
Southeast Asia are major hubs for antimicrobial-resistant (AMR) K. pneumoniae and also for the characteristically
antimicrobial-sensitive, community-acquired “hypervirulent” strains. The emergence of hypervirulent AMR strains
and lack of data on exopolysaccharide diversity pose a challenge for K. pneumoniae BSI control strategies
worldwide.

Methods: We conducted a retrospective genomic epidemiology study of 365 BSI K. pneumoniae from seven major
healthcare facilities across South and Southeast Asia, extracting clinically relevant information (AMR, virulence, K and
O antigen loci) using Kleborate, a K. pneumoniae-specific genomic typing tool.

Results: K. pneumoniae BSI isolates were highly diverse, comprising 120 multi-locus sequence types (STs) and 63 K-
loci. ESBL and carbapenemase gene frequencies were 47% and 17%, respectively. The aerobactin synthesis locus
(iuc), associated with hypervirulence, was detected in 28% of isolates. Importantly, 7% of isolates harboured iuc plus
ESBL and/or carbapenemase genes. The latter represent genotypic AMR-virulence convergence, which is generally
considered a rare phenomenon but was particularly common among South Asian BSI (17%). Of greatest concern,
we identified seven novel plasmids carrying both iuc and AMR genes, raising the prospect of co-transfer of these
phenotypes among K. pneumoniae.

Conclusions: K. pneumoniae BSI in South and Southeast Asia are caused by different STs from those predominating
in other regions, and with higher frequency of acquired virulence determinants. K. pneumoniae carrying both iuc
and AMR genes were also detected at higher rates than have been reported elsewhere. The study demonstrates
how genomics-based surveillance—reporting full molecular profiles including STs, AMR, virulence and serotype
locus information—can help standardise comparisons between sites and identify regional differences in pathogen
populations.
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Background
Klebsiella pneumoniae is regarded globally by the World
Health Organization (WHO) as a priority antimicrobial-
resistant (AMR) pathogen requiring new control strategies
[1]. These include rapid identification and containment of
high-risk AMR clones such as the carbapenemase-
producing (CP) variants, augmented with vaccines, bacte-
riophages, or immunotherapies that target surface anti-
gens. However, K. pneumoniae is highly diverse, hindering
the development of such strategies and our ability to study
its molecular epidemiology in a relevant time-frame.
This diverse bacterial species is generally associated

with a range of differing community and healthcare-
associated infections, but can be particularly problematic
when the organisms gain access to sterile sites such as
the cerebrospinal fluid and the bloodstream. Such infec-
tions are often characterised by rapid onset and multi-
drug resistance (MDR), including resistance to third-
generation cephalosporins and/or carbapenems. Antimi-
crobials are the primary treatment strategy but options
can be severely limited by AMR, particularly for third-
generation cephalosporin- and carbapenem-resistant
strains causing invasive infections [2]. Concomitant with
this are elevated mortality rates and treatment costs [3].
K. pneumoniae is among the most common cause of

bloodstream infections (BSI) in South (S) and Southeast
(SE) Asia [4–6] where it is associated with a high mortality
rate [4, 7]. Available data suggest a heterogenous land-
scape in terms of drug resistance; for example, CP strains
are rare in SE Asia (< 1–4% [5, 8, 9]) but common in S
Asia (28–70% [10, 11]) and the prevalence of extended-
spectrum beta-lactamase (ESBL, confers resistance to the
third-generation cephalosporins) producing organisms
varies from 12 to 79% in these regions [4–6, 8, 10]. Studies
investigating ESBL and CP variants in S/SE Asia implicate
CTX-M-15 as the most common ESBL type [12, 13], while
NDM and OXA-48-like enzymes are the most commonly
described carbapenemases [11, 14–16]. However, there is
currently only limited information about the underlying
population structure of these organisms in terms of multi-
locus sequence types (STs), or genomically defined phylo-
genetic lineages.
Searching PubMed for reports of multi-locus sequence

typing (MLST) or whole-genome sequence analysis of K.
pneumoniae BSI (see “Methods” for search terms)
yielded just nine studies reporting ST information for
India, Nepal, Vietnam, Thailand, Laos, Cambodia and/or
Hong Kong (the foci of this work). The majority of these
(six of nine) were case reports or genome announce-
ments from India, while an additional study from India
described a screen of Enterobacteriaceae isolated from
neonatal sepsis, including 12 K. pneumoniae [17–24].
Together, these works from India report ST information
for a single ESBL-producing strain (ST2318) and 24 CP

strains; five each of ST231 and ST347; two each of
ST29, ST147, ST1224 and ST2558; and one each of
ST11, ST43 and ST101. Carbapenemase genes were re-
ported for 21 of the CP strains and included 11
blaNDM-1, 8 blaOXA-48-like, one each of blaNDM-7 and
blaKPC. A single report from Nepal described two neo-
natal sepsis outbreaks [7], the first caused by ST15 carry-
ing blaNDM-1 and blaCTX-M-15, and the second by
ST1559 carrying blaCTX-M-15 without any carbapene-
mases. The final report described K. pneumoniae BSI
isolates from Hong Kong that produced DHA enzymes
(resulting in third-generation cephalosporin resistance).
Among the genotyped isolates were four ST11, and one
each of ST17, ST23 and ST39 [25].
It is clear from these reports that several well-known

globally distributed CP/ESBL-associated STs are present
in S/SE Asia, e.g. STs 14, 15, 17, 29, 101, 147 and 231, a
proposition that is further supported by studies explor-
ing K. pneumoniae isolates from a broader range of clin-
ical specimen types [12, 13, 15, 26, 27]. However, there
remains a clear lack of systematic studies with which to
fully understand the CP, ESBL and broader population
genotypes of K. pneumoniae causing BSI in these
regions.
Capsule- or lipopolysaccharide- (LPS) targeted im-

