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Strain-resolved microbiome sequencing
reveals mobile elements that drive bacterial
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Abstract

Background: Populations of closely related microbial strains can be simultaneously present in bacterial communities
such as the human gut microbiome. We recently developed a de novo genome assembly approach that uses read
cloud sequencing to provide more complete microbial genome drafts, enabling precise differentiation and tracking of
strain-level dynamics across metagenomic samples. In this case study, we present a proof-of-concept using read cloud
sequencing to describe bacterial strain diversity in the gut microbiome of one hematopoietic cell transplantation
patient over a 2-month time course and highlight temporal strain variation of gut microbes during therapy. The
treatment was accompanied by diet changes and administration of multiple immunosuppressants and antimicrobials.

Methods: We conducted short-read and read cloud metagenomic sequencing of DNA extracted from four
longitudinal stool samples collected during the course of treatment of one hematopoietic cell transplantation (HCT)
patient. After applying read cloud metagenomic assembly to discover strain-level sequence variants in these complex
microbiome samples, we performed metatranscriptomic analysis to investigate differential expression of antibiotic
resistance genes. Finally, we validated predictions from the genomic and metatranscriptomic findings through in vitro
antibiotic susceptibility testing and whole genome sequencing of isolates derived from the patient stool samples.

Results: During the 56-day longitudinal time course that was studied, the patient’s microbiome was profoundly
disrupted and eventually dominated by Bacteroides caccae. Comparative analysis of B. caccae genomes obtained using
read cloud sequencing together with metagenomic RNA sequencing allowed us to identify differences in substrain
populations over time. Based on this, we predicted that particular mobile element integrations likely resulted in
increased antibiotic resistance, which we further supported using in vitro antibiotic susceptibility testing.
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Conclusions: We find read cloud assembly to be useful in identifying key structural genomic strain variants within a
metagenomic sample. These strains have fluctuating relative abundance over relatively short time periods in human
microbiomes. We also find specific structural genomic variations that are associated with increased antibiotic resistance
over the course of clinical treatment.

Keywords: Metagenomics, Read cloud assembly, Strain diversity, Gut microbiome, Sequencing, DNA, Antibiotic
resistance, Linked reads, Structural variation

Background
Microbial strains of the same species share “core” genes that
encode conserved functions common to the species. How-
ever, strains of a given species can differ by single-nucleotide
variants (SNV), insertions, and deletions as well as structural
arrangement [1] and variable presence of accessory genes [2,
3], which facilitate adaptability of the species population as a
whole. Strain-level variation can arise from several mecha-
nisms including horizontal gene transfer and transposon
mobilization. Each of these mechanisms has a well-
described capacity to induce significant changes in pheno-
type. Through horizontal gene transfer, bacteria can acquire
and disseminate genomic elements encoding antibiotic re-
sistance genes, virulence factors, or metabolic capabilities [4,
5]. Other mobile elements, such as transposons, can affect
gene function and regulation by either disrupting coding se-
quences [6], or by upregulating neighboring genes through
the introduction of strong promoter sequences often carried
with the transposon [7, 8]. These transposons can be mobi-
lized during physiological stress, such as exposure to antibi-
otics, and this mobilization can result in acquisition of
improved niche-specific fitness [9].
Genetic variation within a population can either arise de

novo as a consequence of new mutation or can be part of
a reservoir of genetic variation in a community where
multiple strains stably coexist [10]. Exposure to various se-
lective pressures from the environment can trigger the rise
of de novo mutations within members of a population.
Eventually, alleles that confer a selective advantage are
fixed and strains carrying these alleles persist. Alterna-
tively, genetic heterogeneity within a microbial species can
be advantageous with a change in the environment. Posi-
tive selection takes place when a strain variant carrying a
beneficial allele is favored by natural selection given a
change in the environment (e.g., exposure to antibiotics).
With that, the frequency of the fit variant increases over
time until it eventually sweeps the population. While sig-
nificant advances have been made in defining species- and
genus-level taxonomic composition of the human micro-
biome, much remains to be understood about sub-species
or strain-level genetic diversity, how it arises, and more
importantly whether strain heterogeneity has compos-
itional and functional implications on the community. Re-
cent advances in microbial sequencing and computational

tools for genome assembly and annotation are opening
new avenues to study the genetic diversity of microbial
species and understand the functional consequences of
such diversity.
Shotgun short-read sequencing methods facilitate

study of the genomic content and strain-level architec-
ture of complex microbial communities. Comparisons of
microbial genomes obtained from both sequencing of
isolates and single cells have shaped our understanding
of strain-level genetic variability [5, 11, 12]. Recent com-
putational techniques using marker gene sets have en-
abled metagenomic sequencing approaches to be used
for tracking microbial strains across different samples
[13–15]. These methods track strains by first using avail-
able isolate references to pre-compute species-specific
marker gene sets. Alignments of metagenomic short
reads to these markers can then be used to estimate
strain-specific single-nucleotide variant profiles, which
can be tracked across samples. Although these ap-
proaches provide an efficient solution for the tracking of
microbial strains, they are inherently limited to the study
of clades with at least one representative isolate refer-
ence genome. Furthermore, these methods are unable to
distinguish between very closely related strains sharing
the same marker SNV profile, but differing in sequence
from recent horizontal gene transfer or transposition
events.
Dedicated metagenomic assemblers [16–18] and bin-

ning approaches based on sequence similarity [19–22]
and coverage depth covariance [23, 24] aid analyses of
metagenomic short-read sequences without relying on
available genome references. These tools can yield sig-
nificantly more comprehensive draft genomes, but have
difficulty in resolving the correct genomic context of
conserved and recently duplicated sequences, such as
those arising from recent horizontal gene transfer and
transposition. Culture-based methods can be helpful in
this context, but require laborious and potentially bias-
ing culture steps. In this respect, long-read sequencing
platforms have been developed to address these draw-
backs. However, these techniques typically require a
100- to a 1000-fold higher input of high-molecular-
weight DNA, have lower throughput, and have a higher
error rate when compared to short-read sequencing.
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To address these challenges, we recently developed a
metagenomic shotgun sequencing and assembly method
that provides complete microbial genomes from complex
microbiome samples [24]. The molecular approach of
linked-read (or “read cloud”) library preparation relies on
partitioning long DNA fragments within more than a million
nanoliter droplets [25]. Barcoded short fragments are then
derived with degenerate amplification of the long fragments
within the partitions, pooled, and sequenced with Illumina
technologies. Hence, the resulting “read clouds” are short-
read sequences that contain long-range information [26].
In this case study, we present the application of read

cloud sequencing to longitudinal microbiome samples from
a hematopoietic cell transplantation (HCT) patient to dem-
onstrate the evolution of gut microbes during therapy. This
experimental approach enables the discovery of strain-level
sequence variants that confer selective advantages under
differing environmental stresses in a clinical setting. We
find that exposure of the patient to antibiotics is correlated
with the predominance of strains with specific transposon
integrations that result in differential transcription of anti-
biotic resistance genes. In vitro antibiotic susceptibility test-
ing and whole genome sequencing of isolates derived from
the patient stool samples support functional predictions
made using our metagenomic approach.

