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Abstract

Background: The gut-liver axis plays a pivotal role in the pathogenesis of hepatocellular carcinoma (HCC).
However, the correlations between the gut microbiome and the liver tumor transcriptome in patients with HCC
and the impact of the gut microbiota on clinical outcome are less well-understood.

Methods: Fecal samples collected from HBV-related HCC patients (n = 113) and healthy volunteers (n = 100) were
subjected to 16S rRNA sequencing of the microbiome. After a rigorous selection process, 32 paired tumor and
adjacent non-tumor liver tissues from the HCC group were subjected to next-generation sequencing (NGS) RNA-
seq. The datasets were analyzed individually and integrated with clinical characteristics for combined analysis using
bioinformatics approaches. We further verified the potential of the gut microbiota to predict clinical outcome by a
random forest model and a support vector machine model.

Results: We found that Bacteroides, Lachnospiracea incertae sedis, and Clostridium XIVa were enriched in HCC
patients with a high tumor burden. By integrating the microbiome and transcriptome, we identified 31 robust
associations between the above three genera and well-characterized genes, indicating possible mechanistic
relationships in tumor immune microenvironment. Clinical characteristics and database analysis suggested that
serum bile acids may be important communication mediators between these three genera and the host
transcriptome. Finally, among these three genera, six important microbial markers associated with tumor immune
microenvironment or bile acid metabolism showed the potential to predict clinical outcome (AUC = 81%).

Conclusions: This study revealed that changes in tumor immune microenvironment caused by the gut microbiota
via serum bile acids may be important factors associated with tumor burden and adverse clinical outcome. Gut
microbes can be used as biomarkers of clinical features and outcomes, and the microbe-associated transcripts of
host tumors can partly explain how gut microbiota promotes HCC pathogenesis.
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Background
Primary liver cancer, including hepatocellular carcinoma
(HCC) (80% of cases), was the fourth leading cause of
cancer-related death worldwide in 2018 [1]. The liver
closely cross-talks with the gut and performs necessary
functions related to the metabolism of nutrients, im-
munity, and biotransformation of bacterial metabolites,
and this communication is called the gut-liver axis [2]. A
complete gut-liver axis relies on an intact intestinal bar-
rier, healthy gut microbiota, and normal liver function.
The gut microbiota is known as the most important
microecological system in symbiosis with the human
body; moreover, several clinical characteristics (age, body
mass index, dietary habits, and physical exercise) were
found to differentially affect the gut microbiome of
healthy Chinese people [3]. Liver diseases, such as nonal-
coholic fatty liver disease (NAFLD) and liver cirrhosis,
are often associated with altered gut microbiota, and it
has been suggested that gut bacterial products contrib-
ute to liver carcinogenesis [4–7]. Recent studies in ani-
mal models or in patients with a background of NAFLD
have indicated that some specific gut microbes promote
HCC tumorigenesis through the gut-liver axis [8–10].
Our previous study has already suggested gut microbes
to be non-invasive biomarkers for early and advanced
HCC in Northwest, Central, and East China [11]. How-
ever, whether gut microbial characteristics from a large
cohort of HCC patients can be used to evaluate clinical
prognosis has not yet been reported, and how gut micro-
biota influence the transcriptome profiles of HCC re-
mains unclear.
To explore the connections of host-microbe in HBV-

related HCC, we acquired paired data on liver transcrip-
tome and gut microbiome from patients in East China to
assess whether elevated or depleted transcripts of host liver
are associated with specific gut microbes (Additional file 1:
Fig. S1). While it is known that a lower tumor burden
always implies a better clinical outcome, the associations
between gut microbiota and tumor burden in HCC patients
are less well-understood. Therefore, by referring to Stage
A4 of the BCLC staging classification, we divided 113
patients into small HCC and non-small HCC groups
according to tumor burden [12]. More specifically, in
this study, small HCC is defined as “one single tumor
nodule with a maximum diameter not more than 3 cm;
or no more than three tumor nodules with the sum of
the maximum diameters not being more than 3 cm”. In
addition, data on 5-year survival and 2-year disease-free
survival were acquired to construct a random forest
model and support vector machine model to further in-
dicate the predictive effect of gut microbiota on tumor
progression and recurrence/metastasis. By the simul-
taneous integrated analysis of the liver tumor transcrip-
tome, gut microbiome, and clinical characteristics, we

gained better insights into the nature of the gut-
metabolite-liver axis in HBV-related HCC patients.