munisation against K. pneumoniae has been proposed as
an alternative strategy for prevention or therapy of MDR
BSI. Hence, capsular serotype (K-type) and LPS (O-type)
profiles among BSI isolates are also of interest. More
than 130 capsular serotypes have been predicted on the
basis of genome data [28]. Among the studies identified
through the formal search described above, two did not
report K-types and three included only a limited assess-
ment, i.e. PCR screening for a small number of types
that are associated with enhanced virulence (K1 and K2
[17, 24], or K1, K2, K5, K20, K54 and K57 [23]). Among
the remaining three studies, two reported single K17
and K64 CP isolates in India [19, 20], while the Nepalese
outbreak study reported the KL14 capsule locus, encod-
ing capsule type K14 (ST1559) and a novel locus that
was later defined as KL112 (ST15) [7]. None of these
studies reported O-types. We searched PubMed for add-
itional studies reporting K- and O-types of K. pneumo-
niae BSI in our regions of interest (search terms in
“Methods”), revealing one additional report describing
47 isolates (including 28 BSI isolates) from a suspected
neonatal intensive care unit outbreak in Madras, India
[29]: Thirty-eight isolates were shown to be closely re-
lated by pulsed-field gel electrophoresis (MLST not re-
ported), all of which expressed the same novel K and O
serotype. Among the remaining nine unrelated isolates,
three K2:O1 were identified in addition to one each of
K23:O1, K54:O1, K62:O1, K62:O2, K-non-typeable:O1
and K2:O-novel.
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The capsule, alongside the LPS, type I and type III fim-
briae, and the enterobactin siderophore, are common to
all K. pneumoniae strains and are required for pathogen-
esis. A number of accessory virulence determinants (in-
cluding RmpA/RmpA2, which upregulate capsule
expression; the colibactin genotoxin; and the yersinia-
bactin, aerobactin and salmochelin siderophores that
promote systemic survival and dissemination [30–34])
are overrepresented among isolates causing invasive dis-
ease in human population studies [35–37]. Each has also
been shown to enhance virulence in murine infection
models through comparison of isogenic knockout mu-
tant strains [31–34]. K. pneumoniae expressing several
of these determinants are associated with severe
community-acquired invasive disease, often manifesting as
liver abscess. These are classified as “hypervirulent” infec-
tions; they occur globally but are most commonly reported
in SE Asia [38]. They are predominantly associated with
clones ST23, ST86 and ST65 [39, 40], which typically ex-
press the K1/K2 capsules. The dominance of a small num-
ber of clones combined with strong linkage between the
rmpA/A2, aerobactin and salmochelin synthesis loci (which
are co-located on virulence plasmids [41, 42]) has created
difficulties for understanding the relative importance of
these key virulence factors. However, recent studies impli-
cate aerobactin as the most important siderophore and a
key biomarker for hypervirulence alongside the peg-344
transporter gene (sometimes misannotated as pagO, in
strong genetic linkage with aerobactin due to being located
nearby on the same virulence plasmid) [37, 43, 44]. Notably,
despite its apparent relevance as a hypervirulence bio-
marker, peg-344 isogenic knockout mutants did not show
reduced virulence in either of two independent murine
models of hypervirulent disease [44, 45].
To date the majority of hypervirulent K. pneumoniae

have remained susceptible to antimicrobials [38, 46] (ex-
cept ampicillin). However, the last few years have seen
increasing reports of “convergent” K. pneumoniae that
are both hypervirulent (defined as strains carrying the
iuc aerobactin locus) and MDR ESBL/CP either due to
acquisition of an MDR plasmid by a hypervirulent strain
[47–51] or by acquisition of a virulence plasmid by an
MDR strain [49, 52–56]. The majority of these reports
represent sporadic isolations. However in 2017, it was
reported that an outbreak of ventilator-associated pneu-
monia in a Chinese hospital, resulting in five deaths, was
caused by a CP ST11 strain that had acquired a viru-
lence plasmid harbouring the iuc locus, plus rmpA2
(without the salmochelin locus (iro), rmpA or peg-344)
[52]. Notably, the outbreak strain showed enhanced viru-
lence in the Galleria mellonella infection model com-
pared to a wild-type ST11 lacking the virulence plasmid
and a plasmid cured variant [52], further supporting the
importance of the iuc locus. Subsequent retrospective

investigations revealed that similar CP ST11 iuc + strains
had already been silently spreading within China prior to
the initial report [52, 57].
Given the high burden of both MDR and hypervirulent

K. pneumoniae infections, S/SE Asia may represent a
hub for MDR-virulence convergence, with the potential
for outbreaks of severe disease with extremely limited
treatment options such as that reported in China [52].
However, so far no studies have provided a complete
molecular epidemiological picture (STs, serotypes, AMR
and hypervirulence determinants) of K. pneumoniae BSI
agents in S and SE Asia, leaving a gap in our knowledge
about the local pathogen population and the prevalence
and/or diversity of convergent strains. Here we present a
genomic epidemiology study of BSI K. pneumoniae from
seven major healthcare facilities across S/SE Asia, lever-
aging a recently established genomic framework that in-
corporates rapid genotyping of clinically important
features (ST, AMR, hypervirulence, and capsule and
lipopolysaccharide synthesis loci). The data are highly
relevant to the design of K. pneumoniae control strat-
egies, revealing a diverse population with high rates of
AMR and virulence loci, and high prevalence of conver-
gent strains.

Methods
Literature review
To identify studies reporting molecular data on K. pneu-
moniae BSI in our regions of interest, we searched
PubMed with no language restrictions for reports that
contained the terms “(Klebsiella)” and “((India*) OR
(Nepal*) OR (Viet*) OR (Hong Kong) OR (Cambodia)
OR (Lao*) OR (Thai*) OR (Asia))” and “(blood*) OR
(sepsis) OR (bacteraemia) OR (bacteremia)” and
“(MLST) OR (sequence type) OR (multi-locus sequence
typ*) OR (genom*)”. To check for other studies report-
ing K. pneumoniae serotypes in the region, we searched
for “(Klebsiella)” and “((India*) OR (Nepal*) OR (Viet*)
OR (Hong Kong) OR (Cambodia) OR (Lao*) OR (Thai*)
OR (Asia))” and “(blood*) OR (sepsis) OR (bacteraemia)
OR (bacteremia)” and “(serotyp*) OR (capsul*) OR (K-
type) OR (O-type) OR (LPS) OR (lipopolysaccharide)”.

Setting
The following tertiary care hospitals were included: Pa-
tan Hospital, Kathmandu, Nepal; Christian Medical Col-
lege Hospital, Vellore, India; Angkor Hospital for
Children, Siem Reap, Cambodia; Mahosot Hospital,
Vientiane, Lao PDR; The Hospital of Tropical Diseases,
Ho Chi Minh City, Vietnam; Prince of Wales Hospital,
Hong Kong. Isolates were also provided from healthcare
inpatient departments serviced by the Shoklo Malaria
Research Unit, Mae Sot, Thailand.
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Bacterial isolates and culture
K. pneumoniae isolates obtained from blood cultures de-
rived from hospital- and/or community-associated BSI,
following routine diagnostic protocols in each hospital
laboratory and identified using biochemical testing (typ-
ically API-20E, bioMerieux), were included in the study.
Isolates available for sequencing represented the follow-
ing fractions of K. pneumoniae BSI collected at each site
in participating years: India, 10%; Hong Kong, 17%;
Vietnam, 20%; other sites, > 90% (Fig. 1). All sequenced
isolates represent unique patient infection episodes.

DNA extractions, library preparation and sequencing
All isolates were cultured in LB broth at 37 °C overnight
before DNA extraction. Multiplexed Nextera XT librar-
ies were sequenced on Illumina platforms, generating
150 bp paired-end reads. Eight isolates were selected for
additional long-read sequencing using the Nanopore
MinION R9 device as previously described [58].

