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Abstract

Background: Once antibiotic-resistant bacteria become established within the gut microbiota, they can cause
infections in the host and be transmitted to other people and the environment. Currently, there are no effective
modalities for decreasing or preventing colonization by antibiotic-resistant bacteria. Intestinal microbiota restoration
can prevent Clostridioides difficile infection (CDI) recurrences. Another potential application of microbiota restoration
is suppression of non-C. difficile multidrug-resistant bacteria and overall decrease in the abundance of antibiotic
resistance genes (the resistome) within the gut microbiota. This study characterizes the effects of RBX2660, a
microbiota-based investigational therapeutic, on the composition and abundance of the gut microbiota and
resistome, as well as multidrug-resistant organism carriage, after delivery to patients suffering from recurrent CDI.

Methods: An open-label, multi-center clinical trial in 11 centers in the USA for the safety and efficacy of RBX2660
on recurrent CDI was conducted. Fecal specimens from 29 of these subjects with recurrent CDI who received either
one (N = 16) or two doses of RBX2660 (N = 13) were analyzed secondarily. Stool samples were collected prior to
and at intervals up to 6 months post-therapy and analyzed in three ways: (1) 16S rRNA gene sequencing for
microbiota taxonomic composition, (2) whole metagenome shotgun sequencing for functional pathways and
antibiotic resistome content, and (3) selective and differential bacterial culturing followed by isolate genome
sequencing to longitudinally track multidrug-resistant organisms.
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Results: Successful prevention of CDI recurrence with RBX2660 correlated with taxonomic convergence of patient
microbiota to the donor microbiota as measured by weighted UniFrac distance. RBX2660 dramatically reduced the
abundance of antibiotic-resistant Enterobacteriaceae in the 2 months after administration. Fecal antibiotic resistance
gene carriage decreased in direct relationship to the degree to which donor microbiota engrafted.

Conclusions: Microbiota-based therapeutics reduce resistance gene abundance and resistant organisms in the
recipient gut microbiome. This approach could potentially reduce the risk of infections caused by resistant
organisms within the patient and the transfer of resistance genes or pathogens to others.

Trial registration: ClinicalTrials.gov, NCT01925417; registered on August 19, 2013.

Keywords: Fecal microbiota transplantation, Multidrug resistance, Antibiotic resistance, Metagenomics, Microbiome,
Clostridioides difficile

Background
Antibiotic-resistant (AR) infections account for billions
of dollars in healthcare costs and tens of thousands of
deaths every year in the USA alone [1]. Infections caused
by antibiotic-resistant organisms (AROs) are even more
devastating because of dwindling therapeutic options. In-
creasing global usage of antibiotics raises the abundance
and prevalence of antibiotic resistance genes (ARGs) and
AROs both within an individual and the environment
[2–5]. Even when appropriately delivered, antibiotics dis-
rupt the commensal gut microbiota, select for antibiotic
resistance, and decrease colonization resistance to AROs
and opportunistic pathogens [6–8]. Therefore, develop-
ment and implementation of antibiotic-sparing alterna-
tives is imperative to limit the sequelae of increased AR
worldwide.
Antibiotic treatment increases the risk of Clostri-

dioides difficile infection (CDI) by decreasing
colonization resistance mediated by commensal organ-
isms [9, 10]. Currently, CDI is primarily treated with or-
ally bioavailable antibiotics such as vancomycin or
metronidazole, which further contributes to microbiome
disruption, AR infections, and risk for recurrent CDI
[11–13]. Furthermore, antibiotic treatment with metro-
nidazole and vancomycin increases the carriage of AROs
such as vancomycin-resistant Enterococci (VRE) [14]. In-
creased gastrointestinal carriage of VRE in the context
of C. difficile colitis can predispose patients to VRE
bacteremia with 2.5-fold increased mortality relative to
vancomycin-sensitive Enterococci [15, 16]. Thus, devel-
opment of antibiotic-sparing treatments to restore gut
microbiota composition, enhance colonization resist-
ance, and limit increasing antibiotic resistance is
warranted.
Fecal microbiota transplantation (FMT) is a technique

whereby donor stool from healthy individuals is deliv-
ered into the gastrointestinal tract of a recipient patient.
FMT is rapidly gaining recognition as a mostly safe and
highly effective treatment for preventing recurrent CDI
[13, 17, 18], and analogous investigational microbiota-

