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Abstract

Background: Multiple studies suggest a key role for gut microbiota in IgE-mediated food allergy (FA) development,
but to date, none has studied it in the persistent state.

Methods: To characterize the gut microbiota composition and short-chain fatty acid (SCFAs) profiles associated
with major food allergy groups, we recruited 233 patients with FA including milk (N = 66), sesame (N = 38), peanut
(N = 71), and tree nuts (N = 58), and non-allergic controls (N = 58). DNA was isolated from fecal samples, and 16S
rRNA gene sequences were analyzed. SCFAs in stool were analyzed from patients with a single allergy (N = 84) and
controls (N = 31).

Results: The gut microbiota composition of allergic patients was significantly different compared to age-matched
controls both in α-diversity and β-diversity. Distinct microbial signatures were noted for FA to different foods.
Prevotella copri (P. copri) was the most overrepresented species in non-allergic controls. SCFAs levels were
significantly higher in the non-allergic compared to the FA groups, whereas P. copri significantly correlated with all
three SCFAs. We used these microbial differences to distinguish between FA patients and non-allergic healthy
controls with an area under the curve of 0.90, and for the classification of FA patients according to their FA types
using a supervised learning algorithm. Bacteroides and P. copri were identified as taxa potentially contributing to
KEGG acetate-related pathways enriched in non-allergic compared to FA. In addition, overall pathway dissimilarities
were found among different FAs.

Conclusions: Our results demonstrate a link between IgE-mediated FA and the composition and metabolic activity
of the gut microbiota.
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Background
Food allergy (FA) is defined as an adverse health effect
arising from an IgE-mediated immune response that oc-
curs reproducibly upon exposure to specific food anti-
gens. The prevalence of allergic disorders has been
increasing worldwide, and FA is of particular concern
considering the severity of its clinical manifestations and
the persistence of the disorder past childhood. While a
majority of egg and milk allergies resolve by age four [1],
a significant minority persist into adulthood. In addition,
the majority of patients who suffer from peanut and tree
nuts allergies tend to persist into adulthood. It is esti-
mated that FA affects up to 8% of children and 3% of
adults in industrialized countries [2].
Mechanistically, FA emerges in the context of oral tol-

erance failure. The establishment and maintenance of
oral tolerance depend on the interplay between several
biological systems, most notably the immune system, the
intestinal epithelium, and the gut microbiome. The latter
component promotes the maintenance of the intestinal
barrier and modulates the function of resident immune
cells through the generation of metabolites such as
short-chain fatty acids (SCFAs) [3, 4]. For example, in
germ-free (GF) mice who do not produce SCFAs as they
lack a gut microbiota, treatment with acetate markedly
improved disease indices and decreased levels of inflam-
matory mediators, in a colitis model [4]. Additionally,
several studies conducted in mice suggested that SCFAs
may play a role in allergy protection, including protec-
tion against allergic airway diseases and decrease of al-
lergic airway inflammation [4–6]. It was also reported
that a high-fiber diet could promote oral tolerance and
confer protection against FA in mice via SCFA signaling
through several pathways, such as G-protein-coupled re-
ceptor GPR43 signaling [4, 7], mediated by acetate and
propionate [8, 9]. On a cellular level, SCFAs act to pro-
mote the development of tolerogenic CD103+ dendritic
cells, which influence the development of regulatory T
cells [10] and drive B cell production of IgA [11]. Con-
versely, immune dysregulation may result from changes
in the gut microbiota composition [12] leading to
changes in the above cellular milieu, and in the case of
allergy leading to production of Th2 cytokines and food
allergen-specific IgE [13].
Previous work has indicated potential links between

microbiota composition and the development of FA.
Utilizing a mouse model of fecal transplantation from
specific pathogen-free (SPF) to germ-free (GF) mice, a
causative role for the commensal bacteria in protecting
against food sensitization was demonstrated [14].
Clostridia-containing microbiota induced innate lymph-
oid cells to significantly increase IL-22 production which
reinforced the epithelial barrier to reduce intestinal per-
meability to dietary antigens limiting allergen access to

the bloodstream. Several human studies examined early-
life microbiota composition in relation to eventual FA
outcome [15, 16]. Other studies compared microbiota
between allergic and tolerant children for FA generally
[17, 18] and for specific allergies [19]. Despite the re-
ported features distinguishing allergic microbiota, few
studies with a large number of participants have exam-
ined the microbiota in FA across multiple allergies in
the persistent state. This work presents a large-scale
study of microbiota association with FA in over 200 pa-
tients with a variety of allergies. Herein, we demonstrate
that there is a bold microbial signature concomitant with
significantly lower concentrations of stool SCFAs in FA
patients.