Methods
Sample collection
Stool samples were obtained from the study subject on
an approximately biweekly basis, when available. Stool
samples were placed at 4 °C immediately upon collection
and processed for storage at − 80 °C the same day. Stool
samples were aliquoted into 2-mL cryovial tubes with ei-
ther no preservative or 700 μL of RNAlater and homoge-
nized by brief vortexing. The aliquots were stored at −
80 °C until extraction.

DNA library preparation
Stool DNA was extracted for short-read libraries and
Gemcode read cloud libraries with the QiAMP Stool
Mini Kit (Qiagen, Hilden, Germany) modified with an
additional step after addition of ASL buffer consisting of
7 cycles of alternating 30-s periods of beating with 1.0
mm Zirconia/Silica beads in a Mini-Beadbeater (Biospec
Products, Bartlesville, OK) and chilling on ice. Stool
DNA was extracted for Chromium read cloud libraries
with the Gentra Puregene Yeast/Bacteria kit (Qiagen,
Hilden, Germany), modified with a chilling step at −
80 °C for 5 min, followed by ethanol DNA precipitation
at 14,000g for 20 min at 4 °C.
Prior to read cloud sequencing library preparation,

DNA was size-selected with the BluePippin instrument
(Sage Science, Beverly, MA). A 5–50-kb size range was
used for Gemcode libraries, and a 10–50-kb size range for

Chromium libraries. Read cloud libraries were then pre-
pared with either the Gemcode or Chromium instrument
(10X Genomics, Pleasanton, CA).
DNA used for short-read library preparation was not

size selected. Short-read libraries were prepared with the
Truseq DNA HT library prep kit (Illumina, San Diego,
CA).
All library fragment sizes were assessed with the 2100

Bioanalyzer instrument (Agilent Technologies, Santa
Clara, CA) using the High Sensitivity DNA chip and re-
agent kit. DNA and library concentration estimations
were performed using fluorometric quantitation with the
Qubit 3.0 fluorometer using the Qubit dsDNA HS kit
(Thermo Fisher Scientific, Waltham, MA).

RNA library preparation
RNA was extracted with the Qiagen RNeasy Mini kit
from stool samples stored in RNAlater at − 80 °C. Ori-
ginal total RNA concentration was assayed with the
Qubit RNA HS kit. RNA was then ethanol precipitated
and resuspended in nuclease-free water to concentrate,
and then quantified again using both Qubit RNA HS
and Qubit DNA HS kits to determine the degree of
DNA contamination. Contaminating DNA was removed
using the Baseline-ZERO DNase protocol (Epicenter,
Madison, WI) with 30 min incubation followed by a sec-
ond ethanol precipitation. Ribosomal RNA was depleted
with the Epicenter Ribo-Zero rRNA removal kit (Bac-
teria) and purified with another ethanol precipitation.
The rRNA-depleted mRNA quality was assessed with
the 2100 Bioanalyzer using the Agilent RNA6000 Pico
kit and quantified with Quibit RNA HS assay. cDNA se-
quencing libraries were then prepared with the Illumina
Truseq Stranded mRNA kit following the Truseq
Stranded mRNA LT protocol. Resulting DNA libraries
were quantified with Qubit DNA HS kit and their qual-
ity evaluated by 2100 Bioanalyzer instrument using the
High Sensitivity DNA chip and reagent kit.

Sequencing
Truseq libraries were sequenced with 2 × 101 bp reads on
an Illumina HiSeq 4000 instrument, each library receiving
2–6 Gb sequence coverage with the exception of time-
point A, which was additionally sequenced with 34 Gb of
coverage after the initial attempt produced insufficient
coverage. 10X Gemcode libraries were sequenced with
2 × 148 bp reads on an Illumina NextSeq 500 instrument,
with each library receiving 4–7 Gb sequence coverage.
10X Chromium libraries were sequenced with 2 × 151 bp
reads on one lane of Illumina HiSeq 4000, each receiving
18–22 Gb of sequence coverage. RNAseq libraries were
sequenced with 2 × 101 bp reads on an Illumina HiSeq
4000 instrument, each library receiving 8–12 Gb sequence
coverage with the exception of timepoint A, for which a
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high-quality RNA sequencing library could not be ob-
tained. Total reads and sequencing coverage for all meta-
genomic sequencing libraries before and after quality
control can be found in Additional file 1: Table S10. All
raw sequencing data are available on SRA Bioproject ac-
cession PRJNA434731 [27].

Metagenome assembly and genome draft generation
Raw reads from all DNA libraries were first subjected to
the same quality control and trimming as follows. Se-
quence data were trimmed using cutadapt [28] using a
minimum length of 60 bp and minimum terminal base
score of 20. Reads were synced and orphans (reads
whose pair mates were filtered out) were placed in a sep-
arate single-ended fastq file with an in-house script.
RNA sequencing reads displayed uniform high quality
and were not trimmed.
Trimmed reads from all libraries were then assembled

using metaSPAdes 3.11.1 [29] with default parameters
for paired-end input. MetaSPAdes seed assemblies ob-
tained from read cloud libraries were then further as-
sembled using Athena [30]. Assemblies were visualized
with IGV [31], R [32], and python using the ggplot2
[33], circlize [34], and matplotlib [35] libraries.
For read cloud and short-read libraries, coverage was

calculated for assembled contigs by aligning raw short
reads with BWA v0.7.10 [36]. Metabat v2.12.1 [22] was
then used to group contigs to form draft genomes.
Drafts were then evaluated for a number of criteria to
assess quality: Metaquast v4.6.0 [37] for N50 and assem-
bly size, CheckM v1.0.7 [38] for genomic completeness
and contamination, Prokka v1.12 [39] for gene counts,
Aragorn v1.2.36 [40] for tRNA counts, and Barrnap v0.7
[41] for rRNA subunit counts. Drafts were denoted “high
quality” when they contained 18 or more tRNA loci, at
least one occurrence each of the 5S, 16S, and 23S ribo-
somal RNA subunits, and achieved a checkM score of at
least 90% completeness and at most 5% contamination
in accordance with existing standards [42]. Drafts were
otherwise denoted “complete” if they achieved the same
completeness and contamination criteria. All other
drafts were denoted “incomplete.”
Individual contigs from all assemblies were assigned

taxonomic classifications using k-mer-based classification
with Kraken2 [43] with a custom database constructed
containing all bacteria, viral and fungal genomes in NCBI
GenBank assembled to complete genome, chromosome,
or scaffold quality as of February 2019 [44, 45]. Human
and mouse reference genomes were also included in the
database. Genome drafts were given taxonomic assign-
ments with a consensus approach: a draft received a spe-
cies assignment if 60% or more of total bases shared the
species-level classification. Drafts were otherwise assigned
the majority genus-level classification.