Genome assembly and genotyping
Illumina adapter sequences were removed and reads
were quality trimmed using TrimGalore v0·4·4 (https://

github.com/FelixKrueger/TrimGalore). Subsequently,
draft de novo assemblies were generated using SPAdes
v3·10·1 [59] optimised with Unicycler v0·4·7 [60]. We ex-
cluded from further analysis nine low-quality genome
assemblies outside the expected size range (5–6·5 Mbp).
Chromosomal MLST, virulence locus (ybt, iro, iuc,
rmpA, rmpA2), and acquired resistance genes (excluding
the core ampicillin resistance gene blaSHV and oqxAB ef-
flux genes) were typed using Kleborate v0·3·0 (https://
github.com/katholt/Kleborate). The peg-344 gene was
identified using BLASTn search of the genome assem-
blies (query sequence accession BAH65947.1, ≥ 90%
coverage and identity). Capsule (K) and lipopolysacchar-
ide (O) loci were identified using Kaptive [28, 61]. Note
that the KL1-KL77 loci are associated with the serologic-
ally defined capsule types K1-K77, respectively [62].
Serological types are yet to be resolved for the remaining
loci (KL101-KL161), which were defined previously on
the basis of gene content such that they are predicted to
encode distinct capsule types [28, 63]. Novel K-loci were
manually extracted using Bandage [64] and annotated
using Prokka v1.13.3 [65]. Where Kaptive was unable to
confidently identify a K-locus due to fragmented genome

Fig. 1 Klebsiella pneumoniae BSI isolates included in this study. a Collection sites and countries of origin for all Klebsiella pneumoniae complex
isolates for which genome data were available. b Years of collection coloured by country of origin as in panel a. c Chromosomal multi-locus
sequence types (STs) of Klebsiella pneumoniae sensu stricto isolates (only STs accounting for > 1% isolates are shown, coloured by country of
origin as in panel a)
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assemblies (n = 129), K-loci were predicted from wzi alleles
as described previously [66]. Wzi allelic typing was consid-
ered the gold-standard capsule genotyping method prior to
the introduction of full-locus-based typing. However, when
genome data are available, the latter approach is preferred
because the K-locus is subject to chromosomal recombina-
tions that can lead to a breakdown of associations between
individual wzi allelic variants and K-locus types [28]. As a
result, a single wzi allele may be associated with multiple
distinct K-loci. Such alleles were identified among 29 ge-
nomes in this study, resulting in ambiguous K-locus calls
that were excluded from further analyses. An additional 11
and one genomes harboured novel or missing wzi alleles,
respectively for which no K-locus predictions were possible.
Catpac [67] was used to calculate pairwise nucleotide

differences between genomes after reassembly with
SKESA v2.2.1 [68] (a highly conservative assembly ap-
proach, which reduces the likelihood of false-positive
nucleotide differences). These data were used to identify
clusters of isolates for which the genomes differed by ≤
100 and ≤ 25 single nucleotide variants (SNVs). Isolates
from the same facility and separated by ≤ 25 SNVs can
be considered putative nosocomial transmission clusters
[67, 69, 70]; distances ≤ 100 SNVs also imply descent
from a recent common ancestor, but are more consist-
ent with community or between-facility transmission, or
regional spread between countries [70].
Hybrid Illumina-Nanopore assemblies were generated

using Unicycler v0·4·7 as described previously [58]. As-
semblies were annotated using Prokka v1·13·3 and iuc +
plasmid annotations were manually curated before de-
positing in GenBank (accessions listed in Table 4). Plas-
mid replicon types were identified using the
PlasmidFinder database v2·0 [71]. Isolate information,
genotypes and genome data accessions are provided in
Additional file 1: Table S1. Genome assemblies, novel
plasmid and K-locus sequences are also available in Fig-
share [72]: https://doi.org/10.26180/5c67982956721.

Statistical analyses
Statistical analyses were performed in R v3·3·3 [73], and
data were visualised using ggplot2 v2·2·1 [74]. Given the
disparity in sampling frames and small subgroup sample
sizes, it was not appropriate to test trends at a country or
year level. Statistical tests for regional differences in genetic
features between K. pneumoniae populations (Table 1)
were calculated using the subset of K. pneumoniae collected
in overlapping 2-year periods: S Asia region (Nepal and
India; 2016–2017; n = 102) vs SE Asia region (Cambodia,
Laos, Thailand, Vietnam; 2015–2016, n = 100).

Results
The genomes of 393 presumptive K. pneumoniae BSI
from seven countries across S/SE Asia were sequenced

(Fig. 1a, Additional file 1: Table S1). Twenty-eight genomes
were identified as Enterobacteriaceae species outside of the
K. pneumoniae species complex and were excluded. Among
the remaining 365 isolates, the majority (n = 331, 91%) of
organisms were confirmed to be K. pneumoniae. Among
the regional comparator samples, these accounted for a
higher proportion of genomes from S than SE Asia (98% vs
87%, p = 0·011; Table 1). The remaining isolates
(Additional file 2: Table S2) were K. quasipneumoniae
subsp. similipneumoniae (n= 20, 5·5%), K. variicola (n = 9,
2·5%) and K. quasipneumoniae subsp. quasipneumoniae
(n= 5, 1·4%), which are indistinguishable from K. pneumo-
niae by microbiological methods [35, 67]. Unfortunately, we
did not have access to patient clinical data and hence were
not able to assess the likelihood that individual BSI cases
were hospital- or community-acquired, or to explore pa-
tient co-morbidities, which we expect to be quite diverse.
The 331 K. pneumoniae were highly diverse and com-

prised 120 individual STs (Simpson’s diversity index =
0·97), the majority (61%) of which were represented by a
single isolate. Nevertheless, we observed four common
STs that each accounted for > 5% of the sequenced or-
ganisms: ST15 (n = 37, 11%), ST23 (n = 28, 8·5%), ST14
(n = 22, 6·6%) and ST231 (n = 17, 5·1%; Fig. 1c). Among
these, only ST15 was common across all sites, whereas
ST23 was significantly associated with SE Asia (p =
0·015) and ST14 and ST231 were both significantly asso-
ciated with S Asia (p < 0·01; Table 1).