based therapeutics are under evaluation in controlled
clinical trials [19, 20]. Additionally, these approaches
have the potential to restore other aspects of a disrupted
gut microbiome [21]. Indeed, previous studies have dem-
onstrated taxonomic changes to the gut microbiota via
16S rRNA gene sequencing after FMT for recurrent CDI
commensurate with an increase in gut microbial diver-
sity, a marker of microbiota health [12, 13]. While some
patients respond well to a single FMT, some require re-
peat FMTs to prevent CDI recurrence, and it is accord-
ingly important to be able to predict engraftment
success [22]. It was recently shown that probability of
bacterial species engraftment after FMT was related to
the taxonomic abundance of each species in the donor
and in the recipient [22]. Some studies also suggest that
there may be a reduction in carriage of ARGs and se-
lected AROs such as VRE after FMT [23, 24]. It is there-
fore theoretically possible to utilize FMT or similar
investigational treatments with a high abundance of
non-resistant species to displace AROs from the recipi-
ent’s microbiome. Accordingly, we sought to investigate
the abundance of AROs and ARGs in patients treated
with RBX2660—a microbiota-based investigational
therapeutic for alleviation of recurrent CDI.
RBX2660, a liquid suspension of donor microbiota

screened for bacterial, viral, and parasitic pathogens, in-
cluding methicillin-resistant Staphylococcus aureus
(MRSA), vancomycin-resistant Enterococci (VRE), and
extended-spectrum beta lactamase (ESBL) -expressing
Enterobacteriaceae, has recently been deployed to treat
recurrent CDI [25, 26]. Here we examine the effects of
this treatment on the recipient’s microbiome, ARG
prevalence within the gut, and the fates of patient-
derived ARO isolates over the course of a 12-week phase
II clinical trial, and up to 180 days post-therapy. We
found that patients who adopt a more donor-like micro-
biota composition, determined by weighted UniFrac dis-
tance 7 days after RBX2660, were more likely to be CDI
recurrence-free during the 180-day observation period.
We tracked ARO abundance in the recipient’s stool after
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initial therapy via longitudinal strain tracking of ampli-
con sequence variants (ASVs) based on the 16S rRNA
gene sequences of cultured isolates. We utilized whole
metagenome shotgun sequencing and ARG prediction
using ShortBRED to quantify ARGs in the recipient,
which we find is correlated with weighted UniFrac dis-
tance from the donor. Taken together, these data show
that in addition to CDI treatment, RBX2660, and poten-
tially FMT in general, can be used to reduce overall
ARG abundance and ARO carriage in a recipient’s
microbiome.

Methods
Trial design
Fecal samples in this study were derived from a phase 2
prospective open-label cohort study administering the
microbiota-based restoration therapeutic RBX2660 to
patients with recurrent CDI (NCT01925417). Safety and
efficacy analysis of this trial has been published [25], and
the study protocol is detailed there and reproduced here
(Additional file 1: Fig. S1). The first patient was enrolled
on August 15, 2013, and the last was enrolled on De-
cember 16, 2013. Forty patients were recruited at 11
study sites within the USA. For inclusion, patients 18
years or older had at least two rounds of standard-of-
care oral antibiotic therapy with at least two recurrences
or hospitalizations for CDI. They also had to take or
start oral antibiotics for CDI symptoms including at least
7 days of oral vancomycin. Exclusion criteria included
medical diagnoses and procedures that could rationally
impact the gut microbiome including uncontrolled diar-
rhea after CDI treatment, concurrent antibiotic therapy
for an illness other than CDI, or history of inflammatory
bowel disease, irritable bowel syndrome, chronic diar-
rhea, or celiac disease [25]. Patients with compromised
immune systems including steroid use, neutropenia,
chemotherapy, or a life expectancy less than 12months
were also excluded. The primary outcome was incidence
of serious adverse events through 56 days after the last
treatment. Secondary outcomes included incidence of
serious adverse events 6 months after the last treatment,
absence of CDI 56 days after the last dose, quality of life
score, and hospitalization data after RBX2660. Prior to
administration of the study drug, all patients were given
at least 7 days of oral vancomycin (125mg four times
per day) followed by RBX2660 via enema from one of 21
samples from four healthy donors. Of the 34 patients
that passed screening, 29 succeeded in submitting longi-
tudinal fecal samples suitable for microbiome analysis. If
a patient had a recurrence of CDI symptoms, they were
offered a second dose of RBX2660. The study population
was 97% white and 67.6% female and had a mean age of
68 years [25].