Methods
Study cohort
To characterize the gut microbiota composition and
short-chain fatty acids (SCFAs) profiles associated with
major food allergy groups, we prospectively enrolled 233
allergic patients (> 4 years old) from a single center (In-
stitute of Allergy, Immunology and Pediatric Pulmonol-
ogy, Shamir Medical Center) referred for evaluation of
IgE-mediated food allergy. Patients were allergic to milk
(N = 66, 58 singly allergic), peanut (N = 71, 44 single),
sesame (N = 38, 12 single), or tree nuts (N = 58, 52 sin-
gle). Four additional egg-allergic patients were initially
recruited, but not included in the analysis, due to their
small sample size. Inclusion criteria were patients with
an oral food challenge confirmed food allergy or history
of a reaction in the past year in the presence of IgE-
reactivity as evidenced by a positive skin prick test and
an age > 48 months. Stable asthmatics were eligible for
inclusion. Exclusion criteria included oral antibiotic use
in the prior 3 months and a history of other numerous
chronic inflammatory diseases, including inflammatory
bowel disease and the group of obesity-associated dis-
eases collectively referred to as metabolic syndrome. A
detailed medical history including the presence of other
allergic comorbidities (other food allergies, atopic
dermatitis, and asthma) was obtained. Patients were skin
prick tested (SPT) to suspected allergens and oral food
challenges (OFC) were performed. High concentration
SPT were utilized for sesame [20] and tree nuts [21] as
previously described and commercial reagents for milk
and peanut (1:10 w/v, ALK-Abello, Port Washington,
NY, USA) with histamine being used as a positive con-
trol (1 mg/mL; ALK-Abello, Port Washington, NY,
USA). OFC were done according to previously published
protocols [1, 22–24] reaching maximum doses for milk,
peanut, sesame, and tree nuts of 3600, 3000, 4080, and
4000 mg protein, respectively. The diagnosis of allergy
was based on a recent reaction (cutaneous, gastrointes-
tinal, respiratory and/or systemic symptoms occurring
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within 2 h of exposure) or a positive OFC, together with
evidence of sIgE reactivity on SPT. Patients were catego-
rized as tolerant to a specific allergen if they reported
regular consumption of that food or if they had a nega-
tive OFC. Stool samples were collected from FA patients
prior to challenge and from healthy non-allergic age-
matched controls (Bar Ilan University) and stored at −
80 °C until use. The study was approved by the Institu-
tional Review Board (#0022-16-ASF) and conformed to
the principles of the Helsinki Declaration, and all pa-
tients or their caretakers signed full informed consent.
The control samples (N = 58) were collected under the
approval of Ethics in Research (human subjects) Com-
mittee at the Azrieli Faculty of Medicine, Bar-Ilan Uni-
versity (approval #112015). All samples were processed
together in order to avoid batch effects.

DNA extraction and 16S rRNA gene amplification
DNA was extracted from all fecal samples using the
Mobio PowerSoil DNA extraction kit, as described by
the manufacturer (MoBio, Carlsbad, CA). The samples
were homogenized using a beadbeater for 2 min. Bacter-
ial 16S rRNA gene sequences from each sample were
amplified by PCR performed in 96-well plates. Sample
preparation was similar to that described by Nuriel-
Ohayon et al. [25]. Briefly, PCR reactions contained
17 μL PCR grade nuclease-free water (Hylabs, Rehovot,
Israel), 25 μL PrimeSTAR Max (Takara-Clontech, Shiga,
Japan), 2 μL each of the forward and reverse primers
(10 μM final concentration), and 4 μL genomic DNA.
Reactions were heated to 95 °C for 3 min for DNA de-
naturation, with amplification proceeding for 33 cycles at
98 °C for 10 min, 55 °C for 5 min, and 72 °C for 5 min; a
final extension of 1 min at 72 °C was added to ensure
complete amplification. Barcoded universal primers 515F
and 806R containing Illumina adapter sequences which
target the highly conserved V4 region, as previously de-
scribed [25], were used to amplify the microbiota from
individual samples. Amplicons were purified using
AMPure XP magnetic beads (Beckman Coulter, Brea,
CA) and subsequently quantified using Quant-it Pico-
green dsDNA quantification kit (Invitrogen, Carlsbad,
CA). Equimolar ratios of amplicons from individual
samples were pooled together before sequencing on the
Illumina MiSeq platform at the Genomic Center of the
Bar Ilan University, at the Azrieli Faculty of Medicine.

Data analyses
Microbial communities were analyzed using QIIME2
version 2019.4 [26]. Sequences were quality filtered to
remove short and long sequences, sequences with pri-
mer mismatches, uncorrectable barcodes, and ambigu-
ous bases. Read normalization was performed before the
analysis output with rarefaction of 11,500 sequences per

sample and features with less than 0.0003% of total reads
were discarded. A closed reference Greengenes database
[27] was used to pick taxonomic features and assign tax-
onomy. ANCOM [28] and Python (version 3.7, library
Seaborn) platforms were used to identify significantly
differentiating microbial taxa among groups. Sequences
are available in the European Nucleotide Archive reposi-
tory with the accession number PRJEB37877.