Methods
Participant information
This research was designed following the prospective
specimen collection and retrospective blinded evaluation
principle (PRoBE) [13]. In our previous study, a total of
281 qualified stool samples from participants (131
healthy controls and 150 HCC patients) from First Affili-
ated Hospital, School of Medicine, Zhejiang University
were prospectively collected from November 2013 to
July 2014 and subjected to 16S rRNA MiSeq sequencing;
meanwhile, peripheral blood samples were acquired for
routine examinations of blood, liver biochemistry, and
tumor markers [11]. In September 2019, we revisited
these 281 participants, and after excluding missing infor-
mation and liver cancer R1 &R2 resection, 100 healthy
controls and 113 HCC patients were finally enrolled.
Among the HCC patients, paired tumor and adjacent
non-tumor liver tissues from 32 patients (Additional file 2:
Table S1: zfh001-zfh034) were finally collected based on
stringent criteria. The exclusion criteria were as fol-
lows: (a) more than 7 days from stool collection to
liver cancer resection; (b) the use of drugs that affect
liver metabolism and function before resection, such
as adenosyl methionine, ursodeoxycholic acid, poly-
ene phosphatidylcholine, glutathione, fructose di-
phosphate, vitamins, and Chinese materia medica; (c)
for multiple HCC tumors, a variety of types of tissue dif-
ferentiation in pathological diagnosis; and (d) unqualified
tumor or non-tumor specimens. The detailed criteria are
listed in Additional file 3: Supplementary Methods.
Overall survival (OS) was defined as the interval be-

tween surgery and death. Disease-free survival (DFS) was
defined as the interval between liver resection and the
first recurrence/metastasis. OS and DFS were collected
from a follow-up telephone interview or electronic med-
ical records that were reexamined by two independent
follow-up staff unrelated to this study.

16S rRNA MiSeq sequencing and operational taxonomy
unit (OTU) clustering
High-throughput V3-V5 16S rRNA sequencing was
performed on an Illumina MiSeq platform. The raw
data of Illumina reads from 281 fecal samples were
uploaded to the ENA-EMBL-EBI database under
PRJEB8708 [11]. Fecal sample collection, DNA extrac-
tion, stool moisture measurement, 16S rRNA MiSeq
sequencing, and OTU annotations are shown in Add-
itional file 2: Table S2 and Additional file 3: Supple-
mentary Methods.
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Bacterial diversity and taxonomic analysis
For alpha diversity, the Shannon, Simpson, and Invsimp-
son indexes were calculated by the R program package
“vegan” [14]. The data are listed in Additional file 2:
Table S3. Nonmetric multidimensional scaling (NMDS)
was conducted by “vegan” to display bacterial beta diver-
sity using Manhattan’s method [14]. Linear discriminant
analysis effect size (LEfSe) was applied to evaluate the
differentially abundant taxa [15].

RNA extraction, RNA-seq, and data analysis
Frozen liver tissues were used for RNA extraction, and
DNA libraries were sequenced by Illumina HiSeq 2500
(pair-end 150-nucleotide read length). For the paired
tumor and adjacent non-tumor liver tissues from the 32
patients, an average of 47.92M and 45.53M high-quality
reads were generated by RNA-seq (Additional file 1: Fig.
S2A). Clean data were deposited in the NCBI Gene Ex-
pression Omnibus (GSE138485/PRJNA576155). HISAT2
was used to align the sequencing reads to the human
reference sequence (UCSC/hg38.p12) [16]. The feature-
Counts function was performed for each gene count
from trimmed reads against the GENCODE (release 30)
transcript models [17]. For the data from the paired liver
tissue samples of the 32 patients, gene expression levels
were quantitated by edgeR (Additional file 1: Fig. S2B)
[18]. Differential genes were defined as its adjusted p
value < 0.05 and |log2FC| > 0.8.
For single paired tumor and adjacent non-tumor liver

tissue samples from each patient, a total of 32 datasets
of transcriptome profiles were calculated by GFOLD
[19]. Differentially expressed genes were defined as
|gfold| > 0.8 and |log2FC| > 0.8. When calculating the
correlation between differential gene expression and
OTU abundance, the |log2FC| values of these genes that
did not satisfy the above conditions were forcibly defined
as zero. The details are provided in Additional file 3:
Supplementary Methods.

Correlation between OTUs and differentially expressed
genes
The Pearson correlation coefficient was calculated to
measure the connections between OTU abundance and
differential gene expression level for each OTU-gene
pair across all 32 patients. To reduce the computational
load and avoid contingency, OTUs that were present in
< 10% of the 32 patients were excluded, leaving 310
OTUs that constituted 95.85% of the initial abundance
(Additional file 2: Table S4). A total of 1,820,940 OTU-
gene pairs were calculated. The significance of each
OTU-gene pair was determined based on adjusted P
value < 0.05. Independent Student’s t test was applied to
evaluate the difference in log2FC values calculated by
GFOLD between the small HCC and non-small HCC

groups. The detailed scripts of the correlation calcula-
tions are provided in Additional file 3: Supplementary
Methods.

Microbial biomarker identification and prediction model
construction for clinical prognosis
Based on all 113 HCC patients, random forest and sup-
port vector machine with fivefold cross-validation were
executed to build prediction models of 5-year survival
and 2-year disease-free survival, as implemented in the
python package “scikit-learn” (version 0.21.3). The de-
tailed scripts for OTU-marker identification and model
construction are described in Additional file 3: Supple-
mentary Methods.

Statistical analysis
Continuous variables following a normal distribution were
compared by Student’s t test; otherwise, the Wilcoxon
rank sum test was used. Fisher’s exact test was used to
compare categorical variables in a 2 × 2 table. All statistical
tests were two-sided. The P values were adjusted by the
Benjamini-Hochberg correction. Variables associated with
survival rate were identified by the Cox proportional haz-
ards regression model. Statistical analyses were performed
using Python and SPSS V23.0 for Mac (SPSS Inc., USA).