Study drug
The microbiota-based restoration therapeutic RBX2660
is a 50-g/150-mL suspension of donor stool containing
at least 107 CFU live microbes in polyethylene glycol
3350/0.9% sodium chloride USP solution. The donor
stools were screened extensively for MRSA and VRE as
well as viral, bacterial, and parasitic enteric pathogens as
previously described [25]. Aliquots of all 21 RBX2660
products from 4 donors were retained and utilized for
this study.

Sample collection
Stool samples were collected at day 0 (after finishing
vancomycin treatment and before RBX2660 administra-
tion), and at days 7, 30, 60, 90, and 180 post-treatment,
though many patients did not provide all samples (Fig. 1).
Samples were collected at home by patients and immedi-
ately shipped on ice (4 °C) in dedicated sterile, airtight
containers via FedEx. The stool samples were divided
into 500-mg aliquots that were placed at − 80 °C imme-
diately upon receipt by Rebiotix, Inc. Samples were
shipped from Rebiotix, Inc. on dry ice (− 20 °C) to
Washington University in St. Louis, Missouri.

DNA extraction and sequencing
Fecal DNA was extracted from 0.25 g of stool via
phenol-chloroform extraction as follows. Stool was com-
bined with 250 μL of 0.1 mm zirconium beads, 500 μL
of 200 mM NaCl/200 mM Tris/20 mM EDTA solution,
210 μL of 20% SDS buffer, and 500 μL 24:25:1 phenol to
chloroform to IAA (pH 7.9) while on ice. This mixture
was homogenized via bead beating for 4 min and then
centrifuged at 4 °C for 3 min at 6800rcf. The aqueous
supernatant was transferred to pre-spun lock-phase PLG
columns (5Prime, #2302820), an equivalent volume of
phenol to chloroform to IAA was added, and the tube
was inverted and then centrifuged at max speed (20,800
rcf) for 5 min. The aqueous phase was transferred to a
clean tube with 600 μL of cold isopropanol and 60 μL of
3M NaOAc (pH 5.5), mixed, and incubated at − 20 °C
overnight. The resultant precipitate was pelleted by cen-
trifugation at 20,800 rcf at 4 °C for 20 min. The super-
natant was decanted, and the pellet was washed by
adding 500 μL of 100% EtOH at 25 °C, centrifuging at
20,800 rcf at 4 °C for 3 min. The ethanol was pipetted
off, and the pellet was air-dried for 15 min in dark, ster-
ile conditions. Finally, the pellet was resuspended in
50 μL of TE buffer (Ambien #9861) while incubating at
30 °C for 5 to 15min. The resulting DNA was processed
with QIAQuick PCR purification column (QIAGEN
#28106) with 4 μL of 100 mg/mL RNase added to
300 μL of Buffer PB at step 1 and incubated with the re-
suspended DNA for 2 min at room temperature.
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The 16S rRNA gene was amplified from fecal DNA as
follows: 1.5 ng of fecal DNA was used as template for
PCR reactions using 5PRIME HotMasterMix (Quantabio
#22000401) with universal 16S rRNA gene primers 515F
(5′-GTGCCAGCMGCCGCGGTAA) and 806R (5′-
GGACTACHVHHHTWTCTAAT). An 8-bp barcode
unique to each sample was designated, and each reaction
was run in triplicate with a negative (no template) con-
trol. The amplicons were run on a 1% TAE agarose gel
with SYBRsafe DNA stain and gel-purified with Qiagen
Gel Purification Kit (#28115). Eluted amplicons were
quantified with PicoGreen dsDNA (ThermoFisher
#P7581), pooled, and purified with Agencourt AMPure
XP bead purification protocol per the manufacturer’s in-
structions (Beckman Coulter #A63881). The pool was
loaded at 8 pM concentration with 25% PhiX and se-
quenced on the Illumina MiSeq platform with 2 × 150 bp
paired end reads.
For whole metagenome shotgun sequencing, 130 μL

containing at least 500 ng of genomic DNA was soni-
cated (Covaris E220 model) into 500–600-bp fragments
at 4 °C for 75 s, at intensity 4, duty cycle 10%, and 200
cycles per burst. Fragmented DNA was concentrated
into 63 μL volume using the QIAQuick PCR Purification
kit (Qiagen). End repair was performed using 0.5 μL of
three enzymes: T4 ligase (NEB #M0203S), Taq