SCFA extraction and analysis
An aliquot of 0.25 g of wet feces was thawed and sus-
pended in 1 mL of an orthophosphoric acid solution (8%
v/v) and kept at room temperature for 10 min with occa-
sional shaking. The mixture was homogenized for 2 min,
and the suspension was centrifuged at 4 °C for 15 min at
14,000 rpm. The supernatant was filtered by centrifuga-
tion at 4 °C for 15 min at 14,000 rpm. Next, 225 μL of
the supernatant was transferred into a polypropylene
tube, and 25 μL of 2-methyl-butyric-acid (Sigma-Aldrich,
USA) was added as an internal standard (IS) to a final
concentration of 0.001M and transferred to a chromato-
graphic vial for gas chromatography analyses. The IS
was used to correct for injection variability between
samples and minor changes in the instrument response.
Vials were stored at − 20 °C before GC analysis. A stand-
ard mix (WSFA-4, Sigma-Aldrich, USA) was used to de-
termine the concentrations of propionic acid. Standard
curves for acetic acid and butyric acid (Sigma-Aldrich,
USA) were prepared using stock solutions of both acids,
separately. Chromatographic analyses were carried out
using the Agilent Technologies 6890 A GC system with
a mass selective detector. Fused-silica capillary column
with a free fatty acid phase (DB-FFAP 122-3232, 30 m ×
0.25 mm × 0.25 μm) was used. The carrier gas was he-
lium at the flow rate equal to 13.6 mL/min. The initial
oven temperature was 70 °C, raised to 100 °C at 20 °C/
min, then raised to 180 °C at 8 °C/min and held for 3
min, and then raised to 230 °C at 20 °C/min. The injec-
tion volume was 1 μL and the run time of a single
analysis was 17min.

Statistical analysis of the 16S rRNA, SCFAs data, and
metadata
We employed Spearman rank correlations for the con-
tinuous metadata and ANOVA for the categorical meta-
data to check for associations between the metadata
obtained (FA, SCFAs concentrations, demographic and
clinical data) and the abundances of the microbial fea-
tures summarized at different taxonomic levels. For the
analysis involving multiple comparisons, we performed
pairwise t test on the bacterial relative abundances and
the SCFA concentrations and adjusted using false dis-
covery rate (FDR). Statistical analyses were performed
using R version 1.1.463.
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To identify correlations between microbial taxa and
SCFAs, we calculated the Spearman correlation between
the normalized log bacterial expression level and the
SCFAs and performed a two way (row and column)
single link Euclidean hierarchical clustering. Python’s
Seaborn library was used for statistics of Spearman rank
correlations and visualization of all the represented
heatmap plots.

Functional profile prediction and identification of
taxonomic drivers
PICRUSt2 [29] was used to predict KO abundance pro-
files from taxonomic profiles. FishTaco platform [30]
was used to identify KEGG pathways that are differen-
tially abundant between microbiomes of different study
groups and the taxa that are driving these functional
shifts. Briefly, FishTaco receives as input the taxonomic
profiles obtained by QIIME2, a genomic content table,
and the KO abundance profiles as generated by
PICRUSt2 [29], calculates the differential abundance
score for each pathway, and uses a permutation and
Shapley-values-based method to decompose observed
functional shifts into taxon-based contributions.

Machine learning (ML)
Features were aggregated to the genus level by averaging
over all features assigned to the same genus. Given the
large variation in feature values, we transformed these
values to Z scores by adding a minimal value to each
feature level (0.01) and calculating the 10-basis log of
each value. Statistical Whitening was then performed on
the table, by removing the average and dividing by the
standard deviation of each sample. Supervised Learning
was performed on the normalized and aggregated ver-
sion of the 16S rRNA feature table, including all the
taxonomical data, in order to recognize patterns in the
data. Principal Component Analysis was performed
using Python version 3.7 and its package and sklearn li-
brary. The first 20 components were kept. These compo-
nents explain 60.24% of the variance. A binary linear
Support Vector Machine was trained to classify healthy
non-allergic donors and allergic patients based on all
bacterial abundance features. Five-fold cross-validation
was performed. The box constraint value was 1 and
weighted by the group size. More complex methods
were not used to limit overfitting, given the limited
number of samples. The SVM score was used to pro-
duce a receiver operating characteristic (ROC) curve on
the test set. The reported area under curve (AUC) is the
average AUC over all test sets. For the multi-class ana-
lysis, a multi-class weighted linear SVM was trained,
with a similar configuration and box constraint value of
0.1. The error was estimated through a confusion matrix
representing the relative fraction of cases in the test set

where class i was predicted while the truth was class j.
The accuracy was defined as the sum of the diagonal.

Results
To study the associations between FA and patient’s clin-
ical data and the abundances of the microbial taxa, we
used 16S rRNA gene sequencing and computational
methods. We characterized features of the gut micro-
biota in fecal samples, identified microbial patterns asso-
ciated with FA in a cohort of 233 patients with various
types of FA, and compared the microbiota with 58 sam-
ples from healthy controls. The demographic features of
the study participants are summarized in Table 1.
To discard possible covariates affecting the micro-

biome, we examined the influence of the demographic
and clinical characteristics on the microbiome in the al-
lergic group. We tested various groupings of allergic pa-
tients according to different personal or clinical
characteristics, e.g., gender, age, asthma, eosinophil
blood level, and adrenaline requirement. We found no
significant differences in the α or β diversity between
any of the comparisons we tested. Moreover, the R2 for
the beta diversity (Weighted UniFrac) was zero for most
of the comparisons except for age (R2 = 0.006) and ex-
treme levels of eosinophils (R2 = 0.001), meaning only 0–
0.6% of the variances we examined could be explained
by the microbiome (Table 2). In addition, neither
ANCOM nor spearman correlations identified any
bacterial taxa that were significantly over or under-
represented in one specific group hence these covariates
were not included in subsequent analyses.