Predicted capsular (K) and O antigen serotypes
In this collection of invasive K. pneumoniae from BSI, we
detected 63 different K-loci including four novel loci desig-
nated KL162–165 (GenBank accessions: MK593451-
MK593454, Simpson’s diversity index = 0·95), the majority
(67%) of these K-loci were found in ≤ 3K. pneumoniae iso-
lates each (Additional file 2: Table S3). The most common
K-loci were KL1 (n = 31; including 28 ST23), KL2 (n = 27;
numerous STs including ST14, ST25, ST65 and ST86),
KL51 (n = 23; including 17 ST231) and KL24 (n = 20; in-
cluding 17 ST15), together accounting for 28% of K. pneu-
moniae BSI (Fig. 2). Saliently, while ST23 and ST231 were
each associated with only a single K-locus (KL1 and KL51,
respectively), the two other most common STs were each
associated with multiple K-loci (ST15: KL24 = 17, KL112 =
9, KL10 = 3, KL62 = 2, KL19 = 2; ST14: KL64 = 7, KL2 = 6,
KL157 = 1), as has been previously observed for ST258 [61].
Ten of the 12 previously described O antigen encod-
ing loci were also detected (Simpson’s diversity
index = 0·80). Loci predicted to encode serotypes O1
and O2 were the most common, together accounting
for 71% of K. pneumoniae BSI (Fig. 2, Additional file 2:
Table S4). Notably, the O3b locus, which is consid-
ered to be rare [63], was detected here at 8% preva-
lence across sites (mean 7% per site, range 0–11%).
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Acquired antimicrobial resistance determinants
Acquired AMR determinants were detected in 91% of K.
pneumoniae genomes. The number of antimicrobial
classes to which each isolate was predicted to be resist-
ant showed a bimodal distribution (Fig. 3a), with the

majority of K. pneumoniae being MDR (acquired AMR
genes conferring resistance to ≥ 3 drug classes; 63%) or
possessing no acquired AMR genes (9%). The prevalence
of MDR differed between sampling locations and ranged
from 22% in Hong Kong to 85% in India. MDR was

Table 1 Comparison of key features of Klebsiella genomes from South and Southeast Asian sites

S Asia SE Asia p value (adj) OR LCI UCI

Species assignment 102 100

K. pneumoniae 100 (98%) 87 (87%) 0.011 0.13 0.01 0.62 *

K. variicola 1 (1%) 4 (4%) 0.838 4.18 0.40 209.04

K. quasipneumoniae ssp. quasipneumoniae 1 (1%) 0 (0%) na na na na

K. quasipneumoniae ssp. similipneumoniae 0 (0%) 9 (9%) na na na na

Features of K. pneumoniae sensu stricto

Sequence type assignment 100 87

ST15 11 (11%) 15 (17%) 1.158 1.68 0.67 4.32

ST14 16 (16%) 2 (2%) 0.008 0.12 0.01 0.56 **

ST23 2 (2%) 12 (14%) 0.015 7.76 1.65 73.39 *

ST231 17 (17%) 0 (0%) 5.14 × 10−5 0.00 0.0 0.24 **

Capsular serotype prediction 79 87

KL1 2 (2.5%) 13 (15%) 0.012 6.70 1.44 63.22 *

KL2 4 (5.1%) 11 (13%) 0.216 2.70 0.76 12.15

Antimicrobial resistance prediction 100 87

Multi-drug resistant (≥ 3 acquired classes) 81 (81%) 44 (51%) 1.06 × 10−4 0.24 0.12 0.48 **

Aminoglycosides 76 (76%) 41 (47%) 0.001 0.28 0.14 0.55 **

Fluoroquinolones 80 (80%) 39 (45%) 7.13 × 10−6 0.21 0.10 0.41 **

Phenicols 27 (27%) 25 (29%) 7.833 1.09 0.55 2.17

Sulfonamides 63 (63%) 42 (48%) 0.493 0.55 0.29 1.02

Tetracyclines 24 (24%) 39 (45%) 0.029 2.56 1.32 5.05 *

Trimethoprim 62 (62%) 38 (44%) 0.118 0.48 0.25 0.89

3rd-generation cephalosporins (ESBL) 60 (60%) 41 (47%) 0.949 0.60 0.32 1.11

Carbapenems 47 (47%) 1 (1%) 7.13 × 10−13 0.01 0.0 0.08 **

Virulence prediction 100 87

Yersiniabactin (ybt) 65 (65%) 46 (53%) 0.205 0.61 0.32 1.13

Aerobactin (iuc) 27 (27%) 32 (37%) 0.319 1.57 0.81 3.07

Iuc lineages 100 87

iuc 1 13 (13%) 27 (31%) 0.012 2.99 1.36 6.86 *

iuc 3 0 (0%) 5 (6%) 0.061 na 1.08 inf

iuc 5 12 (12%) 0 (0%) 0.001 0.00 0.0 0.8 **

AMR and virulence convergence 100 87

ESBL and ybt 45 (45%) 26 (30%) 0.144 0.52 0.27 0.99

ESBL and iuc 16 (16%) 1 (1%) 0.001 0.06 0.0 0.41 **

CP and ybt 37 (37%) 1 (1%) 1.79 × 10− 10 0.02 0.0 0.13 **

CP and iuc 13 (13%) 0 (0%) na na 0.0 0.34

*South (S) Asia is represented by the two sites in India and Nepal, isolated 2016–2017; Southeast (SE) Asia is represented by the sites in Cambodia, Laos, Thailand
and Vietnam, isolated 2015–2016. p values were calculated using Fisher’s exact test for differences in the prevalence of each feature (in rows) for the S vs SE Asia
samples and are adjusted using Bonferroni correction for the number of tests within each group of comparisons (as labelled in italics; sample size for each are
also in italics). na test not applicable (one or more values equal to zero). Inf infinity, OR odds ratio, LCI and UCI, lower and upper bounds for 95% confidence
interval, respectively. *p < 0·05, **p < 0·01
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significantly more prevalent among S Asian isolates than
SE Asian isolates (81% vs 51%, p = 0·0001; Table 1). Con-
sistently, the S Asian organisms had a significantly
higher prevalence of fluoroquinolone, aminoglycoside
and carbapenem resistance determinants than the SE
Asian organisms (p < 0·001 for each class; Table 1).
The overall prevalence of ESBL genes among the K.

pneumoniae isolates was 47% (n = 157), but varied be-
tween study sites (22–75%; Fig. 3b). The majority of
ESBL K. pneumoniae (90%) were predicted to be resist-
ant to a further ≥ 3 alternative antimicrobial classes (me-
dian 7 classes). The most common ESBL genes were
blaCTX-M-15 (n = 120/157, 76%), blaCTX-M-27 (n = 14/157,

9%) and blaCTX-M-14 (n = 13/157, 8%); these were de-
tected in diverse chromosomal STs (Table 2,
Additional file 1: Table S1). Twelve additional putative
ESBL genes were also detected in 1–7 genomes each
(Additional file 1: Table S1).
The overall prevalence of carbapenemase genes was

17% (n = 57), again varying widely between sites (0–50%;
Fig. 3c). All isolates with a carbapenemase gene were
also MDR, with predicted resistance to a median of six
drug classes. The most common carbapenemases were
the OXA-48-like blaOXA-232 (n = 36/57; 63%) and the
metallo-beta-lactamase blaNDM-1 (n = 18/57; 32%, in-
cluding four genomes with blaOXA-232); again, these were
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each detected in a diverse set of STs (Table 2, Add-
itional file 1: Table S1). Five other carbapenemase genes
were detected in 1–4 genomes each (Additional file 1:
Table S1); blaKPC was not detected. Details of ESBL/CP
K. pneumoniae STs identified at each site, including
their specific enzymes, are shown in Table 2. Notably
ST15 carrying blaCTX-M-15 were identified at all sites ex-
cept Thailand, and occasionally also harboured the car-
bapenemases blaNDM-1 or blaOXA-232.