Results
Summary of clinical characteristics
All 113 HCC patients with HBV infection and 100
healthy volunteers were Han Chinese individuals from
East China and practiced comparable dietary habits
(mixed diet) to exclude dietary differences [20]. The clin-
icopathological characteristics (Fig. 1a, Additional file 2:
Table S1, S5, S6) of these groups [healthy controls ver-
sus HCC group, small HCC subgroup (n = 36) versus
non-small HCC (n = 77) subgroup, non-cirrhotic HCC
subgroup (n = 22) versus cirrhotic HCC subgroup (n =
91)] were generally matched, including age, sex, BMI,
tumor differentiation, and Child-Pugh score, suggesting
that there were no established confounding factors af-
fecting group discrimination before sample collection.
Serum alpha-fetoprotein (AFP) levels were significantly
higher in patients with HCC than in healthy controls,
but the AFP levels could not distinguish tumor size or
cirrhosis in HCC patients.

Increased gut microbial diversity in non-small HCC
Following taxonomic assignment, a total of 7,934,068
qualified sequences (median = 31,679) and 1296 OTUs
were obtained (Additional file 2: Table S2 and S3). Rar-
efaction analysis revealed that the estimated richness of
OTUs almost reached saturation in healthy controls
(n = 100) and HCC group (n = 113) (Fig. 1b). Compared
with their own counterparts, the fecal microbial diversities

Huang et al. Genome Medicine          (2020) 12:102 Page 3 of 14



of species in each sample were significantly increased in
non-small HCC (Fig. 1c–e); however, there was no differ-
ence between healthy volunteers and HCC patients. A
Venn diagram illustrated that 541 the total richness of

1002 OTUs (the abundances of 294 OTUs among all par-
ticipants were all zero) were shared among the three
groups, while 576 out of 877 OTUs were shared between
the small HCC and non-small HCC subgroups (Fig. 1f).

Fig. 1 Clinicopathological features and gut microbial diversity of all patients. a Clinicopathological features and clinical outcomes of all 113 HCC
patients. The green dotted line represents 5-year survival; the purple dotted line represents 2-year disease-free survival. b Shannon-Wiener curves
between numbers of fecal samples and estimated richness. Compared with small HCC, fecal microbial diversities, as estimated by the Shannon
index (c), Simpson index (d), and Invsimpson index (e), were significantly increased in patients with non-small HCC (p = 0.048, 0.027, and 0.027,
respectively; *p < 0.05, Wilcoxon rank sum test). f A Venn diagram illustrates that 541 of the total richness of 1002 OTUs were shared among three
groups, while 576 out of 877 OTUs were shared between the small HCC and non-small HCC subgroups. g Beta diversity was evaluated using
NMDS by Bray-Curtis. Boxplot “boxes” indicate the first, second, and third quartiles of the data
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Notably, 75 out of 1002 OTUs were unique to the non-
small HCC group. For beta diversity, NMDS plots evalu-
ated by Bray-Curtis distances revealed a symmetrical dis-
tribution of gut microbiota among all pairs of samples
(Fig. 1g, Additional file 1: Fig. S3).

Phylogenetic profiles of fecal microbial communities in
non-small HCC patients
The three predominant bacterial phyla in each group
were Bacteroidetes, Firmicutes, and Proteobacteria,
altogether constituting up to 90% of the OTUs on average
(Fig. 2a, b). The average compositions of the bacterial
community (top 10) at the genus level are shown in Fig. 2c
and Fig. 2d. To compare the differences in the fecal micro-
bial communities between each group, Wilcoxon rank
sum test was performed at the phylum and genus levels
(Additional file 2: Table S7 and S8). Compared with
healthy controls, Bacteroides, Lachnospiracea incertae
sedis, and Clostridium XIVa were enriched in the HCC
group (all p < 0.05, Fig. 2e). When further analyzing strati-
fied additional clinical characteristics in the HCC group,
Bacteroides (p = 0.0152), Lachnospiracea incertae sedis
(p = 0.0249), Clostridium XIVa (p = 0.0168), and Parabac-
teroides (p = 0.006) were significantly enriched in non-
small HCC subgroup compared with small HCC subgroup
(Fig. 2f, g); however, these three genera showed no differ-
ence in patients with cirrhotic HCC, portal hypertension,
or low-albumin levels (Additional file 1: Fig. S4).
To discover high-dimensional biomarkers, LEfSe was

applied to identify predominant bacterial taxa associated
with different clinical characteristics. Bacteroides, Lach-
nospiracea incertae sedis, and Clostridium XIVa were
significantly overrepresented [log10(LDA score) > 3] in
the feces of patients in non-small HCC subgroup
(Additional file 1: Fig. S5). The relative abundances of
these three genera were further subjected to cluster-
ing analysis, which indicated that these three genera
were abundant in non-small HCC subgroup (Fig. 2h).
Sankey diagrams showed the major proportion of taxa
(phylum and genus) among healthy controls and small
HCC and non-small HCC patients. In participants
with a high tumor burden, the proportion of these
three genera gradually increased and became predom-
inant, accompanied by the changes of other bacteria
(Fig. 2i).
These data suggested that Bacteroides, Lachnospiracea

incertae sedis, and Clostridium XIVa were sufficient to
differentiate the microbiota of patients with small HCC
from that of patients with non-small HCC. The inter-
relationship between 16S OTU genus clusters (Bacter-
oides, Lachnospiracea incertae sedis, Clostridium XIVa)
and taxonomic compositions (NCBI Taxonomy ID) is
listed in Additional file 2: Table S9.