IgE-mediated FA patients have a specific microbial
signature that differs from non-allergic
We first set out to characterize the gut microbiota of FA
patients to understand if they share common character-
istics relative to non-allergic controls. When comparing
between-sample diversity (β diversity), we found signifi-
cant differences between all allergic patients and the
non-allergic control group (Fig. 1a, b; q = 0.001). Not-
ably, the allergic group exhibited significantly lower spe-
cies richness (α diversity, Fig. 1c, q = 0.01). Based on
Spearman correlations on log-normalized feature levels
and patient classification as healthy (0) or allergic (1),
multiple bacterial taxa were significantly related to aller-
gic or non-allergic states (p < 0.05). We found 5 species

Table 1 Demographic characteristics of the study cohort

Parameter Control
(n = 58)

Allergic
(n = 233)

p value

Age, months (IQR) 78 (48.0–125.3) 77 (63.0–114.5) NS

Gender, M (%) 56.9 59.5 NS

BMI z-score
median (IQR)

0.6 (− 0.73–1.39) 0.13 (− 0.54–0.805) NS
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that increased in the allergic group: Collinsella aerofa-
ciens (r = 0.25), Dorea formicigenerans (r = 0.22), un-
classified Methanobrevibacter (r = 0.2), Blautia obeum
(r = 0.2), and Coprococcus catus (r = 0.19). On the other
hand, 18 species were increased in the non-allergic
group, with P. copri (r = − 0.27) and Bifidobacterium
adolescentis (r = − 0.26) being the most overrepresented
in this group (Fig. 1d, p < 0.05). P. copri was also found
to be the most overrepresented in the non-allergic ac-
cording to the ANCOM analysis (Fig. 1e, q = 0.002). Su-
pervised learning using SVM on the significantly
different bacterial features seen in each group facilitated
ROC analysis yielding an area under the curve (AUC) of
0.90 in the test set (Fig. 1f). The bacteria in the genera
level that were increased in the allergic or non-allergic
groups are presented in Additional file 1: Fig. S1. We
found the genera Adlercreutzia (r = 0.34), Eggerthella
(r = 0.33), Turicibacter (r = 0.33), and the family Erysipe-
lotrichaceae (r = 0.27) to be significantly over-
represented in the allergic group. In contrast, the genera
Enterococcus (r = − 0.26), SMB53 (r = − 0.24), Prevotella
(r = − 0.21), and the Enterobacteriaceae family (r = − 0.2)
were significantly over-represented in the non-allergic
group, whereas Prevotella was the genus most signifi-
cantly over-represented in the non-allergic group.

The allergic state has more impact on the microbiota
than the number of allergies
We next divided the 233 allergic patients into two
groups: patients with multiple allergies (n = 87) and pa-
tients with a single allergy (n = 146). For this analysis,
the tree nuts group single allergy was stringently defined
as having either a walnut (pecan and hazelnut included
in this group) or a cashew (pistachio included in this
group) allergy, but not both (n = 20 tree nuts patients ex-
cluded). The demographic features of patients with mul-
tiple allergies versus single allergy are summarized in
Table 3. The two sub cohorts were similar, except for
the fact that multiply allergic patients had a significantly
higher rate of atopic dermatitis (p < 0.001). We charac-
terized the microbial differences between the multiple
and the single allergy groups and compared the micro-
biota to those of non-allergic healthy controls. β

diversity demonstrated a significant difference between
the non-allergic (n = 58) versus the single and the mul-
tiple allergy groups, but not between the single and the
multiple allergy groups themselves (Fig. 2a,b). Differ-
ences were also observed in the α diversity, where the
non-allergic group was found to be significantly different
from the multiple FA group (q = 0.02) and tended to dif-
fer from the single FA group (q = 0.06), although no sig-
nificant difference (q = 0.26) was found between the
single and the multiple allergy groups (Fig. 2c). As
above, P. copri was the only bacterial feature that dif-
fered significantly between the non-allergic group and
the multiple and single allergy groups using ANCOM
analysis, with no significant differences between the sin-
gle and the multiple allergies groups (Fig. 2d; q = 0.002,
q = 6e−05, q = 0.4, respectively). These results demon-
strate that the allergic state, even at the level of a single
FA is associated with an altered microbiota, which is not
further affected by the multiply-allergic state.

Significant differences in the gut microbiota between the
different IgE-mediated FAs
In order to characterize the differences in microbiota be-
tween subjects with different allergies, we compared
patients with only a single FA: milk, peanut, sesame, or
tree nuts. In the latter group, patients with a single tree
nuts FA typically avoid consumption of multiple tree
nuts regardless of the specific nut to which they are al-
lergic and were therefore grouped together. Demo-
graphic and clinical features of these groups are
presented in Table 4. We found the different IgE-
mediated FA to be significantly different in their gut
microbiota composition, whereby the β diversity (Fig. 3a)
was significantly different in milk versus peanut (q =
0.002) and sesame (q = 0.002), peanut versus tree nuts
(q = 0.002), and sesame versus tree nuts (q = 0.018).
Similar differences were seen in the α diversity, between
the same groups, whereas the sesame allergy group had
the lowest species richness compared to all of the allergy
types examined (Fig. 3b). We performed an ANOVA test
for the relative abundance of P. copri (q = 0.0002) and
found significantly higher relative abundance in the milk
and tree nuts FAs compared to the peanut allergy

Table 2 The influence of demographic and clinical characteristics of the FA group on the microbiota