Acquired virulence determinants
We identified genes linked to invasive disease: the yersi-
niabactin locus (ybt) was present in 163 (49%) of the BSI
K. pneumoniae, with the site prevalence ranging from 19
to 67% (Fig. 4a); no significant difference in ybt preva-
lence was observed between S and SE Asia (Table 1).
Nine of the 14 known chromosomally integrated ybt
mobile-genetic elements (ICEKps [36, 75, 76]) and two
ybt plasmids were detected. The most common were
ICEKp5 (n = 41), ICEKp4 (n = 36) and ICEKp10 (also en-
coding colibactin, n = 31), found across multiple study
sites. The ICEKp10-positive samples included 25 in
clonal group 23 (ST23 plus related STs), wherein

ICEKp10 is a marker of the important globally distrib-
uted CG23-I sub-lineage [77].
The iuc, iro, rmpA, rmpA2 and peg-344 loci, typically

carried on virulence plasmids, were commonly detected
in our genome collection (28% iuc, 21% iro, 18% rmpA
16% rmpA2, 19% peg-344; 9% with all five). Peg-344 and
iuc have been suggested as the most predictive for
hypervirulence [37]. We focus the remainder of our ana-
lyses on the iuc locus because its mechanism of action is
well understood and its isogenic knockout mutants are
clearly attenuated in mouse models of hypervirulent in-
fection, unlike those for peg-344 [32, 43–45].
The prevalence of iuc did not differ significantly be-

tween the S and SE Asian isolates, but iuc lineages and
chromosomal STs of iuc-positive isolates were differen-
tially distributed between the sampling sites (Fig. 4b, c,
Tables 1 and 3). Iuc lineage 1 (iuc1, n = 66) was widely
distributed (Fig. 4c) but more prevalent in SE Asia (27%
vs 13% in S Asia, p = 0·011; Table 1). Iuc1 is associated
with the KpVP-1 virulence plasmid [78] and was de-
tected among 15 K. pneumoniae STs, most commonly
those known to be associated with hypervirulent infec-
tions: ST23 (n = 28), ST65 (n = 7) and ST86 (n = 7). Iuc5

Table 2 Notable AMR STs by location

Location Total ESBL (%) Total CP (%) Notable clone/s N N ESBL (% of ESBL/site) ESBL genes (N) N CP (% of CP/site) CP genes (N)

Hong Kong 5 (19%) 0 – – – – – –

Vietnam 20 (25%) 4 (5%) * ST15 7 4 (20%) CTX-M-15 (3)
CTX-M-14 (2)

2 (50%) NDM-1 (1)

Thailand 2 (50%) 0 – – – – – –

Laos 32 (53%) 1 (2%) * ST15 14 14 (44%) CTX-M-15 (14) 0 –

ST76-1LV 4 4 (13%) CTX-M-15 (4) 0 –

Cambodia 27 (64%) 1 (2%) ST20 5 5 (19%) CTX-M-27 (3)
CTX-M-14 (2)
CTX-M-15 (1)

0 –

* ST15 3 3 (11%) CTX-M-15 (3)
CTX-M-27 (1)

0 –

ST36 3 3 (11%) CTX-M-15 (2) 0 –

* ST15 8 8 (33%) CTX-M-15 (8) 6 (67%) NDM-1 (5)

Nepal 24 (75%) 9 (28%) ST4 5 5 (21%) CTX-M-15 (5) 0 –

ST11 3 3 (13%) SFO-1 (3) 3 (33%) OXA-232 (3)

India 52 (61%) 42 (49%) ST231 17 13 (25%) CTX-M-15 (13) 13 (31%) OXA-232 (13)

ST14 16 7 (13%) CTX-M-15 (7) 11 (26%) OXA-232 (10)

* ST15 4 3 (6%) CTX-M-15 (3) 0 –

ST16 3 3 (6%) CTX-M-15 (3) 2 (5%) NDM-1 (1)

ST29 3 3 (6%) CTX-M-15 (3) 0 –

ST395 3 1 (25%) CTX-M-15 (1) 3 (7%) OXA-232 (3)

Total ESBL and Total CP: total number of genomes carrying ESBL and carbapenemase genes per site, respectively
Notable clones: clones with ≥ 3 ESBL and/or carbapenemase gene-positive genomes at any single site. *ST15 is the only clone meeting these criteria at > 1 site
N: total number of genomes of each notable clone at each site (includes all genomes assigned to the ST regardless of predicted AMR)
N ESBL: number of genomes of each notable clone with at least one ESBL and no carbapenemase genes per site
ESBL genes: details of the ESBL genes detected in each notable clone at each site
N CP: number of genomes of each notable clone with at least one carbapenemase gene per site
CP genes: details of the carbapenemase genes detected in each notable clone at each site
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Fig. 4 Prevalence of key virulence determinants among K. pneumoniae sensu stricto isolates. a Proportion of genomes for which the
yersiniabactin locus was detected (% ybt+) by location. b Proportion of genomes for which the aerobactin locus was detected (% iuc+) by
location. c iuc lineages by location. Points are scaled by the number of genomes as per legend. Unk; unknown

Table 3 Notable iuc-positive STs by region

Location Total iuc+ Notable clone/s iuc allele N iuc (% of iuc/site) ICEKp (N) iro allele (N) rmpA/2 (N) ESBL/CP (N)

Hong Kong 6 (22%) ST45 iuc3 1 (17%) ICEKp4 (1) – – CTX-M-3 (1)

Vietnam 34 (43%) * ST23 iuc1 13 (38%) ICEKp10a (10)
ICEKp3 (1)

iro1 (13) (10) CTX-M-14 (1)

* ST25 iuc3 2 (6%) ICEKp1 (2) iro3 (2) (2) –

iuc1 1 (3%) – iro1 (1) (1) –

* ST65 iuc1 2 (6%) ICEKp10 a (1) iro1 (2) (2) CTX-M-15, VEB-1 (1)

Thailand 0 – – – – – –

Laos 23 (38%) * ST23 iuc1 10 (44%) ICEKp10 a (10) iro1 (10) (10) CTX-M-63 (1)