Global overview of liver tumor transcriptome in HCC
patients
Since HCC patients demonstrated significant associa-
tions of microbiota with clinical characteristics (tumor
burden), we hypothesized that changes in the liver
tumorigenesis transcriptome may be correlated with gut
microbiota. Among 113 patients, paired tumor and adja-
cent non-tumor liver tissues from 32 HCC patients were
finally collected based on stringent criteria for NGS
RNA-seq. Of these 32 patients, 23 had non-small HCC.
According to our definition, we identified a total of 8101
differentially expressed genes among 32 paired tumor
and adjacent non-tumor liver tissues by edgeR (Fig. 3a).
Furthermore, due to tumor heterogeneity and no bio-
logical duplication for a single case, we adopted GFOLD
to further filter the candidate genes, in which a non-
tumor specimen was used to normalize the expression
of tumor specimen for each patient. Furthermore, the
genes whose log2FC values calculated by GFOLD were
zero in > 90% of patients were excluded, leaving 5874
genes for further investigation of their correlations with
gut microbes (310 OTUs). To evaluate the predictive
values of the candidate genes for OS or DFS, GEPIA was
used as an independent diagnostic tool to compensate
for the bias caused by the small sample sizes used in this
study [21].

Host liver transcriptome profiles influenced by gut
microbiota via tumor immune microenvironment
Based on the above-described transcriptome and fecal
microbiota data, Pearson’s correlation-based analysis was
performed to discover microbe-associated genes and to
test whether host transcriptional profiles in HCC pa-
tients could be partially influenced by gut microbiota
(Additional file 2: Table S4). A total of 53 genes and 11
OTUs were identified, forming 56 OTU-gene pairs
(Additional file 2: Table S10). The small and non-small
HCC subgroups were clearly distinguished by the log2FC
values of these 53 differential genes (all p < 0.05). Based
on preliminary gene annotation and pathway analysis, 29
differentially expressed genes were identified as nega-
tively correlated with 6 OTUs (members of Bacteroides,
Lachnospiracea incertae sedis, and Clostridium XIVa),
forming 31 OTU-gene pairs (median r = − 0.73, Fig. 3b,
Additional file 1: Fig. S6). Figure 3 c and d show two
typical OTU-gene pairs (OTU_0134-CD6 and OTU_
0002-MAPK10). In 32 patients, the increased abundance
of OTU_0134 was accompanied by a decrease in CD6
expression in HCC tissues, and it was clear that this type
of downregulation was particularly pronounced in pa-
tients with non-small HCC. Small HCC usually implies a
better clinical outcome, and Cox hazards models based
on GEPIA indicated that CD6 and MAPK10 were tumor
suppressors associated with a good clinical prognosis,
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which was consistent with the results of our study. Differ-
ent expression levels at the protein level between the two
groups also showed the same results as transcriptomics

(Fig. 3e, f). To further validate the patterns of these 29
genes under different tumor burdens, edgeR was used to
calculate their own values of log2FC and adjusted P values

Fig. 2 Phylogenetic profiles of gut microbes among healthy controls and all patients. Compositions of bacterial community at the phylum level
between healthy controls and HCC patients (a), and patients from subgroups of HCC (b). Compositions of bacterial community (top 10) at the
genus level between healthy controls and HCC patients (c), and patients from subgroups of HCC (d). e The differential microbial community at
the genus level in HCC patients versus healthy controls. f, g The differential microbial community at the genus level in patients with small HCC
versus non-small HCC. Levels of significance: *p < 0.05 (Wilcoxon rank sum test). h The distributions of Bacteroides, Lachnospiracea incertae sedis,
and Clostridium XIVa normalized by a Z-score among healthy controls and patients with small HCC and non-small HCC. i Sankey analysis of
healthy controls and patients with small HCC and non-small HCC. Error bars are presented as the SD
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in 9 small HCC and 23 non-small HCC patients, respect-
ively (Additional file 1: Fig. S7). The results showed that
these 29 genes satisfied the definition of differential genes
in the non-small HCC subgroup but not the small HCC
subgroup.
Figure 4a describes in detail the major functional anno-

tations of these 29 genes and the differential expression
levels of each patient. According to the GEPIA dataset,
100% of the differentially expressed genes (29/29) had a

low hazard ratio in HCC tissues, and 69% of the differen-
tially expressed genes (20/29) predicted good clinical
prognosis (Additional file 1: Fig. S8). Based on the GEPIA
dataset, we also compared the performance of these 29
genes in cholangial carcinoma, pancreatic adenocarcin-
oma, colon adenocarcinoma, and rectum adenocarcinoma.
Of note, their performance was consistent between HCC
and cholangial carcinoma, but these genes were not asso-
ciated with the prognoses of pancreatic, colon, and rectum