polymerase (NEB #M0267S), and T4 PNK (NEB
#M0201S), with 1 μL of 1 mM dNTPs and 2.5 μL of T4
buffer with 10 mM ATP (NEB #B0202S). The end-
repaired genomic fragments were barcoded by incu-
bating the DNA mixture with 0.8 μL of T4 DNA lig-
ase and a unique sequencing barcode at 25 °C for 10
min. Samples were then pooled by column of the 96-
well plate, purified by QiaQuick PCR purification kit,
and eluted in 15 μL of EB. Gel purification was simi-
lar to 16S rRNA gene sequencing but for all frag-
ments from 400 to 900 bp in length, and final elution
volume was 12 μL. Finally, 2 μL of each of the shot-
gun fragment pools was amplified using 1 μL of
10 μM Illumina nonspecific primers using 2X Phusion
HF Master Mix and water up to 25 μL total reaction
volume with the following cycling conditions: 17× for
30 s each of 98 °C, 65 °C, and 72 °C with a 5 min
72 °C final extension and hold at 4 °C. The product
was then quantified by QuBit and pooled at equal
concentrations. Purified libraries were then prepared
for sequencing on the Illumina HiSeq platform with
paired end reads of 2 × 150 bp. Metagenomic shotgun
sequencing samples were re-sequenced if the associ-
ated barcodes appeared in fewer than 1M reads [27].
Samples that failed sequencing were excluded from
analysis and removed from Fig. 1.

Fig. 1 Sampling schematic. Patients were given RBX2660 (green square) after vancomycin oral therapy (left panel). Stools (labeled as maroon
circles) provided were sequenced and used for subsequent analyses. If a patient had CDI recurrence (red triangle), they were offered a second
dose of RBX2660 (green square) with subsequent stools provided after the second study drug (right panel). Any antibiotic treatment during the
trial is labeled as yellow diamonds. Patient IDs colored red failed first treatment and received antibiotics or second dose and constitute the RI
group (n = 17). Patients who had no recurrence of symptoms or received antibiotics were considered successes (SI group, n = 12). All subsequent
figures utilize data after the first dose. Data after second RBX2660 is used only for Figs. 5a–e and 6d. Three stool samples that failed sequencing
were excluded from this figure and downstream analyses
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Isolation and genomic analysis of AROs
In order to determine the fates of specific AR bacterial
strains, each fecal sample was plated on selective and
differential media as described below. Frozen samples
were thawed once before DNA extraction in order to ali-
quot 1 mL for culture. Stool was incubated for 2 h in
Tryptic Soy Broth at 35 °C, and two drops of the stool/
broth mixture were streaked onto each of the following
plates: Sheep’s Blood Agar (SBA) (BD 22161), VRE
ChromeID (Biomerieux 43851), MacConkey with Cefo-
taxime (Hardy G121), CHROME ESBL (Hardy G321),
Hardy Cetrimide Agar (Hardy G18), and MRSA Spectra
Agar (Remel 01822). An incubator with 5% CO2 atmos-
phere was used for SBA, while the rest were incubated
at standard atmospheric compositions and grown at
37 °C. For each selective plate, 4 colonies were chosen
for isolation. These colonies were subcultured to an SBA
plate and labeled A–D. Each colony was determined to
the genus or species level by VITEK MALDI-TOF MS
(KB v3.2.0), then subjected to antimicrobial susceptibility
testing where it was categorized according to clearance
zone diameter cutoffs from CLSI 2016 guidelines [28].
All isolates were stored in − 80 °C in Tryptic Soy Broth
with 10% glycerol.
The Qiagen Bacteremia kit was used to extract gen-

omic DNA from 0.25-g bacterial mass from pure culture
using the manufacturers’ instructions. Shotgun sequen-
cing was performed as above with each isolate at 100×
coverage of the estimated genome size. Genomes were
assembled with spades v3.10 (kmer sizes 21, 33, 55, and
77 on careful mode) and quality controlled with QUAST
v4.5 [29]. ARGs from isolate genomes were annotated
using Resfinder 4.0 [30]. Core genes were extracted with
Prokka v1.12 [31] and then aligned and compared using
Roary v3.12.0 [32]. Phylogenetic trees were generated
from core binary genes using RaxML v8.2.11 [33] with
the GTR Gamma model with name derived from
DADA2 ASV (see the next section). A phylogenetic tree
was constructed using Methanobrevibacter as an out-
group, then trimmed to show closely related outgroups
per genus displayed. Visualization was done with the
ggtree package in R.