* ST65 iuc1 2 (6%) ICEKp10 a (2) iro1 (3) (3) –

* ST86 iuc1 – ICEKp4 (1) iro1 (3) (3) –

ST592 iuc1 10 (44%) – iro1 (3) (3) –

Cambodia 4 (10%) – – – – – – –

Nepal 3 (9%) ST15 iuc1 2 (67%) ICEKp12 (2) – (2) CTX-M-15 (2)
OXA-232 (1)

India 24 (28%) ST231 iuc5 12 (50%) ICEKp5 (12) – – CTX-M-15 (8)
OXA-232 (8)

iuc ukn 2 (8%) ICEKp5 (2) – – CTX-M-15 (2)
OXA-232 (2)

ST2096 iuc1 3 (13%) ICEKp5 (2) iro1 (1) – CTX-M-15 (2)

* ST23 iuc1 2 (8%) ICEKp3 (1)
ICEKp10 a (1)

iro1 (2) (1) CTX-M-15 (1)

ST11 iuc1 1 (48%) ICEKp12 (1) – – CTX-M-15,
OXA-232 (1)

Total iuc+: total number of genomes carrying iuc per site (i.e. predicted as aerobactin-producing)
Notable clones: clones with ≥ 3 iuc-positive genomes at any single site, or carrying iuc in addition to ESBL and/or carbapenemase genes. *Known
hypervirulent STs
iuc allele: iuc lineages predicted by Kleborate. unk = iuc lineage unknown
N iuc: number of genomes of each notable clone carrying iuc per site
ICEKp: ICEKp variants and the number of genomes of notable clones carrying these variants per site. aICEKp10 carries ybt and clb
iro allele: iro lineage and the number of genomes of notable clones carrying these iro variants per site
rmpA/2: number of genomes of notable clones carrying the rmpA and/or rmpA2 loci per site
ESBL/CP: ESBL and carbapenemase genes detected among notable clones and the number of genomes carrying these genes per site

Wyres et al. Genome Medicine           (2020) 12:11 Page 9 of 16



(n = 12) is associated with E. coli plasmids and was de-
tected only in ST231 from India, while iuc2 (associated
with KpVP-2 [78]) was detected in a single ST380 isolate
from Vietnam. Iuc3 (n = 13) was detected in SE Asia
(Cambodia, Vietnam, Laos) and Hong Kong (Fig. 4c),
among eight distinct STs (Additional file 1: Table S1).
We selected four iuc3-positive isolates from Vietnam
and Laos for long-read sequencing and found each har-
boured a distinct and novel FIBK/FII iuc3 plasmid
(Table 4).

Genotypic convergence of antimicrobial resistance and
virulence
While strains carrying either AMR or hypervirulence de-
terminants are of concern, those carrying both pose the
greatest potential public health threat. The ybt virulence
locus was significantly associated with ESBL K. pneumo-
niae (OR 1·6; 95% CI 1.06–2.55, p = 0·021) and CP K.
pneumoniae (OR3·5; 95% CI 1.87–6.98, p < 0·0001).
Ybt + ESBL K. pneumoniae BSI were detected at all sites
(Fig. 5a) and exhibited a similar prevalence in both S
and SE Asia (Table 1). Iuc was present in 13% of ESBL
K. pneumoniae BSI (vs 43% among non-ESBL; OR 0·2;

95% CI 0.12–0.38, p < 0·0001) and 23% of CP K. pneu-
moniae (vs 30% among non-CP; OR 0·8; 95% CI 0.37–
1.59, p = 0·6). Overall prevalence of iuc + ESBL K. pneu-
moniae was 6%. Iuc + ESBL isolates were detected at five
of the seven sampling locations (Fig. 5a) and were more
common in S than SE Asia (p < 0·001, Table 1). Con-
versely, iuc + CP K. pneumoniae BSI were detected only
in India (n = 12 ST231, 14% of Indian isolates) and Nepal
(n = 1 ST15, 3%).
Convergent AMR-hypervirulent isolates (organisms

carrying iuc plus ESBL and/or carbapenemase genes)
were seen across seven different STs circulating across
this region, with a prevalence of 7.3% (Fig. 5b, Table 3).
Long-read sequencing of four representative isolates of
different STs revealed four novel mosaic plasmids. Three
of these plasmids (and the four iuc3 plasmids) harboured
iuc plus AMR genes (1–10 AMR genes, encoding resist-
ance to 10 drug classes; Table 4). Notably, one of these
plasmids harboured iuc1, blaCTX-M-15, and eight add-
itional AMR genes (plasmid pBA813_1 from isolate
BA813, Table 4). While pBA813_1 was not predicted to
encode the tra plasmid transfer machinery, the four iuc3
plasmids and one of the iuc1 plasmids (pBA6201_1, iuc1

Table 4 Novel virulence plasmids sequenced in this study and their host isolate properties

Isolate Virulence plasmid (accession) iuc
lineage

AMR genes AMR genes elsewhere in genome

Sample data and
chromosomal
typing

Size and rep type(s)

2579
Nepal, 2016
ST15, KL112, ICEKp12

p2579_1
(MK649822)
182,805 bp
IncHI1B

iuc1 – qnrB1, strA^B, mphA, arr2, sulII^,
dfrA14, blaOXA-232, blaCTX-M-15,
blaTEM-30^

BA6740
India, 2016
ST11, KL24, ICEKp12

pBA6740_1 (MK649823)
226,590 bp
IncFIB(pQIL), IncFIIK

Iuc1 qnrB1 strA^B, rmtF, mphA, arr2, sulII,
blaOXA-232, blaCTX-M-15, blaSHV-11,
blaTEM-30^

BA813
India, 2017
ST2096, KL64, ICEKp5

pBA813_1
(MK649825)
273,676 bp
IncFIB(Mar), IncFIB

iuc1 blaCTX-M-15, blaOXA-232,
blaTEM-54^, aadA2^, armA,
msrE, mphE^, catA1^, sulI,
tetD, dfrA12, dfrA14