Fig. 3 The associations between host liver gene expression and gut microbes in patients with HCC. a Differential expression of the microbe-
associated genes from 32 paired tumor and adjacent non-tumor liver tissue samples. b Pearson correlation coefficients of 31 OTU-gene pairs, and
P values evaluated by Student’s t test for comparing the difference in log2FC values calculated by GFOLD between small HCC and non-small HCC
subgroups. Scatter diagrams and Cox hazards models of two typical OTU-gene pairs, OTU_0134-CD6 (c) and OTU_0002-MAPK10 (d). The x-axis of
the scatter diagram indicates the OTU abundance. The y-axis indicates log2FC of gene expression calculated by GFOLD. Each point represents a
patient (red: non-small HCC; blue: small HCC), and some points coincided at the origin. Immunohistochemical staining showed that CD6 (e) and
MAPK10 (f) were highly expressed in tumor tissues of patients with small HCC versus non-small HCC (× 200)
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adenocarcinoma, which indicated that the functions of
these microbe-associated genes were specific in liver car-
cinoma. Pathway analysis revealed that these 29 genes
converged on immune-related pathways (T cell receptor
signaling, positive regulation of T cell proliferation, nat-
ural killer cell activation and NOD-like receptor signaling,
response to molecule of bacterial origin, etc.), which are
components of tumor immune microenvironment (Fig. 4b,
c). GPBAR1, a member of the G protein-coupled bile acid
receptor family, functions in the tumorigenesis of hepato-
cytes and mesenchymal immune cells [22]. CXCR6 is

considered to be an important marker of NKT cells [9].
Pearson analysis was also performed to explore the corre-
lations between these 29 genes and acute liver inflamma-
tory factors (ALT and AST), and the results indicated that
high ALT and AST levels likely do not drive an inflamma-
tory transcriptome profile in this case (mean R2 = 0.045
and 0.023, Additional file 1: Fig. S9).
To elucidate the localization and roles of these genes

in tumor immune microenvironment, we evaluated their
expressions in an independent single-cell map database
(based on SMART-seq2) of HCC [23]. Twenty-two

Fig. 4 Functional annotations and pathway analysis of the microbe-associated genes. a Integrated analysis of key microbe-associated genes:
functionalannotation and log2FC value of gene from each patient (n = 32, left panel), DFS (based on GEPIA, middle panel), and OS (based on
GEPIA, right panel). The red line denotes the average values. Heatmaps represent the log10 (hazard ratio) value of each gene in each kind of
tumor. The dark square box denotes that the clinical prognosis was statistically significant. b The GO enrichment analysis based on Metascape. c
Pathway analysis based on DAVID 6.8. d Pairwise gene expression correlation analysis using the Pearson method shows interdependent
relationships and gene co-expression according to GEPIA. LIHC, Hepatocellular carcinoma; CHOL, Cholangial carcinoma; PAAD, Pancreatic
adenocarcinoma; COAD, Colon adenocarcinoma; READ, Rectum adenocarcinoma
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genes were highly expressed in CD4+ T cells, 23 genes
were highly expressed in CD8+ T cells, 23 genes were
highly expressed in NK cells, 18 genes were highly
expressed in macrophages, and 17 genes were highly
expressed in B cells (Additional file 1: Fig. S10). Interest-
ingly, these genes also had an interdependent relation-
ship according to GEPIA, suggesting that gut microbiota
may influence the transcriptome of HCC through a
common factor (Fig. 4d).

Serum bile acids: important communication mediators
between gut microbiota and host transcriptome of HCC
For intra-individual correlation analyses, we focused
on associations between clinical characteristics (such
as all values or abnormal values of BMI, AST, and
triglyceride) and gut microbiota (75 OTUs matched
to Bacteroides, Lachnospiracea incertae sedis, and
Clostridium XIVa). Pearson’s correlation-based ana-
lysis revealed four bile acid-associated OTUs, while
no positive and meaningful result was found from the
other clinical characteristics (Fig. 5a, Additional file 2:
Table S11 and S12). Among these four OTUs, OTU_

0002, OTU_0033, and OTU_0134 were found to be
gut microbes that were associated with the abovemen-
tioned transcriptome changes in tumor immune micro-
environment. Using the Virtual Metabolic Human
database, we identified the metabolite distributions of Bac-
teroides, Lachnospiracea incertae sedis, and Clostridium
XIVa, which suggested that most of them metabolized cho-
lic acid, chenodeoxycholic acid, 3-dehydrocholic acid, 7-
dehydrochenodeoxycholic acid, taurocholic acid, etc. (Add-
itional file 2: Table S13) [24, 25].
Further, based on 32 pairs of liver tissue samples, 25

genes related to these four OTUs were also identified
(Fig. 5b), and these genes affected liver bile acid metab-
olism (extra- and intra-cellular signaling, transcriptional
factor, and bile acid synthesis and efflux). Immunohisto-
chemistry confirmed that ATP binding cassette subfam-
ily C member 4 (ABCC4) proteins were highly expressed
in both tumor and adjacent non-tumor liver tissues of
patients with high levels of bile acid (Fig. 5c). These re-
sults suggest that bile acids may be important mediators
for the communication between gut microbiota and host
transcriptome of HCC.