Isolate tracking in fecal samples using ASVs
The 16S rRNA gene from the isolate shotgun genomes
was assembled with PhyloFlash v3.3 with bbmap option
[34] and then aligned to the Silva 16S rRNA gene data-
base release 132 (clustering NR99). From the now full-
length 16S rRNA gene sequence assembled from each
isolate [35], the in silico amplicon from the respective
universal 16S rRNA primer was obtained via mothur
v1.37.5 [36]. Each of these isolate-derived amplicons was
then formatted for inclusion as a pure sample in DADA2

v1.8. The matching ASV was then quantified within pa-
tient samples throughout the study.

Resistance gene prediction and quantification
ShortBRED protein markers were built from the Com-
prehensive Antibiotic Resistance Database (CARD) 3.0
(February 2019 update) database using shortbred-
identify.py with cluster identity 90% and screened
against Uniref90 (February 2019 update) [37]. The
number of hits for each gene was determined with
ShortBRED-quantify, which normalizes reads based on
marker length and read depth. A Gaussian linear mixed
effects model created using the glmer function of the
lmer4 package in R was used to predict ARG totals
based on the distance from donor (DFD) metric. The
formula for the full model was ARGs ~ DFD + (1 |
PatientID), and the fixed effect DFD was restricted to 1
for the null model. In the response variable ARGs, the
data was log transformed using glmer option Gaussian
(link= “log”) to normalize the right-skewed distribution.
For visualization, the y axis of ARG totals was expressed
as log (ARGS+1) which avoids infinite values. An
ANOVA with chisq test comparing the full and null
models was run to determine the value of DFD in pre-
dicting ARG totals in a metagenome (Chisq = 72.28,
d.f.(full) = 1, p < 2.2 × 10−16).
ARGs were categorized according to the mechanism

and then by gene family as available in the CARD 3.0
ontology. Gene families present in at least 10% of sam-
ples from either day 0 or day 180 were assessed by the
Kruskal-Wallis rank sum test for differences between
day 0, day 180, and associated donor samples. The gene
families with significant differences by Kruskal-Wallis
then underwent pairwise comparison with Wilcoxon
rank sum tests with Benjamini-Hochberg correction.

Taxonomy and microbial functional pathway prediction
The annotation of 16S rRNA gene sequences was per-
formed with DADA2 v1.8 with a lower limit read cutoff
of 1M reads [38]. Taxonomy was inferred using intrinsic
IdTaxa from DADA2 as well as DADA2’s internal call to
DECIPHER v.2.6.0 [39]. Further processing of 16S rRNA
gene sequencing data was performed using Phyloseq
[40]. Shotgun metagenomic sequences were demulti-
plexed, trimmed, and filtered using Trimmomatic v0.33
[41] with the following parameters: leading and trailing
sequences of 10 bp, with a sliding window between 4
and 20 bp, and minimum length of 60 bp. Deconseq
v0.4.3 on hsref38 was used to screen out any human
DNA [42]. MetaPhlAn v2.0 [43] was then used to pre-
dict taxonomy down to the level of species. Functional
pathways of the gut microbiome were inferred using
HUMAnN2 by mapping unassembled sequencing reads
to functionally annotated pangenomes [44]. The package
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prcomp v3.5.3 was used to calculate and plot the princi-
pal component analysis (PCA) of both the taxonomic
and functional profiling, which were scaled during
graphing (Fig. 2). The package ggbiplot was used to draw
vectors corresponding to the contributions of the main
taxa differentiating the “single intervention” (SI), “repeat
intervention” (RI), and donor groups. A DPCOA plot
with Euclidean distances was also generated through
phyloseq.

Results
Taxonomic and functional pathway composition converge
to a donor-like conformation after successful therapy
A multi-center trial of RBX2660 for recurrent CDI was
conducted in 2013. Forty individuals were consented,
and 31 patients completed the 6-month trial (Add-
itional file 1: Fig. S1) [25]. Two patients had insufficient
sampling frequency and were therefore excluded from
our analysis leaving 29 individuals whose time courses of
CDI symptoms, RBX2660 administration, and antibiotic
receipt are shown in Fig. 1. Twelve patients did not ex-
perience a CDI recurrence after a single dose of the
study drug (single intervention or SI group) while 17 ex-
perienced a recurrence between day 7 and day 60. The
17 patients with recurrent CDI received a repeat inter-
vention with antibiotics and/or repeat RBX2660 (RI
group; Fig. 1 Patient ID red text; median 15 days post
initial RBX2660). Participants who received a second
dose of RBX2660 were not necessarily pre-treated with
antibiotics before as per study protocol (Additional file 1:
Fig. S1) [25]. We first longitudinally determined the
taxonomic composition of the gut microbiota after the
first dose of RBX2660 [27] (Fig. 1, left panel). We
used 16S rRNA gene sequencing analyzed via DADA2