Sat-2A, sulI, dfrA1, blaOXA-1

BA6201
India, 2017
ST231, KL51, ICEKp5

pBA6201_1 (MK649824)
195,016 bp
IncFIA, IncFIB(pQIL), IncFIIK, IncFII

iuc 1 rmtF, mphA, ermB^, catA1^,
arr2

blaCTX-M-15, blaTEM-30^

16114547
Laos, 2016
ST290, KL21

p16114547_1 (MK649829)
187,989 bp
IncFIBK, IncFII

iuc 3 qnrS1, tetA^, blaTEM-30^ blaSHV-26^

1675474
Laos, 2015
ST7-1LV, KL54

p1675474_1 (MK649827)
181,647 bp
IncFIBK, IncFII

iuc 3 catA2^, sulII qnrS1, tetA^,
blaTEM-30^

1675479
Laos, 2015
ST945-2LV, KL125

p1675479_1 (MK649828)
167,992 bp
IncFIBK, IncFII

iuc 3 strA^B, sulII tetA

130411–38618
Vietnam, 2011
ST17, KL127

p130411-38,618_1 (MK649826)
241,799 bp
IncFIBK, IncFIIK

iuc3 strA^B, aadA1, cmlA5, floR,
arr2^, sulII, tetA, dfrA14,
blaOXA-10

*rep types as per the PlasmidFinder v2.0 database are shown. All plasmids carried the iuc aerobactin synthesis operon. No plasmids carried the iro or rmpA/rmpA2
virulence loci. Seven virulence plasmids also carried AMR (antimicrobial resistance) genes. Seven host isolates harboured additional AMR genes elsewhere in the
genome. ST chromosomal multi-locus sequence type, KL K-locus. ^Inexact match
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plus five AMR genes) contained a complete tra operon
suggesting that they are capable of conjugative transfer.
Consistently, we detected a high degree of sequence
similarity between the iuc3 plasmids carried by isolates
of three distinct STs in Laos (p1675474 vs p16114547, >
99.9% nucleotide identity, > 89% coverage; p1675479 vs
p1675474 and p1675479 vs p16114547, > 99% identity,
> 59% coverage), supporting their dissemination within
the local K. pneumoniae population or acquisition from
a recent common source.
Comparison of chromosomal ST, iuc lineage, and

AMR gene content indicates at least nine distinct AMR-
virulence convergence events in our sample (Table 3).
These include four distinct AMR element acquisitions
by previously described hypervirulent STs (three in ST23
from Vietnam, Laos and India; one in ST65 from
Vietnam), four distinct virulence plasmid acquisitions by
previously described MDR STs (one in ST15 from
Nepal; one in ST11 from India; one in ST2096 from
India; one in ST231 from India; plus one in ST45 from
Hong Kong). Notably, most of these organisms also har-
boured the additional virulence factors ybt, iro and
rmpA/rmpA2 (Table 3), supporting the interpretation
that they are likely to manifest the hypervirulent pheno-
type. Three of the strains resulting from these AMR-
virulence convergence events showed evidence of local
clonal expansion: ST15 in Nepal (n = 2 isolates, 32 pair-
wise SNVs in an alignment of 5,709,381 bp, accounting
for ≥ 99.5% of each genome), ST2096 in India (n = 2 iso-
lates, 57 pairwise SNVs in an alignment of 5,489,606 bp,
accounting for ≥ 96.2% of each genome) and ST231 in
India (n = 13 isolates, 9 to 319 pairwise SNVs, mean

139.4 SNVs, mean alignment length 5,276,478 bp, ac-
counting for mean 96.5% of each genome). The latter in-
cluded two potential nosocomial transmission clusters (≤
25 pairwise SNVs; n = 4 isolates carrying iuc5 + blaOXA-232

with/without blaCTX-M-15; n = 2 isolates carrying iuc5 +
blaCTX-M-15, see Additional file 1: Table S1).
Each AMR-hypervirulent strain was detected only at

one site, with no evidence of dissemination between
countries. We did identify eight clusters of closely re-
lated K. pneumoniae strains (each separated by ≤ 100
SNVs, in a mean alignment length of 5,435,515 bp, ac-
counting for mean 98.1% of each genome) that were de-
tected in multiple countries, suggesting that regional
spread of both MDR and hypervirulent K. pneumoniae
does occur between Asian countries, as was recently de-
scribed for CP K. pneumoniae in Europe [70]. However,
while most of these clusters were either MDR or hyper-
virulent, none were both (Table 5). Five clusters were in-
dicative of regional spread between SE Asian countries
(ST101, ST17, ST65, ST86 and ST592); the other three
clusters were detected in India plus either Laos (ST412),
Hong Kong (ST14) or Nepal (ST15) (see Table 5 and
Additional file 1: Table S1).

Discussion
This work represents the first broad genomic study of K.
pneumoniae causing BSI in S/SE Asia and Hong Kong,
regions that are facing a combination of community-
acquired invasive hypervirulent K. pneumoniae, unregu-
lated use of antimicrobials, and the emergence and
spread of MDR pathogens.
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The diversity of K. pneumoniae causing BSI in S/SE
Asia represents a significant challenge to therapy using
existing or novel agents. Our study revealed a highly di-
verse set of isolates, both in terms of chromosomal STs
and surface polysaccharide loci. We were unable to
stratify the isolates into hospital-associated and
community-acquired cohorts, but anticipate that the
former accounts for the majority of the diversity in our
sample given that the majority of community-acquired
K. pneumoniae BSIs are known to be caused by a small
number of distinct clones with limited surface antigen
diversity [38–40]. This is consistent with the hypothesis
that the majority of hospital-associated BSIs originate
from the patients’ personal gastrointestinal microbiota
rather than from intra-hospital transmissions [67, 79].
The latter is highly relevant to the design of vaccines or
other interventions targeting K. pneumoniae capsules or
lipopolysaccharide, which are considered of high import-
ance in response to increasing prevalence of ESBL and
CP strains, both of which were common in our sampling

locations (47% and 17% of all isolates, respectively).
From our sampling strategy, we crudely estimate a non-
cross-reactive capsule-targeted vaccine would need to
include ≥ 16 serotypes in order to provide potential pro-
tection against > 50% of the BSI K. pneumoniae isolates
across these study sites. The 16 most common K-loci
would cover 61% of all ESBL and 68% of all CP K. pneu-
moniae across S/SE Asia. Alternatively, we estimate that
a completely immunising vaccine targeting O1, O2 and
O3b would hypothetically protect against 79% of the BSI
K. pneumoniae isolates in this study, equating to 79% of
all ESBL-containing isolates and 70% of CP.
Alongside the high prevalence of ESBL and carbapene-

mase genes, our data revealed high prevalence of known
hypervirulence determinants with the iuc locus detected
in 28% of all isolates included in this study, more than
double the prevalence seen in previous studies focused
outside of this region [78]. We suggest this likely reflects
the combination of a comparatively greater prevalence of
strains from community-acquired infections (particularly

Table 5 Multi-country clusters of strains sharing a recent common ancestor

ST Pairwise SNVs (mean)a Locations Sample ID Year ESBL/CP genes ICEKp Plasmid-borne virulence loci