Fig. 5 Associations among liver transcriptome, serum bile acid, and gut microbiota. a Scatter diagrams of OTU abundance (x-axis, square root,
and arcsin transformation) and serum bile acids (y-axis). The red horizontal line denotes 12 μmol/L of serum bile acid (n = 52). b Heatmap
representing the Pearson correlation coefficients of 100 OTU-gene pairs (upper panel); functional annotation and log2FC of genes related to bile
acid metabolism for each patient (lower panel). The red line denotes the average values of log2FC. c Immunohistochemical staining showed that
ABCC4 was highly expressed in tumor and adjacent non-tumor liver tissues of patient with high level of bile acid (× 200)
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Identification of microbial-based markers for clinical
prognosis
Among 113 patients, high tumor burden (non-small
HCC) and higher bile acid levels (≥ 16 μmol/L, n = 41)
indicated worse clinical outcomes (Fig. 6a, b). We
assessed the power of gut microbiota to predict clinical
prognosis by assessing the following OTUs: OTU_0002,
OTU_0033, and OTU_0134 (associated with both tumor
immune microenvironment and bile acid metabolism),
OTU_0794 (associated with tumor immune microenvir-
onment), and OTU_0030 (associated with bile acid me-
tabolism). Random forest and support vector machine
classifier models with five repeats of 5-fold cross-
validation were constructed to predict clinical prognosis
of the 113 patients (Fig. 6c). These OTUs had good clas-
sification performance for discriminating 5-year survival
(81% ± 5% and 70% ± 6%, respectively, in RF and SVM).
In addition, the AUC values reached 68% ± 7% (RF) and
70% ± 12% (SVM) for 2-year disease-free survival. The
abundances and corresponding bacterial genera of these

6 OTU markers in each patient are listed in Additional
file 2: Table S14 and S15. The data indicated that these
OTU markers related to tumor immune microenviron-
ment and bile acid metabolism in HCC have the poten-
tial to predict clinical prognosis.

Discussion
Although our study and many other studies in humans
have reported that the gut community is highly differen-
tial and variable between any two individuals, the tran-
scriptome of HCC appears to be a strong correlate of
this variation in the composition of gut microbiome [26,
27]. In this study, we provided evidence that the tumor
burden of HCC is associated with the presence of spe-
cific gut microbes, distinguished by the enrichment of
Bacteroides, Lachnospiracea incertae sedis, and Clostrid-
ium XIVa in patients with non-small HCC [28]. We ob-
served that patients with these three genera mounted a
weaker host liver anti-tumor inflammatory response,
which was confirmed by an independent database of

Fig. 6 Identification of microbial-based markers for clinical prognosis by machine learning models. Kaplan-Meier curves for 5-year survival and 2-
year disease-free survival based on tumor burden (a) and serum bile acids (b). c ROC curves for classifiers designed to predict clinical prognosis
(left panel: RF; right panel: SVM). Plots showed the true positive rate (y-axis) versus the false positive rate (x-axis). AUC scores (including 95%
confidence interval) of ROC curves with fivefold cross-validations are listed on the right for classification accuracy
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single-cell sequencing and pathway enrichment analysis.
A wide range of immune cells, such as T cells, NK cells,
and monocytes, are well-known linchpins in the process of
hepatocarcinogenesis [23]. Tregs, especially CD4+FOXP3+

regulatory T cells, in mouse models of colitis and allergic
diarrhea can be induced by Clostridium XIVa from human
microbiota [29]. In our study, inter-individual differences in
gut microbiota correlated with corresponding changes in
microbe-associated gene expressions in tumor immune
microenvironment, which is consistent with the findings of
previous reports. For example, a low level of CCL21
expressed in LAMP3+ DCs hinders CCR7+ cells, which fa-
cilitates tumor growth and indicates an unfavorable prog-
nosis for HCC patients [30]. CD160+ NK cells had high
expression of the transcription factor EOMES, which is
expressed at low levels in patients with non-small HCC
[31]. PIK3CD, MAP4K1, and MAPK10, which are key
members of the LPS-stimulated MAPK pathway, are highly
expressed in patients with high tumor burden. Previous re-
ports in animals are consistent with our findings, in which
Clostridium XIVa influences bile acid-controlled NKT cell
accumulation. Bacteroides activate GPBAR1 and uncoup-
ling protein 2 (UCP2) signaling to improve liver metabol-
ism, indicating that metabolites may be important
mediators for communication between gut microbiota and
host transcriptome of HCC [9, 32, 33].
Cholic acid, deoxycholic acid, chenodeoxycholic acid,

and lithocholic acid, as metabolites of Bacteroides, Lach-
nospiracea incertae sedis, and Clostridium XIVa in the
gut, have been shown to promote liver carcinogenesis
[24, 34–37]. Our data also suggested that compared to
lower bile acid levels, higher bile acid levels (≥ 16 μmol/
L) indicated worse clinical outcomes among patients
with enrichment of Bacteroides, Lachnospiracea incertae
sedis, and Clostridium XIVa (OTU2, OTU30, OTU33,
and OTU134). As reported, sterol carrier protein 2
(SCP2) and fibroblast growth factor 19 (FGF19) regu-
lated bile acid secretion, yet phospholipid transfer pro-
tein (PLTP) increased fecal bile acid excretion in mice
[38–40]. These gut microbes and genes may be import-
ant targets for maintaining the homeostasis of bile acid
metabolism in the gut-liver axis. As serum bile acids are
a kind of mixture, it is essential to differentiate the
chemical components for further analysis, but this is dif-
ficult to perform in a retrospective study.
In recent years, principal component analysis and k-