Parameter Threshold β diversity (weighted UniFrac) α diversity (Faith’s PD)

q value R2 q value

Age (years) <, > 13 0.37 0.006 0.19

Gender F, M 0.29 0 0.26

Asthma Yes, No 0.62 0 0.28

Eosinophils (median levels) <, > 600 0.95 0 0.68

Eosinophils (extreme levels) < 300, > 900 0.94 0.001 0.94

Adrenaline use Yes, No 0.44 0 0.69
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c d

e f

Fig. 1 Allergic patients have different gut microbiota compared to healthy non-allergic controls. a, b PCoA based on a weighted and b unweighted UniFrac
distances (β diversity). c α diversity based on Faith’s PD. d Heat map of significantly different features comparing FA patients with controls based on a machine
learning analysis. e Analysis of the composition of microbiomes (ANCOM), followed by pairwise t test with FDR correction using R on the relative abundance of
P. copri. f ROC curve analysis using supervised learning for FA classification based on the microbiome data, against true food allergic status. **q≤ 0.01

Goldberg et al. Genome Medicine           (2020) 12:92 Page 6 of 18



(Fig. 3c; q = 0.043 for both). We also observed a trend
when comparing the relative abundance in the sesame
group with the milk and tree nuts groups (q = 0.09).
Furthermore, using a linear SVM, we tested the classifi-
cation of four different allergy types. We were able to
correctly classify each FA according to the microbiota
profile with a total accuracy of 0.51 (51%) in the test set
compared with 25% for random classification of 4 clas-
ses, demonstrating a unique signature for each allergy
type (Fig. 3d). To estimate the accuracy of predicting
each FA vs all others, the precision (fraction of true
positive instances among all predicted as positive) and
recall (sensitivity-the fraction of true positive instances
among all truly positive) were computed. Peanut FA pre-
diction was the most accurate with a precision of 0.57
and a recall of 0.61 (compared with 0.25 for random pre-
dictions). The precisions and recalls of the classification
for milk and tree nuts FA groups were also good ((0.52,
0.59) and (0.44, 0.41) respectively). The accuracy
obtained for the sesame FA was low, probably because
of the limited sample size (sesame allergic with a single
allergy, N = 12) (Fig. 3d). Next, in order to find different
bacterial features between the different FA, Spearman
correlations were computed between the log-normalized
bacterial feature levels and the classification of the al-
lergy type (milk, peanut, tree nuts, and sesame) among
the allergic population. The correlation was calculated
with the flag representing each class (1) versus the
others (0) and summarized in Fig. 4. The clustering seen
here between milk and tree nuts vs sesame and peanut
at the taxonomic levels is consistent with the data from
Fig. 3. Furthermore, P. copri was found to be negatively
correlated with peanut allergy and positively correlated
with milk allergy (r = − 0.18 and 0.16, respectively). Add-
itionally, Prevotella was the only genus differing signifi-
cantly between the allergy groups in the ANCOM
analysis (W = 142). Further bacterial positive and nega-
tive classifiers correlated with each allergy in comparison
to the three other allergy types are presented in Add-
itional file 1: Fig. S2.

FA patients have significantly lower SCFAs concentrations
compared to healthy non-allergic controls
We evaluated the SCFAs concentrations in the stool
samples of 84 singly allergic patients and compared
them to 31 age-matched non-allergic healthy controls
from our cohort. We found significant differences be-
tween the SCFAs concentrations in allergic patients
compared to the non-allergic group. Acetate, butyrate,
and propionate concentrations were each significantly
lower in the group of the allergic patients compared to
the non-allergic group (Fig. 5a–c; q = 1.6e−08, q = 0.001,
q = 0.002, respectively). When comparing the SCFAs
concentration between the non-allergic control group
and the single allergy groups (milk N = 26, peanut N =
23, sesame N = 12, tree nuts N = 23) (Fig. 5d–f), we
found multiple differences in the acetate concentrations
(Fig. 5d) between the non-allergic group and the peanut,
sesame, and tree nuts groups (q = 0.0008, q = 0.002, q =
1.1e−11, respectively). Moreover, significant differences
were found between the FA groups themselves, namely
milk vs. peanut, sesame, and tree nuts (q = 0.02, q = 0.04,
q = 6.7e−08, respectively), and tree nuts vs. sesame and
peanut (q = 0.008, q = 0.001, respectively). Additionally,
significant differences were found in the butyrate
concentration between the non-allergic vs. the milk and
peanut groups (Fig. 5e; q = 0.02) and in the propionate
concentration between the non-allergic and the peanut
group (Fig. 5f, q = 0.009).