Discovery of genomic island integration and insertion
sequence loci in read cloud metagenomic drafts
To discover large-scale genomic island incorporations,
we first obtained pairwise sequence alignments of Bac-
teroides caccae genome drafts between timepoints (A,
B), (B, C), and (C, D) using MUMMER [46]. We
searched these alignments for instances in which a single
contig from one timepoint produced a gapped alignment
over a single contig from another timepoint, spanning a
putative genomic island (Additional file 1: Fig. S3). Po-
tential genomic island incorporations that were not as-
sembled within a single contig could not be fully
resolved and were not considered. No differential gen-
omic island incorporations were observed in timepoint B
with respect to timepoint A. Three separate genomic
islands (17 kb, 57 kb, and 71 kb) were found in the B.
caccae genome within timepoint C, but were absent
from the draft in timepoint B. The 17 kb and 57 kb
islands were also found within the draft genomes of B.
vulgatus and B. uniformis. Two genomic island incorpo-
rations of sizes 43 kb and 50 kb were observed in time-
point D with respect to timepoint C. Neither of these
two islands were assembled into alternate genomic con-
texts in timepoint C.
To discover smaller-scale insertion sequences, we ex-

amined high-frequency k-mer sequences that were
present in the B. caccae genome. We first obtained k-
mer counts from the timepoint C read cloud draft using
Jellyfish [47] with k = 101. The vast majority of k-mers
originate from single-copy portions of the genome, but
we isolated the subset of these that occurred at a copy
number of at least 10, and assembled them using
SPAdes [48] with “--only-assembler” and “--sc”. This
process yielded the sequences of two candidate insertion
sequence elements within the B. caccae genome.

Insertion sequence abundance estimation
Illumina Truseq short-read data were aligned with BWA
[36] to the insertion sequence integration regions ob-
tained from read cloud and Athena assembly of the clin-
ical microbiome data. Reads recruited to each insertion
locus were realigned with STAR [49] in order to obtain
gapped alignments spanning the insertion sequence.
Gapped alignments, representing the genome sequence
prior to insertion (“ancestral strain”), were counted for
each insertion. Ancestral strain fraction was expressed as
the number of observed gapped alignments divided by
the median sequence coverage within the neighboring
10 kb of sequence.

Bacteroides caccae isolation
Members of the Bacteroides fragilis group, including
Bacteroides caccae, were isolated directly from stool by
streaking stool on solid BHI medium (containing 37 g/L

Zlitni et al. Genome Medicine           (2020) 12:50 Page 4 of 17



brain heart infusion powder, 1% v/v Remel defibrinated
sheep blood, 100 μg/mL gentamicin, and 1.5% agar)
under anaerobic conditions in a Bactron 300 anaerobic
chamber (Sheldon Manufacturing Inc., Cornelius, OR).
Individual colonies matching the described B. fragilis
group morphology of circular, entire, convex, gray,
translucent, shiny, and smooth [50] were picked into 5
mL liquid tryptone yeast glucose (TYG) media [51] and
incubated overnight inside the anaerobic chamber at
37 °C. Aliquots of liquid cultures with glycerol added to
30% final concentration were frozen at − 80 °C. Subse-
quent whole genome sequencing of DNA extracted from
these liquid cultures was used to confirm the species
identity of each isolate.

Isolate sequencing, assembly, and annotation
We extracted DNA using the Qiagen Gentra Puregene
Bacteria DNA kit and prepared Illumina Nextera XT
short-read sequencing libraries from all of the isolates
that were cultured from the stool samples. The resulting
53 sequencing libraries were multiplexed and sequenced
on a single Illumina HiSeq 4000 lane (data on all isolate
sequencing in Additional file 7: Table S9).
Short reads from each library were trimmed using the

same procedure applied to stool sample libraries. Trimmed
reads were then assembled using SPAdes [48] to obtain
genome drafts, and contigs from each draft were taxonom-
ically annotated using Kraken v0.10.6 [43] with a custom
database constructed from the Refseq and Genbank [44,
45]. Genes were identified using Prokka v1.12 [39].

Genotyping of IS614 and genomic island integration loci
in B. caccae isolates
Alignments of the short reads back to their respective gen-
ome drafts allowed discovery of IS614 integration loci
present in each B. caccae isolate genome. For each isolate, a
modified genome draft was first obtained by masking se-
quences of partially reconstructed IS614 elements, and
inserting a single fully assembled IS614 sequence. Raw
reads were then mapped back to this modified genome
draft using BWA [36]. Candidate flanking sequences down-
stream of the IS614 promoter in each isolate were then
found by examination of spanning read pairs mapping be-
tween the added IS614 sequence and other sequence con-
tigs. Isolates share flanking sequences as the majority of
integrations occur more than once. These were reconciled
to obtain a unique flanking set, and the IS614 genotype was
determined for all isolates from this unique set.
In order to search for potential large genomic island

sequences that are exclusively integrated into B. caccae
isolate genomes of a particular timepoint, k-mer counts
from all isolate genome drafts are first obtained using
Jellyfish [47] with k = 31. For pairs of timepoints (A, C)
and (C, D), we then searched for sets of k-mers that

were exclusively present in the antecedent points, but
not preceding ones. Each set of k-mers was then assem-
bled using SPAdes [48] with “--only-assembler” and
“--sc” to obtain candidate island sequences. This proced-
ure yielded only two such large genomic islands, both of
which were also found using comparisons of our read
cloud B. caccae drafts.

Antibiotic susceptibility testing and MIC determination
B. caccae isolate strains were first selected for testing on
the basis of their IS614 genotype determined by whole
genome sequencing. One isolate from timepoint A (A2)
was determined to contain both B. caccae and another
Bacteroides species most closely related to Bacteroides
uniformis. A2 was subsequently re-streaked on BHI
plates; this allowed for isolation of the B. caccae strain,
which was verified using PCR (described below).
Susceptibility to ciprofloxacin and trimethoprim was

assessed using a broth microdilution method for deter-
mining the minimum inhibitory concentration (MIC)
adapted from CLSI [52] as follows. Ciprofloxacin was
dissolved in acidified water (0.1 N HCl) to a final con-
centration of 25 mg/ml and trimethoprim was dissolved
in DMSO to a final concentration of 50 mg/ml. -Culture
tubes, TYG media, antibiotic stocks, 96-well assay plates,
pipette tips and all other labware were reduced over-
night in an anaerobic chamber prior to culture. Each
strain was first grown to saturation directly from pre-
pared glycerol stocks in 2.5 mL of TYG liquid culture for
48 h.
Clear 96-well flat-bottom assay plates were prepared

with TYG media containing a twofold serial dilution of
each drug over 11 concentrations in addition to no drug
controls (ciprofloxacin range 0–4096 μg/ml; trimetho-
prim range 0–512 μg/ml). Ciprofloxacin precipitated at
concentrations higher than 512 μg/ml after incubation
period; thus, these concentrations were excluded from
susceptibility analysis. The turbidity of the overnight cul-
tures was determined by measuring the optical density
at 600 nm (OD600), and the culture were adjusted with
TYG media to normalize the densities across all strains.
The cultures were diluted 1:200 in fresh TYG media
(OD600 ~ 0.1) and set up in the assay plates (100 μL per
well) that were already prepared with the drug dilutions
(100 μL per well) for a final total volume of 200 μL per
well. Each selected B. caccae isolate was tested in at least
two and up to four replicates. Assay plates were incubated
for 48 h at 37 °C in the anaerobic chamber. The OD600

was then measured for each plate on a BioTek Epoch
spectrophotometer (BioTek Instruments, Inc., Winooski,
VT). Prior to plate reading, wells were mixed by pipetting
up and down to evenly mix the cultures as all B. caccae
strains were observed to flocculate over the incubation
period. The minimum inhibitory concentration (MIC) of
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each drug for each replicate of each isolate was deter-
mined by fitting the drug concentration vs. OD600 data to
a Gompertz function [53]. The MIC values were then
rounded to the nearest discreet MIC category (32–64–
128–256–512 μg/ml). The differences in resistance pheno-
types were evaluated using a Student t-test with a signifi-
cance threshold of p value ≤ 0.05.