means have been used to analyze multi-omics data. The
strongest microbe-gene correlation coefficients were ap-
proximately 0.7 to 0.8 in our study, and the significant asso-
ciations of many other microbe-gene pairs would not
survive correction for multiple hypothesis testing (FDR)
when all genes and OTUs were simultaneously analyzed. If
the primary goal is to determine as many associations as
possible among multiple variables, dimensionality reduction

is a key workflow. Nevertheless, it must be noted that our
data were evaluated against a stringent screening criterion
to highlight the most significant microbes and genes, which
facilitated the construction and improved the accuracy of
the subsequent prognostic model. However, this did not
mean that there were only a few dozen of liver tumor tran-
scripts influenced by gut microbiota.
In our study, we identified six important OTUs that

were thought to be strongly associated with bile acid
metabolism and tumor burden due to changes in tumor
immune microenvironment. The RF and SVM models
based on these OTU markers had good prediction po-
tential for clinical outcomes of HCC patients. Import-
antly, this suggests that under the premise of strict
control of the treatment plan (R0 resection, but exclud-
ing acute and chronic complications), gut microbiota is
a vital influencing factor for clinical prognosis of HCC
patients. The predictive efficacy of the model is much
better for 5-year survival than 2-year disease-free sur-
vival, suggesting that the tumorigenesis caused by gut
microbiota has a long-lasting and processive association
with an individual’s dietary habits, lifestyle, and even
mental stress.
The strengths of our study include the large cohort of

patients with clinical outcomes, whose clinical character-
istics, liver tumor transcriptome, and gut microbiota
data were obtained and comprehensively analyzed at the
level of host gene expression, metabolites, and gut mi-
crobes. Moreover, due to the difficulty in obtaining re-
current/metastatic tumor samples and the routine
applications of antibiotics after liver cancer resection, we
could associate gut microbiota and host transcriptome
with clinical characteristics at only one timepoint under
stringent criteria.

Conclusions
This study revealed that changes in tumor immune
microenvironment correlated with gut microbiota via
serum bile acids are possibly important factors associated
with tumor burden and adverse clinical outcomes in
HBV-related HCC. Gut microbes can be used as bio-
markers of clinical features and outcomes, and microbe-
associated transcripts of host tumors can partly explain
how gut microbiota promotes HCC pathogenesis. Al-
though our study has some limitations, it provides new in-
sights into exploring the connections of gut microbiome-
transcriptome for human biomarker discovery.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13073-020-00796-5.