ST17 33 Cambodia COMRU-KPN-BC-2014-21 2014 – Unk –

Vietnam CM3425 2015 – Unk –

ST65 37–138b (89) Laos 1675485 2015 – ICEKp10d iro1, iuc1, rmpA, rmpA2

Laos 1675477 2015 – ICEKp10d iro1, iuc1, rmpA, rmpA2

Laos 16114200 2016 – – iro1, iuc1, rmpA, rmpA2

Cambodia COMRU-KPN-BC-2015-7 2015 – ICEKp10d iro1, iuc1, rmpA, rmpA2

ST86 69 Vietnam 270210–16361 2010 – ICEKp4 iro1, iuc1, rmpA, rmpA2

Laos 1623415 2016 – ICEKp4 iro1, iuc1, rmpA

ST101 73 Cambodia KPN239 2014 CTX-M-15 – –

Laos 1690095 2015 CTX-M-15, CTX-M-27 – –

ST592 70–91 (80) Laos 1675487 2015 – iuc1, iro1, rmpA2

Laos 1675478 2015 – – iuc1, iro1, rmpA2

Vietnam CM3560 2015 – – iuc1, iro1, rmpA2

ST14 82 Hong Kong V28 2016 – – –

India BA33569 2016 – – –

ST15 0–202 (84)c Nepal 2427 2016 CTX-M-15, OXA-232, NDM-1 ICEKp12 –

Nepal 2455 2016 CTX-M-15, OXA-232, NDM-1 – –

Nepal 2703 2016 CTX-M-15, OXA-232, NDM-1 – –

Nepal 2725 2016 CTX-M-15, OXA-232, NDM-1 – –

Nepal 2557 2016 CTX-M-15 – iuc1, rmpA2

Nepal 2579 2016 CTX-M-15, OXA-232 – iuc1, rmpA2

India BA12537 2017 CTX-M-15 ICEKp12 –

ST412 86 Laos 16112578 2016 – – iuc1, iro1, rmpA, rmpA2

India BA2641 2017 – – iuc1, iro1, rmpA, rmpA2

Genomes were clustered at a threshold of ≤ 100 SNVs (i.e. all members of a cluster differ from at least one other member by fewer than 100 SNVs). Clusters
comprising isolates from multiple countries are shown. Unk unknown. aPairwise SNV count; for clusters of size > 2 genomes the range and mean are shown.
bCambodian isolate COMRU-KPN-BC-2015-7 differs from each of the Laos isolates by 67–96 SNVs. cIndian isolate BA12537 differs from each of the Nepalese
isolates by 81–202 SNVs. dICEKp10 carries ybt and clb
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in SE Asia) plus comparatively elevated prevalence among
MDR hospital-associated strains. Accordingly, 33 of 210
(16%) genomes predicted to be MDR also carried iuc (note
includes 5 genomes that were MDR variants of known hy-
pervirulent clones). While the iuc locus itself was common
in both S and SE Asia, the distribution of iuc lineages dif-
fered (Table 1). Specifically, iuc1 (associated with the char-
acteristic KpVp-1 virulence plasmid [78]) and iuc3 were
more common in SE Asia where they were each detected
among numerous distinct STs. This is consistent with
their local dissemination or recent acquisition from a
common source, a finding supported by the discovery of
four novel but similar iuc3 encoding plasmids in these iso-
lates. Of greatest concern was the detection of at least nine
distinct convergence events between AMR and hyperviru-
lence (encompassing 7·3% of isolates) plus seven novel
dual AMR + iuc containing plasmids, increasing the total
number of convergent plasmids reported so far by almost
50% [49, 80–83]. Given that our isolate collection repre-
sented a snapshot from seven diagnostic laboratories, we
predict that many additional convergent plasmid variants
await future identification.
It remains unclear if convergent MDR-virulent K.

pneumoniae plasmids and/or strains are fit for wide-
spread dissemination or simply represent transient
events that are rapidly purged from the population. The
latter could explain the historical absence of reports of
MDR hypervirulent infections and is consistent with the
apparent lack of dissemination of any of the numerous
reported convergent MDR ST23 variants, despite ample
evidence that the susceptible hypervirulent ST23 clone is
capable of global distribution [39, 40, 49, 84–87]. How-
ever, it is important to note that other factors have also
been proposed; for example, the possibility that hyper-
virulent and MDR clones preferentially inhabit distinct
ecological niches outside of the human host, thereby
limiting the opportunity for transfer of genetic material
between them; or that there may be physical and/or
mechanistic barriers to genetic exchange [88]. Addition-
ally, there is now clear evidence that at least a subset of
the globally recognised MDR clones with acquired viru-
lence plasmids are able to cause persistent local prob-
lems and spread more broadly: These include the CP
ST231 iuc + strain reported here from the Indian hos-
pital, a previously reported CP ST15 iuc + in a Pakistani
hospital [53] and CP ST11 iuc + in China, which was
able to disseminate for several years without detection
[52, 57]. Fortunately, most MDR-virulent infections thus
far appear to be hospital-associated rather than
community-acquired, suggesting that unlike the hypervir-
ulent clones, these convergent strains may be less able to
spread outside of the hospital environment and/or unable
to cause invasive disease in otherwise healthy hosts.
Nevertheless, the combination of enhanced virulence plus

limited treatment options is an important concern that
warrants careful attention. Combined with our data indi-
cating high prevalence and diversity of convergent strains
in the S/SE Asian region, it is clear that there is a need for
enhanced K. pneumoniae surveillance to rapidly identify
and monitor convergent strains and/or plasmids.
A limitation of this work is that the data represents a

retrospective convenience sample of K. pneumoniae BSI
isolates by the participating diagnostic laboratories dur-
ing routine activities during overlapping time periods.
This prevented statistical comparisons between individ-
ual sites and should be considered when extrapolating
gene prevalence information to the broader K. pneumo-
niae population. Additionally, we did not have access to
patient clinical data, which has limited our interpretation
of the data in the context of patient co-morbidities, and
stratification of isolates into community-acquired and
hospital-associated cohorts. We focussed on BSI, as this
allowed for convenient and consistent retrospective
identification of isolates associated with invasive disease
for inclusion in the study. While this presentation argu-
ably reflects the greatest clinical need, the siderophore
virulence loci are known to be more prevalent in BSI
compared to other infections [35], and hence the preva-
lence of iuc estimated from our sample may be higher
than that of the broader population of K. pneumoniae
causing infections in these regions. In addition, we note
that our inferences about AMR are based on genotypic
information, which is highly predictive of AMR in K.
pneumoniae but not perfectly correlated [67, 89]. Never-
theless, our analyses reveal valuable insights and provide
essential data to motivate enhanced public health
surveillance.

Conclusions
K. pneumoniae BSI isolates from South and Southeast
Asia represent diverse STs, capsule and LPS serotypes,
with high prevalence of MDR, hypervirulence-associated
loci and convergent MDR-virulent strains. Our study
represents a blueprint for genomic surveillance of emer-
ging AMR pathogens in this region and we urge the co-
ordination of similar activities internationally. By rapidly
detecting resistance and virulence genes in the context
of clonal and surface antigen diversity, our approach
provides critical information that can be used to simul-
taneously track the emergence and dissemination of
clinically important variants, guide antimicrobial therapy
and assess potential mechanisms and targets for contain-
ment and intervention. In combination with rapid
reporting and data sharing, this approach will permit re-
searchers and public health professionals to recognise
and control the growing public health threat of AMR K.
pneumoniae.
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