Correlations of bacterial features with SCFA
concentrations
Given the potential relevance of SCFAs in modulating
FA, we performed Spearman correlations between the
continuous values of the SCFAs (acetate, butyrate, and
propionate) and the bacterial features from the same
FA-derived samples. The results are summarized in a
heatmap (Fig. 6, p = 0.05). We found P. copri to have a
significant positive correlation with acetate and propion-
ate in the allergic patients (r = 0.33, 0.32, respectively). In
addition, Oxalobacter formigenes was positively

Table 3 Demographic characteristics of patients with multiple allergies versus single allergy

Parameter Single (n = 146) Multiple (n = 87) p value

Age, months (IQR) 77.5 (66–121.5) 75 (61–111) NS

Gender, M (%) 59.31 59.77 NS

BMI Z-score median (IQR)* 0.1 (− 0.64–0.84) 0.18 (− 0.43–0.8125) NS

HDM (%)** 81.58 75.38 NS

AD (%) 17.12 42.53 < 0.001

Asthma (%) 26.90 36.78 NS

IQR interquartile range, BMI body mass index, HDM house dust mite, AD atopic dermatitis
*n = 143 and 86 for single allergic and multiply allergic patients, respectively
**n = 114 and 65 single allergic and multiply allergic patients, respectively
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Fig. 2 The allergic state has more impact on the microbiota than the number of allergies. a, b PCoA based on a weighted and b unweighted
UniFrac distances (β diversity). c α diversity index based on Faith’s PD. d Analysis of composition of microbiomes (ANCOM), followed by pairwise
t test and FDR correction on the relative abundance of P. copri. #q < 0.1, *q < 0.05, **q < 0.01, ***q < 0.001

Table 4 Demographics and clinical characteristics of singly allergic groups

Parameter Milk (n = 58) Peanut (n = 44) Sesame (n = 12) Treenut (n = 52) p value

Age, months (IQR) 83 (68.8–133.3) 70 (58.0–86.5) 87 (63.0–118.0) 81.5 (68.3–111.8) 0.009*

Gender, M (%) 49.1 70.4 58.3 63.5 NS

BMI z-score mean (IQR) − 0.22 (− 0.45–0.02) 0.03 (− 0.38–0.43) − 0.15 (− 0.75–0.44) 0.034 (− 0.03–0.72) NS

HDM (%) 82.2 74.3 81.8 79.5 NS

AD 8.6 31.8 8.3 26.9 0.01**

Asthma (%) 53.4 34.1 50.0 42.3 NS

IQR interquartile range, BMI body mass index, HDM house dust mite, AD atopic dermatitis
*Comparison between milk and peanut p = 0.009
**Comparison between milk and peanut p = 0.004
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a b

c d

Fig. 3 Each allergy type has a distinct gut microbial signature. a PCoA based on the weighted UniFrac distances. b α diversity index based on
Faith’s PD. c ANOVA followed by pairwise t test and FDR correction on the relative abundance of P. copri. d Confusion matrix classification for
individual allergy groups based on the microbial data using supervised learning. #q < 0.1, *q < 0.05, **q≤ 0.01, ***q < 0.001
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Fig. 4 Bacterial features associated with different FAs. Spearman’s correlation between the bacterial features and the classification of the FAs
(milk, peanuts, tree nuts, and sesame) among FA patients
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correlated with acetate (r = 0.23) and Ruminococcus cal-
lidus was positively correlated with butyrate (r = 0.29)
(Fig. 6).

FA patients are predicted to have significantly fewer
acetate-related functional pathways
Finally, we sought to identify the specific pathways that
differ between the allergic and non-allergic group. Fish-
Taco analysis of PICRUSt2-predicted functional profiles
has identified 52 KEGG pathways that were significantly
enriched in the non-allergic group, compared to 21
pathways significantly enriched in the FA group (Add-
itional file 2: Table S1, FDR < 0.05). More specifically, we
found 5 acetate-related KEGG pathways significantly
enriched in the non-allergic group (Fig. 7a, i.e., ko00908,
ko00720, ko00440, ko00920, ko00630) compared to one
that was enriched in the allergic group (Fig. 7b,

ko00660). Moreover, FishTaco analysis has indicated
that the functional shifts of the enriched acetate-related
pathways in the non-allergic group were mainly driven
by Bacteroides. In addition, this analysis indicated that P.
copri had a major contribution to the shift in one func-
tional pathway (zeatin biosynthesis) but attenuated the
shift in two other functional pathways (sulfur metabol-
ism and glyoxylate and dicarboxylate metabolism)
(Fig. 7a). We also found that the functional shifts of the
enriched acetate-related pathway in the allergic, C5-
branched dibasic acid metabolism, was driven by in-
creased abundance of Blautia and by decreased abun-
dance of P. copri in the FA group (Fig. 7b). The full list
of taxonomic drivers of differences in acetate-related
pathways between allergic and non-allergic are summa-
rized in Additional file 2: Tables S2, S3. In addition, we
found several functional dissimilarities and differences in

a b c

d e f

Fig. 5 Food allergic patients have significantly lower stool SCFA concentrations compared to non-allergic controls. GC-MS analysis of a acetate, b
butyrate, and c propionate concentrations in stool of allergic patients (N = 84) compared to the healthy non-allergic control group (N = 31). d
Acetate, e butyrate, and f propionate concentrations in stool of non-allergic compared to the single FA individually; milk (N = 26), peanut (N = 23),
sesame (N = 12), and tree nuts (N = 23) by ANOVA followed by pairwise t test and FDR correction. *q < 0.05, **q≤ 0.01, ***q≤ 0.001
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acetate-related pathways between the different FAs
(Fig. 8), with P. copri, Bacteroides, Coprococcus, and
Blautia being the key contributors to observed func-
tional shifts between the various FAs (Fig. 8a–d; and see
Additional file 2: Tables S4–S7 for details).