Additional file 1: Fig. S1. Study design and flow diagram. Fig. S2.
RNA-seq and data analysis. (A) QC passed reads sequenced by an Illumina
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HiSeq 2500 (pair-end 150-nucleotide read length) for tumors and adja-
cent non-tumor liver tissues (n = 32, respectively, student’s t test). (B) Par-
ameter of edgeR: plotBCV() and biological coefficient of variation (BCV)
was 0.6114732. CPM, counts per million. Fig. S3. There are no differences
in gut microbial diversity between healthy controls (n = 100) and HCC pa-
tients (n = 113). (A) Shannon-Wiener curves for all 213 fecal samples.
Compared with healthy controls, fecal microbial diversities, as estimated
by the Shannon index (B), Simpson index (C) and Invsimpson index (D),
were no differences with HCC patients (all p > 0.05, Wilcoxon rank sum
test). (E) A Venn diagram showed that 729 of the total 1002 OTUs were
shared, notably, 148 of 1002 OTUs were unique for HCC. (F) Beta diversity
was calculated using Bray-Curtis by NMDS. The red dot represents HCC
Group, and the blue dot represents Healthy Control. HCC, hepatocellular
carcinoma; OTU, Operational Taxonomy Unit; NMDS, Nonmetric multidi-
mensional scaling. Fig. S4. No differences in gut microbes between pa-
tients with Cirrhotic HCC (n = 91) and Non-Cirrhotic HCC (n = 22),
between patients with portal hypertension (n = 66) and without portal
hypertension (n = 47), between patients with low-albumin (n = 16) and
normal-albumin (n = 97). (A) The microbial community at genus level in
patients with Cirrhotic HCC versus Non-Cirrhotic HCC. (B) The distribu-
tions of Bacteroides, Lachnospiracea incertae sedis and Clostridium XIVa
normalized by Z- score among healthy controls, patients with Cirrhotic
HCC and Non-Cirrhotic HCC. (C) No differences in Bacteroides, Lachnospir-
acea incertae sedis and Clostridium XIVa between patients with portal
hypertension and without portal hypertension. (D) No differences in Bac-
teroides, Lachnospiracea incertae sedis and Clostridium XIVa between pa-
tients with low-albumin and normal-albumin. (Wilcoxon rank sum test)
HCC, hepatocellular carcinoma. Fig. S5. The specific characterization of
fecal microbiota to distinguish toxigenic types was analyzed by linear dis-
criminant analysis (LDA) effect size (LEfSe) method. (A) LEfSe method
identified the most differentially abundant taxons between healthy con-
trols and HCC patients. The HCC-enriched taxa were indicated with a
negative LDA score (red), and health-enriched taxa presented a positive
score (green). Bacteroides, Lachnospiracea incertae sedis and Clostridium
XIVa were significantly overrepresented in the feces of HCC patients. (B)
LEfSe method identified the most differentially abundant taxons between
Small HCC and Non-Small HCC. The Non-Small HCC-enriched taxa were
indicated with a negative LDA score (red), and Small-HCC-enriched taxa
presented a positive score (green). Bacteroides, Lachnospiracea incertae
sedis and Clostridium XIVa were significantly overrepresented in the feces
of patients in Non-Small HCC subgroup. log10(LDA score) = 3 as cut-off
value. HCC, hepatocellular carcinoma. Fig. S6. Scatter diagrams for all 31
OTU-gene pairs. The x axis indicated the OTU abundance. The y axis indi-
cated log2FC of gene expression calculated by GFOLD. Each point repre-
sented a patient (red: Non-Small HCC; blue: Small HCC) and some points
coincided at the origin. Fig. S7. The expressions of 29 OTU-related genes
in 23 Non-Small HCC (A) and 9 Small HCC patients (B, C). Parameter of
edgeR: biological coefficient of variation (BCV) for 23 Non-Small HCC pa-
tients was 0.6090678 (D) and BCV for 9 Small HCC patients was 0.5872324
(E). Fig. S8. Overall survival and disease free survival for all 29 OTU-
related genes based on GEPIA. Overall survival and disease free survival
were identified by Log-rank test, a.k.a. the Mantel-Cox test (Cutoff-High
and Cutoff-Low was both 50%). TRBC1 (official symbol) is named
TRBV25–1 in GEPIA database. Fig. S9. Scatter diagrams for all 29
microbe-associated genes and levels of ALT/AST. The x axis indicated the
levels of ALT/AST. The y axis indicated log2FC of gene expression calcu-
lated by GFOLD. Each point represented a patient (blue: ALT; red: AST).
Fig. S10. Expressions of OTU-related genes for each cell type based on
SMART-seq2 data (http://cancer-pku.cn:3838/HCC). Uniform Manifold Ap-
proximation and Projection (UMAP) plots showed 38 clusters identified
by integrated analysis, colored by cell cluster (first plot). UMAP plots
showed the cell distributions of tumor and adjacent liver from 6 patients
(second plot). CARMIL2 was not found in this database. TRBC1 (official
symbol) is named TRBV25–1 in this database. Fig. S11. The composition
of stool color. Most of stool samples presented yellow, and showed no
significant difference among the different cohorts. (A) The composition
of stool color between healthy controls and HCC patients. (B) The com-
position of stool color in patients with Small HCC versus Non-Small HCC.
HCC, hepatocellular carcinoma. Fig. S12. The abundance and distribution
of stool moisture among the different cohorts by lyophilization assay on

the frozen homogenized fecal material. Stool moisture content was de-
termined in duplicate on the frozen homogenized fecal material (− 80 °C)
as the percentage of stool mass loss after lyophilization. (A) The abun-
dance of stool moisture between healthy controls and HCC patients. (B)
The abundance of stool moisture in patients with Small HCC versus Non-
Small HCC. (student’s t test) HCC, hepatocellular carcinoma.

Additional file 2: Supplementary Table S1. Clinical phenotype
information of individuals with HCC. Supplementary Table S2. Taxon
annotation of 1296 OTUs from all samples. Supplementary Table S3.
Fecal microbial diversity index in all samples. Supplementary Table S4.
three hundred and ten OTUs from all samples. Supplementary Table
S5. Clinical phenotype information of healthy participants.
Supplementary Table S6. Clinical characteristics summary of all
enrolled individuals. Supplementary Table S7. Different degree of
phylum level (p value) in Healthy Control and HCC Group.
Supplementary Table S8. Different degree of genera level (p value) in
Healthy Control and HCC Group. Supplementary Table S9. The
interrelationship between 16S OTU clusters of at genus level and
taxonomic compositions (NCBI Taxonomy ID). Supplementary Table
S10. fifty-six OTU-gene pairs filtered by FDR test of Pearson correlation
between OTUs and genes. Supplementary Table S11. Pearson
correlation-based analysis of clinical characteristics (all values) and gut
microbiota (75 OTUs matched to Bacteroides & Lachnospiracea incertae
sedis & Clostridium XIVa). Supplementary Table S12. Pearson
correlation-based analysis of clinical characteristics (abnormal values) and
gut microbiota (75 OTUs matched to Bacteroides & Lachnospiracea incer-
tae sedis & Clostridium XIVa). Supplementary Table S13. Metabolites of
gut microbes according to Virtual Metabolic Human database (http://
www.vmh.life). Supplementary Table S14. The relative abundance of
six OUT-markers in each sample. Supplementary Table S15. The corre-
sponding bacterial genera of six OTU-markers. Supplementary Table
S16. Stool form scale and stool moisture in all samples. (PDF 1380 kb)

Additional file 3. Supplementary Methods (including detailed custom
code and mathematical algorithm).
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