[38] and computed weighted UniFrac distance from
donor (DFD), which serves as a metric of engraftment
[45]. After the first study treatment, the microbiota DFD
shows a decreasing trend over time after treatment indi-
cative of increased similarity with donor microbiota
composition, but this differed by eventual treatment out-
come (Fig. 2a). At time 0, there was no difference in me-
dian DFD between patients who responded to a single
dose (SI) and those who received a repeat intervention
(RI) for recurrent CDI (p > 0.05, Mann-Whitney U test).
However, at day 7 after the first study treatment, micro-
biota DFD was significantly higher for individuals who
eventually received repeat intervention after day 7 for re-
current CDI (Fig. 2b, median 0.31 vs. 0.22, Mann-
Whitney U test, p < 0.05). The adoption of similar
microbiota profiles to the donors by day 7 after the first
study treatment is therefore significantly predictive of
engraftment success of the initial therapy during the ob-
servation period. Although DFD appears to decrease for
the RI group at day 60 (Fig. 2a), this observation is only
based on the 4/17 individuals yet to experience CDI re-
currence. These data demonstrate that in successful first
treatments, the overall patient microbiota profile shifts
quickly to resemble the donors after the study treatment.
However, convergence is never absolute for these pa-
tients during the length of the study, with a mean DFD
of 0.179 at 180 days after the first study treatment
(Fig. 2a). This degree of engraftment is consistent with
what has been reported previously for FMTs in the lit-
erature [22, 46].
We further investigated the impact of the microbiota-

derived restoration therapy on the patient fecal micro-
biota using whole metagenomic shotgun sequencing
with both taxonomic and functional profiling [27]. Each

Fig. 2 Microbiota composition similarity to the donor at 7 days is predictive of treatment outcome. The donor and recipient microbiota
compositions were assessed via 16S rRNA gene sequencing followed by DADA2, and their similarity to the donor product was quantified by
weighted UniFrac at each timepoint. a Gray lines represent individuals successfully treated with one administration (SI group) while red lines are
patients who needed further treatment (RI group, a second product or antibiotics). N = 28 patients and 130 samples. b Plot demonstrating
average distance from the donor at timepoints 0 and 7 days after treatment. N = 28 total patients and 44 samples. Box subsumes 75% of the data
with a horizontal bar at the median. *p < 0.05, Mann-Whitney U test
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of the four donors contributed 2–8 samples for a total of
21 individual donor samples (Additional file 1: Fig. S2).
The donor microbiota was dominated by Firmicutes,
which is expected in healthy US adults [47], whereas the
recipient microbiota prior to RBX2660 had increased
abundance of Proteobacteria, which is a hallmark of
antibiotic-disrupted microbiota [48, 49] (Additional file 1:
Fig. S2). To explore this data, principle component
analysis was performed. The PCAs in Fig. 3a and b were
visualized for successful engraftments only (SI group),
which revealed distinct microbiota communities between
the donors and recipients at day 0 (as notated by non-
overlapping 95% confidence ellipses; Fig. 3a), but not
thereafter. We next determined microbiome-wide func-
tional pathways for the SI group as inferred using
HUMAnN2 [44] (Fig. 3b). Similar to taxonomic compos-
ition, PCA of the diverse functional pathways found in
these patients with successful treatments were signifi-
cantly different (nonoverlapping 95% confidence ellipses;
Fig. 3b) from those of the healthy donors only at the
baseline timepoint. We also utilized Linear Discriminant
Analysis with LEfSe to identify discriminatory features at
7 days indicative of receiving further intervention [50]
(Additional file 1: Fig. S3). This analysis identified micro-
bial pathways for membrane and biosynthetic processes
were enriched in responders after the first dose. Individ-
uals requiring re-intervention (RI group) had microbial
functions enriched for flagella, pathogenesis, and ion
binding. For a clearer picture of the changing trajectories
over time, each of the HUMAnN2 pathways was plotted
separately with each of the day 0 and day 7 pairs (Add-
itional file 1: Fig. S4). These have been grouped by direc-
tion of change after treatment (i.e., whether a particular
treatment group was enriched or depleted for a specific
pathway after treatment). It is thus possible that certain
microbial functions are restored after initial treatment
(Additional file 1: Fig. S4), but patients still suffer CDI
recurrence. Therefore, likelihood of successful treatment
by RBX2660 is correlated with taxonomic and functional
convergence to a more donor-like conformation.