Discussion
The development and persistence of FA involves several
biological systems and their integrated responses to
ingested substances. The location and scope of the hu-
man gut microbiota uniquely situate it to exert influence
on the progression and establishment of FA. In this
study comprised of 233 FA patients and 58 non-allergic
healthy controls, we characterize a gut microbiota signa-
ture and SCFA profiles of patients with persistent FA to
tree nuts, peanuts, milk, or sesame, compared to non-
allergic individuals. We demonstrate that there is a
distinct microbial signature in FA, with distinguishing
features among the different FA. FA-associated gut
microbial composition is significantly different from the
non-allergic composition, and FA patient stool contains
significantly lower concentrations of SCFAs compared to
that of non-allergic individuals. Thus, our study suggests
the presence of FA-associated microbiota signatures and
a possible functional mechanism linking microbiota
composition to allergy.

FA arises on a background of Th1-Th2 imbalance,
resulting in the Th2 differentiation of allergen-specific T
cells, IgE-switching of B cells, and mediator release of
effector cells such as basophils and mast cells. Negating
these effects, components of the gut microbiota can
promote oral tolerance in several ways. Recognition of
gut microbiota components by toll-like receptors (TLR)
on resident dendritic cells drives regulatory T cell (Treg)
generation in a TGFβ-dependent manner [31]. SCFAs
produced by microbiota fermentation are recognized by
G protein-like receptors on intestinal epithelium which
leads to improved intestinal homeostasis and barrier
function [32]. SCFA also can directly influence Treg
development [3] and IL10 expression in Th1 cells [33],
both of which through T cell expression of GPR43. Add-
itionally, the commensal microbiota also serve to protect
against colonization by opportunistic species, for ex-
ample by controlling the availability of nutrients [34, 35]
or stimulating host production of antimicrobial peptides
[36, 37]. In contrast, a shift in the microbiome compos-
ition will often manifest with microbial populations that
do not promote the above protective effects [13, 38],
thereby facilitating the development of Th2 immune
orientation.
Our findings point to altered features within the

microbiota signatures between allergic and age-matched
non-allergic healthy controls, namely a significantly

Fig. 6 Correlation between the SCFAs and the bacteria of FA. Spearman correlations between bacterial features and levels of SCFAs (acetate,
butyrate, and propionate) among FA patients
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a

b

Fig. 7 Acetate pathways differ between allergic and non-allergic individuals. a Taxonomic contributors of differentially abundant acetate-related
KEGG pathways, as quantified by FishTaco (only those with FDR < 0.05 are shown). The taxonomic contributors are separated into taxa that are
over-represented in the group the pathways are enriched in and contribute positively to the observed shift in cases (upper right bars), taxa that
are over-represented in the group the pathways are depleted in and contribute positively to the observed shift in cases (lower right bars), and
taxa that are attenuating the observed shift (left bars). Taxa contributing to the observed over-representation of acetate-related KEGG pathways in
the non-allergic group compared to the FA group. b Taxa contributing to the observed over-representation of an acetate-related KEGG pathway
in the FA group compared to the non-allergic group. The red diamonds represent the Wilcoxon rank-sum statistic (W statistic) for the difference
in pathway abundances between groups inferred from KO profiles, and the white diamond represents the W statistic when comparing pathway
abundances between groups inferred from taxonomic profiles and genomic content. Un, unclassified
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Fig. 8 Acetate pathways differ between the FAs. Taxonomic contributors of differentially abundant KEGG pathways between the different FA
groups, as quantified by FishTaco (only those with FDR < 0.05 are shown). a Taxa contributing to the observed over-representation of several
KEGG pathways in the peanut FA group compared to the milk FA group. b Taxa contributing to the observed over-representation of several
KEGG pathways in the milk FA group compared to the peanut FA group. c Taxa contributing to the observed over-representation of several
KEGG pathways in the sesame FA group compared to the milk FA group. d Taxa contributing to the observed over-representation of several
KEGG pathways in the sesame FA group compared to the tree nuts FA group. Un, unclassified

Goldberg et al. Genome Medicine           (2020) 12:92 Page 14 of 18



different microbiota composition and lower species rich-
ness, which suggests an altered gut microbiota in the FA
state. Although microbiota richness and diversity can be
reflective of underlying clinical or demographic charac-
teristics of study subjects, grouping by these factors (spe-
cifically, gender, age, asthma, and eosinophilia) did not
yield microbial differences in contrast to grouping by al-
lergic or non-allergic state. This strong effect allowed to
distinguish the allergic from the non-allergic individuals
reflected by a 90% AUC using supervised ML based on
the bacterial features in each group.
We found P. copri to be the most significantly over-

represented species in the non-allergic group compared
to the FA group. This observation fits with a recent Aus-
tralian prebirth case-cohort study, demonstrating that
maternal carriage of P. copri during pregnancy, strongly
predicted the absence of food allergy in the offspring
[39] which again strengthens our observation that higher
abundance of P. copri is negatively associated with FA.
SCFAs levels were also lower in the allergic group and
specifically acetate, which may be related to the dearth
of microbial species such as P. copri which synthesize
acetate and propionate as metabolites from digestion of
complex carbohydrates. Not surprisingly, the species we
found correlated with SCFAs concentration in FA-stool
were also reported to associate with SCFAs production
in the gut, i.e., P. copri which produces acetate and pro-
pionate and R. callidus which is a known acetate produ-
cer. The correlation of P. copri with acetate was not
observed in the non-allergic controls; however, despite
higher levels compared to FA patients. This may be re-
flective of the multiple acetate-related KEGG pathways
enriched in the controls, most of which were associated
with Bacteroides, with one (zeatin biosynthesis) being
strongly associated with P. copri. Overall, these findings
emphasize the potential multifaceted roles of the gut
microbiota in driving metabolic pathways that are
protective against FA development.
The higher relative abundance of P. copri in the stools