PCR amplification
PCR was performed to verify insertion sequence pres-
ence across timepoints at select loci where they were
found to be assembled. PCR reactions contained Phusion
High-Fidelity DNA Polymerase (New England BioLabs,
Ipswich, MA) with Phusion HF Buffer and NEB Deoxy-
nucleotide Solution Mix. Primers were obtained from
Elim Biopharm (Hayward, CA) with target melting
temperature of 60 °C. Reactions consisted of 6 μL 5X
Phusion HF buffer, 0.6 μL 10 mM dNTP, 0.3 μL Phusion,
2 μL 10mM forward primer, 2 μL 10 mM reverse primer,
1 μL template DNA, and PCR clean water to 30 μL.
Thermocycling was performed with 30 s of denaturation
at 98 °C followed by 35 cycles of 5 s of denaturation at
98 °C, 10 s of annealing at 65 °C, and 30 s per kilobase
extension at 72 °C. This was followed by a final exten-
sion at 72 °C for 5 min and an indefinite hold at 4 °C.

Results
Clinical findings
The patient was a 46-year-old man who underwent HCT
at the Stanford Hospital for treatment of an underlying
myelodysplastic syndrome and myelofibrosis, which was
refractory to treatment with azacitidine. The patient had
been exposed to a course of therapy with azithromycin
1.5 months prior to the date of the first sample (Fig. 1—
timepoint A); treatment with ciprofloxacin started the day
before the first sample was taken. Treatment with two cy-
cles of azacitidine treatment took place 2.5 months and ~
1month prior to timepoint A. The patient received mul-
tiple medications during the period of observation includ-
ing antibacterials, antivirals, antifungals, chemotherapy,
and immunosuppression (Fig. 1). The patient underwent
colonoscopy and was diagnosed with stage II gastrointes-
tinal (GI) graft-versus-host disease (GVHD) on day 42
after transplantation. He received immunosuppression (ta-
crolimus, prednisone, methylprednisolone, budesonide,
and beclomethasone) between days 7 and 60 as prophy-
laxis and treatment for GVHD. The patient was provided
a standard neutropenic diet until engraftment. On day 43,
the patient’s diet was restricted to total parenteral nutri-
tion for 8 days before he was advanced to a clear liquid
diet. Stool samples were collected from the patient over
the course of 56 days.

Oligo-domination of the intestinal microbiome during
treatment
To study the trajectory of this patient’s intestinal micro-
biome throughout treatment, we selected the following
four timepoints for sequencing: A (day 0), pre-
chemotherapy and pre-HCT; B (day 13), post-
chemotherapy and post-HCT; C (day 43), post broad-
spectrum antibiotic exposure and onset of GI GVHD; D
(day 56), following onset of GVHD and introduction of a
new antibiotic regimen including trimethoprim (Fig. 1).
We note that the first sample we collected for this pa-
tient 1 day after the patient was exposed to ciprofloxacin;
he had also been exposed to a course of therapy with
azithromycin 1.5 months prior to the date of the first
sample. Thus, our study lacks a sample taken prior to
antibiotic treatment.
We applied read cloud sequencing to the four clinical

stool samples obtained from the patient. Read cloud and
standard short-read sequencing libraries were prepared
from DNA extracted from each of the samples. Add-
itionally, short-read libraries were prepared from RNA
extracted from each of the samples (see “Methods”).
Species-level community compositions obtained by both
short-read and read cloud approaches were first assessed
using k-mer-based short-read classifications (Add-
itional file 1: Fig. S1).
During the course of treatment, the patient’s intestinal

microbiome underwent profound simplification, rapidly
becoming dominated by Bacteroides caccae, a normal
resident within a healthy human intestinal microbiome
[54] (Fig. 1; genus-level classifications included in Add-
itional file 1: Fig. S1). Both sequencing approaches dis-
played domination by B. caccae in later timepoints C
and D, but differed significantly in community compos-
ition for earlier timepoints A and B. Read cloud libraries
had a higher relative abundance of Gram-positive bac-
teria versus Gram-negative bacteria in these timepoints
as compared to short-read libraries. This discrepancy
may be the result of differences between the lysis
methods used to extract DNA for read cloud and short-
read libraries [55, 56] (see Additional file 1: Supplemen-
tary Results).

Read clouds produce more contiguous and complete
genome drafts of B. caccae
To obtain individual genome drafts for constituent mi-
crobes present in each sample, short-read and read cloud
libraries were first assembled using either a conventional
short-read assembler alone or a short-read assembler and
Athena [25], respectively (see “Methods”). Contigs in each
metagenome draft were then binned and taxonomically
classified to obtain annotated genome drafts (see
“Methods”). CheckM [38] was applied to the resulting bins
to assess genome completeness and contamination by the
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presence of lineage-specific single-copy core genes. In
addition to assembling B. caccae genome drafts, read
clouds produced well-assembled genome drafts for other
Bacteroidesmembers Bacteroides vulgatus and Bacteroides
uniformis (Additional file 4: Table S3). For timepoints A
and B, read clouds also assembled several high-quality
genome drafts [42] with N50 values exceeding 500 kb for
members of enriched Gram-positive genera including Eu-
bacterium, Lachnospiraceae, Gemella, and Flavonifractor.
Read clouds produced single genome bins for B. caccae
that were 94% complete and < 1% contaminated in domi-
nated timepoints C and D, but produced multiple, less
complete bins for B. caccae in earlier timepoints A and B
(Additional file 5: Table S4).
To produce more complete drafts for B. caccae, bins an-

notated as B. caccae in each assembly were merged and

reevaluated using checkM as more complete genome drafts
(Additional file 1: Table S5). Read clouds with Athena as-
sembly were able to consistently yield more contiguous and
more complete drafts of B. caccae than short-read sequen-
cing and assembly (Fig. 2). Despite differences in overall se-
quence coverage and community composition, B. caccae
had comparable absolute raw sequence coverage in both
short-read and read cloud libraries (Additional file 1: Table
S5). Our most contiguous and complete B. caccae read
cloud draft was from timepoint C with an N50 of 414 kb
and total size of 5.5Mb; this is a notable improvement over
the best short-read draft, which was from timepoint C with
an N50 of 88 kb and total size of 4.7Mb. B. caccae coverage
varied between 27× and 1542× across read cloud libraries,
and 157× and 759× across short-read libraries. All four B.
caccae read cloud drafts showed large-scale structural

Fig. 1 Patient condition, drug exposure, and intestinal microbiome composition during treatment. The study subject was admitted to Stanford
Hospital with myelodysplastic syndrome and myelofibrosis and subsequently underwent hematopoietic cell transplantation (HCT, denoted by a
red line). Stool samples were collected prior to HCT and over the following 5 weeks as the patient underwent chemotherapy, antibiotic
treatment, and immunosuppression. Taxonomic classification of shotgun metagenomics sequencing reads (Illumina TruSeq Nano DNA) reveals
pronounced dysbiosis emerging following HCT with gut domination by Bacteroides caccae, a commensal bacterium. Relative abundances of each
species are determined using reads that are classified at the species level. The relative abundance of the species in the samples was determined
after removing human and viral reads from the data. For this figure, the top 9 most abundant species in the shotgun metagenomics data are
shown. Relative abundance data for all the species-level classification is shown in Additional file 2: Table S1. For a more detailed view of the
species-level and genus-level classifications of all the samples, refer to Additional file 1: Fig. S1
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concordance with the available closed reference genome
(Genbank ID GCA_002222615.2), with the exception of
one misassembly in the timepoint D draft around a 16S/
23S ribosomal RNA gene operon (Additional file 1: Fig. S2).
We next compared the best read cloud and short-read B.