Key taxa discriminate those patients who require repeat
intervention
To identify the specific microbial taxa correlated with
treatment outcome, we utilized PCA to visualize differ-
ences in 16S rRNA gene-based taxonomic composition,
as inferred by DADA2, between recipient day 7 samples
stratified by eventual outcome as well as donor samples
for comparison (Fig. 3c). The output from DADA2 is
amplicon sequence variants (ASVs), which may differ by
as few as 1 nucleotide and have been shown to improve
specificity and sensitivity of organism identification [38,
51, 52]. The ASVs were numbered in order of overall
prevalence within all samples for clarity. At day 7,

patients who subsequently received a repeat intervention
of either antibiotics or repeat RBX2660 therapy, the RI
group, showed a significantly different taxonomic com-
position compared to either the SI group (Adonis, p =
0.028) or the donors (Adonis, p = 0.001) (Fig. 3c). The
taxa identified by PCA driving the difference between
the centroid positions included 25 ASVs above 5% im-
portance and 11 above 10% importance (Fig. 3d). The
taxonomy-labeled vectors influence the samples on
Fig. 3c away from the origin in the direction indicated,
so vectors pointing in the direction of the centroid of
the donor represent important donor taxa, vectors in the
direction of the SI group identify important features of
success after initial therapy, and vectors pointing
towards the centroid of the RI group identify features
correlated with requiring additional treatment. In this
PCA analysis of taxa at 7 days, the genera Blautia and
Roseburia were most representative of the donors and
success after initial therapy (SI), and ASVs representing
members of the genera Escherichia/Shigella, Klebsiella,
and Pluralibacter were most associated with likelihood
of requiring repeat intervention (Fig. 3d). Three separate
ASVs from the Akkermansia genus provided a large por-
tion of the variation, and in some severely perturbed
samples at day 0 and 7, A. muciniphila ASV 2 exceeded
40% of the entire microbial composition (Additional file 1:
Fig. S5). After day 30, however, A. muciniphila ASV 2
often maintained a stable abundance of < 25% in the SI
group, while abundance in the RI group was highly vari-
able after re-intervention (Additional file 1: Fig. S5B).
Replication of the PCA through phyloseq’s dpcoa
function again showed Akkermansia contributing
variation but not correlating with treatment outcome
(Additional file 1: Fig. S6). Of note, C. difficile was not
among the top indicators. Its corresponding ASV as well
as C. difficile toxin genes, detected through custom
ShortBRED markers (Additional file 1: Fig. S7A), were <
2% relative abundance in any sample and did not correl-
ate with treatment outcome (Additional file 1: Fig. S7B).
Based on the findings from our PCA analysis, we tem-

porally characterized the relative abundance of these 11
most discriminatory ASVs over time after the first treat-
ment for the SI group (Fig. 4). For subjects who did not
have CDI recurrence (the SI group), donor ASVs includ-
ing Roseburia ASV7, Blautia ASVs 1 and 3, and Anae-
rostipes ASV8 were notably absent in day 0 specimens
(Fig. 4). By day 7, these taxa increased in relative abun-
dance, and by the end of the trial at day 180, their abun-
dance was similar to the donor microbiome. Conversely,
ASVs corresponding to Enterobacteriaceae, Escherichia,
Akkermansia, and Klebsiella were abundant at time 0 for
the recipients with their abundance declining over time.
Thus, the taxa associated with a successful first
RBX2660 treatment (Fig. 3d) begin to change relative
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abundance at 7 days after the first dose with continued
adoption of a more donor-like conformation over the
subsequent 180 days. At 30 days after the first study
drug, 14/17 of the RI group had already suffered a CDI
recurrence and received either a second FMT or

antibiotics (Fig. 1). Thus, we cannot investigate whether
the relative abundance differences at timepoints later
than 7 days would also be associated with success. How-
ever, given the trends in relative abundance changes, it
is likely that further adoption of a donor-like