of the non-allergic control group compared to the group
with FA may partially explain the concomitant increase
in SCFAs, in particular propionate, which depends on a
dietary intake rich in fiber and complex carbohydrates
[40]. It has in fact been shown that P. copri is predomin-
antly found in stool of non-Western populations whose
diets tend to be enriched for these components [41, 42].
In addition, P. copri is able to metabolize dietary metab-
olites to produce succinate [43], a carboxylic acid that
stimulates innate immune cell development. At the same
time, P. copri has also been associated with increased in-
cidence of Th1 and Th17 inflammatory pathologies such
as colitis and rheumatoid arthritis (RA) [44, 45], with
direct Th1 T cell responses to P. copri reported in
patients with RA [46]. This may suggest that the

characterization of specific species as beneficial or
harmful could depend on context, including that of
other background microbiota species.
The cause for different relative abundance of P. copri

in the different FAs is not fully understood and might be
explained by a variety of known allergen-related risk
factors: genetic, environmental, or dietary habits, such as
lack of breastfeeding and a low-fiber diet [47]. Further
research needs to be carried out in order to elucidate
the contribution of different factors to the different
abundances of P. copri in FAs and its effects on the FA
disease state.
This study has several limitations. Regarding nutri-

tional inputs, it is well appreciated that the dietary intake
can tailor the development of particular microbiota pop-
ulations. While we cannot categorically claim that the
microbiota differences observed between the different
FA groups were not influenced by nutritional differ-
ences, the overall differences in microbiota composition
between FA patients and healthy controls (which can be
segregated as indicated by ROC analysis) are indicative
of a microbiome influenced by the FA state. Further-
more, we would expect that the dietary restrictions for
singly allergic tree nuts or peanut patients would have
only a limited effect on overall nutrition, albeit for milk
allergy the effect may be more comprehensive [48, 49].
In addition, as patients with milk allergy and those with
tree nuts allergy have completely different diets, we ex-
pected to see major differences in their microbiota, but
in fact, we observed the opposite results. The milk and
tree nuts FA groups exhibited similarities in their micro-
biota characteristics (Fig. 4) further strengthening the
association of the mere presence of FA with a microbial
signature rather than different diets. Despite this, BMIs
were not significantly different between the tree nuts,
peanut, and milk allergic groups. Regarding our FA pa-
tient cohort, this study evaluated those who, due to their
age, were likely persistently allergic. As such, our study
should not necessarily be taken to describe the etiology
of FA. Finally, while we report on associations between
specific microbiota and FA, a direct role for identified
microbiota and their metabolites remains to be
investigated.
Although the microbiome in FA is a widely

researched subject, there is still much to be under-
stood. Microbiota differences have been observed in
patients with FA, and they differ based on the food
allergen studied. Fazolollahi et al. reported a higher
prevalence of Lachnospiraceae, Streptococcaceae, and
Leuconostocaceae in children with egg allergy [19]
and Berni et al. reported an increase in Lachnospira-
ceae and Ruminocaceae in those with milk allergy
[50]. One study addressed the subject of milk allergy
resolution and found that the presence of Clostridia
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and Firmicutes in the gut was associated with reso-
lution of milk allergy by 8 years of age [16]. However,
these studies remained mostly at the higher taxonom-
ical levels such as phylum, class, or family level at
most. Thus, there is a need to identify specific bacter-
ial species, in order to develop a potential treatment
for FA. Our study provides a higher bacterial reso-
lution discovering specific missing species in allergic
patients, also correlating to SCFAs levels found in the
stool. This might potentially provide guidance for FA-
related beneficial species that are candidates for
further research. In addition, we have discovered
different KEGG pathways enriched in non-allergic
individuals and reduced in allergic individuals and the
taxonomic contributors to each differentially abundant
pathway, thus providing an insight towards a possible
mechanistic link between these bacteria and the de-
velopment of FA. Moreover, we provide additional in-
formation with the use of ML, presenting high
accuracy for FA identification based on the micro-
biota information alone. Finally, we demonstrate
differences between particular single FAs, with a
comparison to the multiply allergic state.

Conclusions
In summary, in this large study of patients with FA,
we demonstrate microbiota population characteristic
of the general persistent FA state, including lower
alpha diversity and lower abundance of SCFA-
producing bacteria. This was associated with de-
creased SCFA concentrations in stool and also signifi-
cantly fewer acetate-related pathways, thus suggesting
that the dearth of SCFAs may have a role in causing
the allergic state. Furthermore, each FA manifests dis-
tinctive microbiota populations. Utilizing ML, differ-
ent allergic states could be classified by microbiota
differences, validating our findings, and highlighting
their potential diagnostic use following further
optimization. Future work will address the roles
played by microbiota in the food allergic state and
the potential for probiotic and postbiotics therapies in
ameliorating allergic disease.
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