caccae drafts, which were both produced in libraries from
timepoint C, to available reference isolate genomes. We
first aligned the six available reference isolate genomes of B.
caccae (Genbank IDs NZ_AAVM02000021.1, NZ_
JH724079.1, NZ_CZBL01000001.1, NZ_CZAI01000001.1,
NZ_CP022412.2, NZ_PUEQ01000001.1) to our read cloud
drafts using MUMMER [46]. The read cloud B. caccae

genome contained 639 kb of novel sequence not repre-
sented in any reference isolate, compared to just 318 kb of
novel sequence contained in the short-read draft. The me-
dian sequence identity for alignable bases between our B.
caccae drafts and the reference isolates was 99.5% for both
read clouds and short reads (Additional file 1: Table S5).

Closely related but divergent strains coexist in clinical
samples
We posited that comparative analysis of the B. caccae gen-
ome drafts across timepoints would provide insight into
either strain selection or potential genomic remodeling of

Fig. 2 Read cloud and short-read genome drafts of Bacteroides caccae obtained from sequencing of stool samples. Circos plots of draft genome
assemblies of B. caccae from the sequencing of the patient stool samples are ordered chronologically (A through D) from the outermost inward.
Read cloud genome drafts assembled using Athena (blue) are more contiguous and complete than short-read drafts assembled using
conventional assembly (gray). The read cloud B. caccae draft from timepoint C (third circos plot from the outside) was the most contiguous and
served as the reference for all alignments. Contigs from each read cloud and short-read library are assigned a lighter color if they aligned to this
reference, but did not belong to a draft classified as B. caccae. Short reads did not produce a draft annotated as B. caccae for timepoint A. The
best read cloud and short-read drafts are both obtained through sequencing of timepoint C (read cloud: 414 kb N50, 5.5 Mb size, 99.3% complete,
1.6% contaminated; short read: 88 kb N50, 4.7 Mb size, 97.7% complete, 0.6% contaminated). The read cloud drafts include a total of 18 assembled
integration sites of IS614 (red circles) and 25 assembled integration sites of a candidate insertion sequence (green circles) that are missing from
all short-read drafts. Alignments of raw short reads to these sites indicated the presence of both strains without insertion sequence integration
and strains with the insertion sequence integration. Estimated proportions of these strains for each site and timepoint are shown with different
filled in areas of each circle, with an empty circle denoting predominance of ancestral strains lacking an IS at that location and shaded circles
denoting predominance of strains with the IS at that location
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this organism as it grew to eventually dominate the host’s
intestinal microbiome. We first searched the read cloud B.
caccae drafts for differing large-scale genomic island incor-
porations. Pairwise alignments of B. caccae drafts from suc-
cessive timepoints were first obtained with MUMMER [46],
and we used these alignments to identify large genomic se-
quences that were assembled into different genomic con-
texts between drafts from different timepoints (see
“Methods”, Additional file 1: Fig. S3). We identified a total
of five separate genomic islands ranging from 17 to 71 kb
in size that were integrated into different genomic contexts
between drafts of different timepoints (Additional file 1:
Table S6). Two of these islands were also present in the
draft genomes of B. vulgatus and B. uniformis.
We next searched the read cloud B. caccae drafts for

small-scale insertion sequences. Insertion sequence ele-
ments were first identified by counting k-mers in each read
cloud B. caccae draft, selecting high-frequency k-mers, and
assembling these to determine their precise sequence (see
“Methods”). This procedure yielded two putative insertion
sequence elements. The first IS, 1596 bp in length, was an-
notated using nucleotide alignments with BLAST (nt data-
base) [57]. It was determined to be IS614, a conserved
Bacteroides insertion sequence (IS). IS614 encodes a trans-
posase as well as an outward-facing promoter sequence,
which has been predicted to drive transcription of genes
neighboring the IS [7]. The second IS, 1470 bp in length,
could not be annotated as a previously described IS, but

shares protein sequence homology and a conserved DDE
domain with the IS4 insertion sequence family. Both IS614
and the unannotated candidate IS appear in the metagen-
ome drafts of the short-read libraries, but appear only in
single copies detached from genomic context with extreme
sequence coverage depth (16,664× and 14,615× coverage for
IS614 and the candidate IS in timepoint C, respectively).
This suggests that high copy sequence elements, including
these insertion sequences, cannot be assembled with short-
read assembly, greatly limiting the overall quality of genome
drafts obtainable with this approach. Although we found
the candidate IS to be present within two reference isolate
genomes for B. caccae (Genbank IDs: NZ_CZBL01000001.1,
NZ_CZAI01000001.1), we could not identify IS614 in any
of the six available reference isolate genomes.
We searched for integrations of IS614 and the candi-

date IS across all read cloud metagenome drafts in
which at least 3 kb of flanking sequence was assembled
on both sides of the integration. We found 28 unique in-
tegrations of IS614, 18 of which were determined to be
in B. caccae, and 10 in B. vulgatus. We found 25 unique
integrations of the unassigned IS, all of which were de-
termined to be in B. caccae.
At many insertion sites in B. caccae, alignments of the

short-read data to the Athena assembly confirmed the co-
occurrence of both strains harboring the IS and strains
with the pre-insertion “ancestral” sequence (Fig. 3a). From
these alignments, we obtained an estimate of the relative

Fig. 3 Co-occurrence of multiple B. caccae strains with differing IS614 integrations. a Alignments of short reads from timepoints B, C, and D to a
representative IS integration site reveal domination of the strain without the IS (“ancestral strain”) in timepoints in B and C, and domination of the
strain harboring the insertion in D. Short-read alignments from B and C show many reads spanning over both left and right junctions (red),
indicating global alignment to the ancestral sequence, while short-read alignments from D show many reads supporting the IS integration (blue),
indicating read pairs or single reads spanning the IS. This demonstrates that the IS is present at this locus at timepoint D but is undetectable at
timepoints B and C. b Estimated relative abundances of B. caccae ancestral strains and strains with an IS integration for all 18 detected IS614
integration sites. Integrations upstream of annotated antibiotic resistance genes norM, thyA2, and per1 are shaded. Major shifts in abundances
amongst the strains with and without integrations upstream of norM and thyA2 can be seen between timepoints B and C and timepoints C and
D, respectively. Integration sites are sorted by ancestral strain fraction in timepoint C
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abundance of ancestral and insertion-containing strains
for each site (see “Methods”). Only three of the 25 identi-
fied integration sites of the candidate IS had short-read
alignments indicative of a pre-insertion ancestral se-
quence. The rest of these integrations appeared to be fixed
in the B. caccae strain population. By contrast, we ob-
served large shifts in ancestral abundance at several B. cac-
cae IS614 integration loci (Fig. 3b), with 15 large (> 30%)
shifts occurring between consecutive timepoints. Add-
itional file 1: Table S7 summarizes the fractional abun-
dances of ancestral strains at each assembled B. caccae
insertion site.

Insertion sequences mediate transcriptional upregulation
in B. caccae
We next used RNA sequencing of each timepoint to in-
vestigate the potential transcriptional effects of the gen-
omic alterations we detected in B. caccae, focusing on
IS614. This IS contains a putative outward-facing pro-
moter near its 5′ end oriented antisense to its transposase
coding sequence [7]. Determining the transcriptional ef-
fect of this outward-facing promoter is difficult in a com-
plex metagenomic setting, as RNA sequencing reads may
originate from co-occurring strains with or without a

given insertion. In light of this difficulty, we restricted our
attention to integration sites that were dominated first by
ancestral strains and then by IS-harboring strains in con-
secutive timepoints, with at least 30% change in estimated
ancestral abundance. The 30% threshold was selected be-
cause it is the minimum change in ancestral strain abun-
dance that was needed to unambiguously assign RNA
sequencing reads to the correct strain in this complex
metagenomic mixture. In these sites, a corresponding in-
crease in transcription of genes downstream of the pro-
moter versus upstream of the promoter is more likely
attributable to the additional promoter introduced by the
IS. We found five such candidate loci, four of which had
putative promoter sites introduced in the same sense as
the adjacent downstream gene. All four of these loci
showed “transcriptional asymmetry” in which transcrip-
tion of the downstream neighboring gene was increased
between threefold and eightfold relative to transcription of
the upstream neighboring gene. This coincided with an in-
crease in relative abundance of strains harboring the inser-
tion (Fig. 4, Additional file 6: Table S8).
One notable transcriptional asymmetry coincided with

placement of the putative promoter in IS614 to upregu-
late norM, a multidrug resistance transporter (Fig. 4a).

Fig. 4 Metatranscriptomics support IS-mediated transcription within B. caccae. IS614 contains a putative outward-facing promoter. The relative
contribution of the IS promoter to transcription was determined by comparing RNA sequencing read depths of genes upstream and downstream
of it. a In timepoint B, which is dominated by ancestral strains without the promoter, RNA sequencing read coverage depth (relative transcript
abundance) is relatively equal on both sides of the integration site. In timepoint C, which is dominated by strains with IS614 with its putative
outwardly directed promoter, the transcription of the downstream gene norM is much higher than that of the upstream gene yidC. The relative
transcript abundance of all neighboring genes increase in timepoint C relative to B, but this increase is 10-fold greater in genes immediately
downstream of the introduced outward promoter. In later timepoints C and D, dominant strains harbor an introduced IS promoter positioned to
upregulate norM. This is supported by read pairs spanning between the IS promoter and norM. This difference in coverage and domination by
strains with this promoter both persist through timepoint D. Conversely, the earlier timepoint B is dominated by strains with no IS in this region.
b PCR with primers flanking the above integration instance of IS614 yields amplicons without the insertion sequence in earlier timepoints A and
B (400 bp), and with the insertion in later timepoints C and D (1.9 kb)
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NorM is a multidrug efflux protein that can confer mild
resistance to ciprofloxacin [58, 59]. Ciprofloxacin was ad-
ministered for the first 30 days of treatment through time-
points A and B (Fig. 1). Manual inspection of short-read
alignments to this insertion site showed this integration to
be undetectable in timepoint A, present in roughly a third
of strains in B, and then in the majority in timepoints C
and D, consistent with visible band patterns in our targeted
PCR results (Fig. 4b, Additional file 6: Table S8). Another
transcriptional asymmetry was observed adjacent to thyA2
and dhfrIII, encoding thymidylate synthetase and dihydro-
folate reductase, respectively (Additional file 1: Fig. S4).
Both are linked to trimethoprim sensitivity [60, 61], and the
marked rise in strains carrying an adjacent IS-borne pro-
moter coincides with the administration of this antibiotic to
the patient prior to the final timepoint D. A third transcrip-
tional asymmetry was found in resA, an oxidoreductase in-
volved in cytochrome c synthesis [62] (Additional file 1: Fig.
S5). The abrupt changes observed in the abundance of in-
sertion sequences adjacent to these loci suggest selective
pressures applied to the bacterial strains.
We found the most highly expressed gene in time-

points C and D to be the extended-spectrum beta-
lactamase gene per1, known to confer resistance to beta
lactam antibiotics [63], which were administered to the
patient between timepoints B and C. Per1 was expressed
nearly 60% more than the second most expressed gene
in both timepoints C and D (see Additional file 1: Sup-
plementary Results).
Though several insertion sequences became undetect-

able in DNA sequence data between timepoints C and
D, strains with insertions adjacent to norM and per1
continue to dominate through the end of the investi-
gated time course. By timepoint D, ciprofloxacin and
meropenem have been withdrawn for 26 and 19 days, re-
spectively, yet expression of resistance genes norM and
per1 remained elevated compared to their levels prior to
antibiotic exposure.

Antibiotic susceptibility of B. caccae clinical isolates
Based on the analysis of the genome drafts and IS-
mediated upregulation of antibiotic resistance genes in
B. caccae, we hypothesized that strains from different
clinical timepoints will show varying degrees in anti-
biotic susceptibility. To assess these phenotypic predic-
tions, we isolated B. caccae strains from stool samples
for whole genome sequencing and antibiotic susceptibil-
ity testing. Stool samples from each of the four time-
points A, B, C, and D were streaked directly on selective
media to isolate members from the Bacteroides fragilis
group including B. caccae (see “Methods”). A total of 53
colonies from timepoints A, C, and D were selected
based on morphology and further cultured in liquid
media. We were unable to obtain colonies representative

of the B. fragilis group from the timepoint B stool sam-
ple. The isolates were sequenced and assembled to ob-
tain draft genomes (see “Methods”, Additional file 7: S9).
Analysis of the assembled genomes revealed that 12 of

the 53 isolates were not B. caccae (Additional file 7:
Table S9). Notably, 7 out of 10 isolates from timepoint
A belonged to a Bacteroides species closest to Bacter-
oides uniformis. Our isolate collection contained a total
of 41 B. caccae strains with 3, 17, and 21 B. caccae
strains from timepoints A, C, and D, respectively.
We examined sequencing data from the 41 B. caccae

isolates to identify genomic alterations that may be
under selection between different timepoints over the
course of the patient’s treatment. We first detected the
set of all flanking genomic sequences that were down-
stream of the putative bacterial promoter present in
IS614, and also larger genomic islands that were differ-
entially present between the isolates (see “Methods”).
Each B. caccae isolate was then genotyped for the pres-
ence or absence of each IS614 integration and genomic
island incorporation.
Four IS614 integrations were present in all B. caccae

isolates, including per1, which we predicted to be fixed
in the B. caccae strain population across timepoints
using our read cloud metagenomic approach. Hierarch-
ical clustering of B. caccae isolates by IS614 integrations
revealed the presence of four distinct strain subpopula-
tions that shift in abundance between timepoints (Fig. 5).
Isolate sequencing also revealed an additional IS614 in-
tegration that was absent from our original read cloud
assemblies and located upstream of the gene susC, a
surface-accessible protein involved in starch binding and
utilization [64]. This IS614 instance was present in high
abundance in the latter timepoint isolates (15 out of 17
timepoint C isolates, 8 out of 21 timepoint D isolates),
concordant with the time period of poor oral dietary in-
take and initiation of total parenteral nutrition.
All strains from timepoints C and D (post ciprofloxa-

cin exposure) contain an IS614 integration upstream of
norM, which is absent from all three strains from time-
point A (pre ciprofloxacin exposure). Although a few
strains with an IS614 integration upstream of thyA2 and
dhfrIII are present in timepoint C (pre trimethoprim ex-
posure), the majority of strains with this integration are
present in timepoint D (post trimethoprim exposure).
The observed shifts in abundance of the B. caccae strain
subpopulations are consistent with the differing selective
pressures applied from the patient’s drug regimen over
the course of treatment. Notably, while clear subpopula-
tions with varying IS614 positions appear to exist and
have a selective fitness advantage at various timepoints,
the larger genomic islands appear to be sporadically in-
tegrated amongst the individual strains. This suggests
that none of the larger genomic islands were under
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selection between timepoints A and C or between time-
points C and D.
We posited that the strain-level variants we identified

will result in different drug resistance phenotypes. To
address this hypothesis, we tested the susceptibility of
several representative strains from each B. caccae sub-
population to ciprofloxacin and trimethoprim. In total,
we selected all three strains from timepoint A and four
strains from each of the three subpopulations of time-
points C and D for this analysis (Fig. 6a). The growth of
each isolate was evaluated against a twofold serial dilu-
tion of each drug (see “Methods”). Growth was deter-
mined by measuring the optical density at 600 nm
(OD600) (Additional file 1: Fig. S6, S7).
Overall, our antibiotic susceptibility analysis revealed

that these clinical B. caccae isolates are more resistant to
both ciprofloxacin and trimethoprim when compared to
other members of the B. fragilis group (Fig. 6). Previously
reported MIC50 values (antibiotic concentration at 50%
growth inhibition) for members of the B. fragilis group
have been ≤ 8 μg/mL for ciprofloxacin [65, 66] and ≤
8.8 μg/mL for trimethoprim [67]. By contrast, the MIC50

values across all strain subpopulations were ≥ 64 μg/mL
for both ciprofloxacin and trimethoprim. Nonetheless, we
observed varying degrees of drug resistance in the isolated

strains from the four subpopulations. Isolates from time-
points C and D, which we expected to be more resistant
to ciprofloxacin using our metagenomic approach, showed
a twofold to fourfold increase in the MICs relative to those
from timepoint A (Fig. 6b). Isolates from the third sub-
population present in timepoints C and D, which we ex-
pected to be more resistant to trimethoprim based on our
metagenomics analysis, showed a modest increase (two-
fold) in MIC compared to isolates from the other subpop-
ulations (Fig. 6c).
Grouping of replicates by subpopulation assignment

enabled the examination of their collective antibiotic
susceptibility. We found that the difference in ciproflox-
acin susceptibility between strains from subpopulation A
and each of the three C/D subpopulations (Student t-test
p value of 0.007, 0.0003, and 0.0009 for subpopulations
C/D-1, C/D-2, and C/D-3, respectively). This suggests
that the resistance phenotype to this drug appeared and
was sustained over time. Trimethoprim resistance is
consistently highest in the subpopulation with strains
carrying the IS614 integration upstream of thyA2, al-
though it is notable that some of the strains at timepoint
C also have a high level of resistance in the absence of
the IS614 integration upstream of thyA2. Differences in
trimethoprim susceptibilities were statistically significant

Fig. 5 Genomic alterations detected in B. caccae isolates support selection throughout treatment. The detected proportions of IS614 and large-
scale genomic island integrations (columns) in 41 B. caccae isolates (rows) are shown (filled squares indicate presence). Hierarchical clustering of
the 41 isolates by their IS614 integrations within each timepoint reveals four distinct subpopulations of B. caccae strains, three of which appear to
shift in relative abundance between timepoints C and D. The IS614 integration upstream of norM is the only one that is absent from all isolates
from timepoint A (before ciprofloxacin exposure), but appears in all isolates from timepoint C and D (after ciprofloxacin exposure). The IS614
integration upstream of per1 is present in all of the B. caccae isolates we obtained. Initial analysis of the isolate sequencing data was unable to
detect IS614 integrations in front of per1 for two isolates, but manual inspection of the assembly graphs of these confirmed this integration to be
present in these two as well (open squares in the per1 column). The IS614 integration upstream of thyA2 appears in a minority of strains in
timepoint C (prior to trimethoprim exposure) and appears in the majority of strains in timepoint D (after trimethoprim exposure). The IS614
integration upstream of susC, which was detected in isolate sequence data, also appears to be under selection in timepoint C. Unlike the IS614
integrations, none of the large-scale genomic islands appear to be under selection between timepoints as they are broadly distributed across
all subpopulations
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when comparing the MIC values of subpopulation A
and subpopulation C/D-3 (p value = 0.001), and subpop-
ulation C/D-2 and subpopulation C/D-3 (p value =
0.009). Collectively, the drug susceptibility results are
generally consistent with the resistance phenotypes we
predicted based on our metagenomics analysis. Whole
genome sequencing of B. caccae isolate strains from
timepoints A, C, and D together with antibiotic suscepti-
bility testing support the presence of selection amongst
strain populations of B. caccae with different IS614 inte-
grations as predicted using our read cloud metagenomic
approach.

Discussion
Strain variation within microbial communities can arise
either from de novo evolution or through selection upon
standing variation. Tracking strain-level variation in the
gut microbiome in a clinical setting remains an import-
ant challenge to understand the functional role of this
variation in the clinic. Although computational ap-
proaches have allowed us to detect changes in genus-
level and even species-level microbial community com-
position, it has remained difficult to track changes in the
composition of strains that harbor more fine-grained
structural differences.
Here, we leverage a recently developed read cloud

metagenomic sequencing approach to create de novo ge-
nomes of bacterial strains from a case study of a clinical
microbiome time series, which we then use to discover
strain-level dynamics over the course of the patient

treatment. The clinical subject we examine in this study
underwent extensive treatment with several classes of
medication while undergoing hematopoietic cell trans-
plantation. Immune suppression and extensive antibiotic
treatment likely contributed to destabilization of the in-
testinal microbiome. In other studies, this type of less-
diverse intestinal microbiota has been associated with in-
creased overall mortality, GI GVHD, and other adverse
outcomes [68–71]. Previous studies of similar cohorts as
well as healthy individuals have shown that antibiotic
use can lead to intestinal domination by one or few mi-
croorganisms [72, 73], but the mechanisms by which any
specific microorganism achieves dominance remain in-
completely understood. Our study of this patient re-
vealed that populations of microbes with apparently
stable taxonomic composition can, in actuality, be com-
posed of many closely related strains that undergo large
fluctuations in abundance. The generalizability of this
observation has yet to be evaluated and requires further
investigation.
Using the read cloud sequencing and assembly ap-

proach, we observe large shifts in abundance of bacterial
strains harboring different IS614 integration sites. Inte-
gration events are often biased to transcriptional hot-
spots where an open DNA conformation promotes
higher rates of transposition with a transposon. Interest-
ingly, we have only observed the IS element in one
orientation whereas if the IS entry was secondary to very
active transcription, we would expect an equal likelihood
of both orientations of the IS element. Through RNA

Fig. 6 Antibiotic susceptibility testing of B. caccae isolates. Fifteen B. caccae isolates (3 isolates from timepoint A and 4 from each subpopulation
present in timepoints C and D) were tested for their susceptibility to ciprofloxacin and trimethoprim, the two antibiotics that the patient was
administered during treatment. The minimum inhibitory concentrations (MICs) of the two drugs against each isolate were determined as
described in the “Methods”. a The presence (filled square) of different IS614 integrations within tested isolate strains that are upstream of
annotated genes norM and thyA2, which are known to contribute to resistance to ciprofloxacin and trimethoprim. NorM is a known multidrug
efflux pump that can confer resistance to ciprofloxacin. Upregulation of thyA2/dhfrIII has been shown to affect resistance to trimethoprim [61].
These IS integrations result in the potential introduction of likely bacterial promoters upstream of these genes likely leading to their upregulation
increased expression and consequently as a result, increased antibiotic resistance. b MICs of ciprofloxacin against B. caccae strains. Strains from
timepoints C and D with IS614 integrations upstream of norM and thyA2/dhfrIII predicted to increase resistance to ciprofloxacin (shaded) have a
two- to fourfold increase in their MICs relative to strains from timepoint A. c MICs of trimethoprim against B. caccae strains. Overall, strains from
all subpopulations showed high resistance to trimethoprim. Strains from the third subpopulation in timepoints C and D with IS614 integrations
predicted to increase resistance to trimethoprim (shaded) show a twofold increase in resistance to trimethoprim compared to
other subpopulations
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sequencing, we find evidence of gene upregulation
caused by insertion sequence-mediated transcription.
One IS614 integration site positioned to upregulate
norM was found to be undetectable in B. caccae strains
within timepoint A, present in a fraction of strains
within timepoint B, and present in all detectable strains
within timepoints C and D. This rise to dominance is
consistent with both the observed timing of ciprofloxa-
cin administration and the role of norM in antibiotic re-
sistance [58]. Another IS614 integration site positioned
to upregulate thyA2 and dfhrIII is detected in strains at
low abundance within timepoint C and present in the
majority of detectable strains in timepoint D. This ob-
served shift in strain abundance is again consistent with
trimethoprim administration between timepoints C and
D, as well as previous reports linking increased expres-
sion of these genes to trimethoprim resistance [60, 61].
Examination of isolate sequencing data revealed an add-
itional integration positioned to upregulate susC, a gene
involved in starch binding and utilization [64]. In light of
the restrictions placed on the patient’s diet starting after
timepoint B, it is possible that upregulation of susC ren-
dered organisms with this selective advantage more suc-
cessful in competing for limited starches available within
the gut lumen. Our results suggest that insertion se-
quences can mediate changes in gene transcription
within individual strains, which creates a pool of pheno-
typic variation that may allow adaptation to changing
environmental stresses.
Our results highlight the value of de novo

characterization of microbial communities in capturing
strain-level variation, as well as the importance of strain
dynamics in antibiotic-associated dysbiosis of the gut
microbiome. Previous methods to detect genomic strain
diversity rely on compiled reference sequence collec-
tions, characterizing nucleotide divergence within either
predefined gene sets or gene presence within a prede-
fined organism-specific pan-genome [74–76]. Although
these methods differ substantially, their reliance on the
reference sequence collection restricts sensitivity in the
context of poorly sequenced or unknown species which
comprise a large fraction of microbial diversity [77]. We
note that for this dataset, genome assembly was rela-
tively easier given the successive decrease in the diversity
of the microbial community and eventual sweep by B.
caccae in the samples. With the longitudinal data, we
were capable of contextualizing the strain diversity of B.
caccae. Our experience is in line with how community
composition, genetic diversity, and other factors contrib-
ute to genome assemblies [78]. Existing short-read
methodologies fail to assemble certain classes of se-
quences, including insertion sequences and larger-scale
genomic island incorporations, both of which can impart
significant changes to bacterial phenotypes. Read cloud

assemblies can also be limited in resolving genomes with
a high degree of sequence repetition. These repetitive in-
sertion sequences often co-locate with breaks in both
short reads and read cloud genome assemblies. We have
encountered these challenges in obtaining complete gen-
ome assemblies of Prevotella copri using read clouds,
and in these cases have ultimately used nanopore long-
read sequencing and assembly to overcome these limita-
tions [79].
Our results demonstrate that high-quality individual

genome drafts may facilitate a better understanding of
the complex interactions between strains and species
within the microbiome. Further investigation is needed
to determine if the rise in abundance of strains carrying
different insertion sequence integrations is due to selec-
tion or an active biological process occurring in response
to environmental stress. Although strains carrying the
IS614 integration upstream of norM are undetectable by
read cloud assembly or PCR in timepoint A before cip-
rofloxacin administration, it is possible that these strains
were present at very low abundance and grew to domin-
ate in later timepoints due to selection. Further in vitro
adaptive evolution experiments may be able to deter-
mine whether IS614 is capable of mobilizing in response
to the types of exposures and clinical situations faced by
the studied subject. Whole genome sequencing of B. cac-
cae strains isolated directly from the patient’s stool sam-
ples indicates the presence of four major strain
subpopulations. Three of the four subpopulations con-
tain an IS614 integration adjacent to norM, suggesting
that these integrations arose from multiple independent
transposition events. However, a higher number of iso-
late genomes from earlier timepoints and examination of
more individual patients would provide more compelling
evidence to support this hypothesis.
As methods for read cloud and long-read sequencing

mature, we anticipate that applications of these methods
to human microbiome samples will illuminate mobile
element diversity within other complex microbial com-
munities and enable further investigation into particular
elements that may influence fitness under different en-
vironmental stresses.

Conclusions
We demonstrate that read cloud assembly can capture
strain-level genomic variants within metagenomic sam-
ples. We also show that different strain variants of micro-
bial species fluctuate in their relative abundance over a
relatively short time period in human microbiomes. These
strain-level dynamics are associated with increased anti-
biotic resistance over the course of clinical treatment. Our
work shows the potential of culture-free metagenomic se-
quencing approaches in investigating adaptive regulatory
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variations mediated by mobile elements and exploring
strain dynamics within the gut microbiome.
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are shown in Additional file 1: Fig. S1.

Additional file 4. Table S3. Assembly statistics, completeness metrics,
tRNA and rRNA loci counts, total annotated genes, and coverage depths
for all annotated species draft genomes in short-read and read cloud li-
braries from each time point. Results are shown for the largest bin of
each species.

Additional file 5. Table S4. Assembly statistics, completeness metrics,
tRNA and rRNA loci counts, total annotated genes, and coverage depths
for bins created by merging all those annotated as B. caccae in short-
read and read cloud libraries at each time point.

Additional file 6. Table S8. Coding sequences with RNA sequencing
read counts and fold-change between time points in the neighboring 10
kb around the five IS614 integration loci in B. caccae estimated to have
large-scale ancestral strain shifts. Gene annotations were obtained using
Prokka. The target gene downstream of the putative promoter as well as
the upstream gene are highlighted (green: downstream, red: upstream).

Additional file 7. Table S9. Total reads, sequencing coverage,
assembled genome draft size and N50, and taxonomic annotation for all
53 isolates from stool samples of time points A, C, and D.
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