Fig. 3 Taxonomy and microbial functional pathways converge after therapy receipt. a, b Principal component analysis (PCA) of patient
microbiome taxonomic composition from 16S data (a) and of functional pathway abundances from whole metagenomic sequencing (b) in the SI
group. Each colored dot represents an individual fecal sample after the first intervention with the circle representing 95% confidence interval with
non-intersecting circles therefore statistically significant. Panel a shows 96 samples from all twelve patients with successful treatment and all four
donors, while panel b shows 52 samples from eight successful patients and four donors (all of those who passed shotgun sequencing quality
filters). c PCA from timepoint 7 samples after first study treatment only, colored by the SI or RI group (46 samples from all donors and all patients
with day 7 samples; patient N = 25; donor N = 4). Each sample is connected to the centroid of its outcome group by a segment of the same
color. d Taxonomy biplot shows the vectors of influence from taxa in distinguishing day 7 samples. The input samples, axes, and origin are the
same as in c
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conformation would also be associated with success
(Fig. 4). We have identified several taxa at 7 days after
RBX2660 (Fig. 3d) whose presence and relative abun-
dance changes during the first 180 days are associated
with limiting CDI recurrence.

Microbiota restoration concomitantly reduces antibiotic-
resistant organisms and antibiotic resistance genes
Antibiotic resistance in the donor and recipient’s gut
communities at any time was detected both by selective
and differential culture and by annotation of ARGs from
metagenomic shotgun sequencing data and assembled
whole genome sequences of cultured isolates [35]. Se-
lective and differential culture yielded 38 ARO isolates
(5 Enterobacter, 3 E. coli, 3 Citrobacter, 2 Pluralibacter,
19 Enterococcus faecium, and 6 Enterococcus faecalis)
identified by matrix-assisted laser desorption ionization
time of flight mass spectrometry (MALDI-TOF MS) and
confirmed via genomic analysis [27] (Additional file 2).
Antibiotic susceptibility profiles (Fig. 5a–e) revealed re-
sistance to 9 of 13 tested antibiotics across 5 genera, as
measured by disk diffusion assay. A phylogenetic tree of
all isolates was then created to demonstrate evolutionary
relatedness and pruned to show each displayed isolate

with the most closely related publicly available
sequences.
Enterobacter (Fig. 5a), Escherichia (Fig. 5b), Citrobacter

(Fig. 5c), and Pluralibacter (Fig. 5d) demonstrated
phenotypic resistance to amoxicillin as well as 1st and
3rd generation cephalosporins. Multiple E. coli isolates
additionally demonstrated resistance to gentamicin,
doxycycline, and chloramphenicol (Fig. 5b). Importantly,
given recent safety concerns regarding bacteremia
caused by ESBL E. coli after FMT [53], we identified E.
coli in a donor resistant to amoxicillin, cefazolin, and
ceftriaxone indicative of ESBL production (Fig. 5b). For-
tunately, neither patient receiving this product experi-
enced an invasive infection from E. coli [25]. We also
identified VR Enterococcus faecalis and Enterococcus fae-
cium present in 8 patients throughout the course of the
study (Fig. 5e). Annotation of the 41 assembled genomes
with known ARGs through Resfinder detected 350 re-
sistance genes predicting resistance to all major classes
of antibiotics (Additional file 3). While the objective of
this study was not to find or evaluate causal genotypes
explaining empirical resistance, the AROs generally
followed these rules: isolates with resistance to amoxicil-
lin and cephalosporin antibiotics were typically

Fig. 4 Taxa significantly associated with distance from the donor and successful response to RBX2660. A heatmap demonstrating the relative
abundance over time after first RBX2660 is shown for donors and the SI group. These taxa are the top 11 identified by the PCA in Fig. 3d as
significantly associated with successful treatment. Dark blue corresponds to 0.001% relative abundance with lighter blue 0.1% relative abundance.
Each column represents a sample from a patient over time from left to right with donor samples at the right. N = 109 samples from 12 subjects
from the SI group and 4 donors
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Fig. 5 (See legend on next page.)
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associated with bla genes while dfra1, aac/aadA1, and
floR corresponded to trimethoprim-sulfamethoxazole re-
sistance, gentamicin resistance, and chloramphenicol re-
sistance respectively (Additional file 3). There was no
resistance to meropenem observed, and the single isolate
with ciprofloxacin resistance did not have a known gen-
omic marker associated. The cohort in this study har-
bored a substantial burden of ARGs and AROs, and we
sought to track these species longitudinally via deeper
metagenomic sampling.
The species corresponding to the 38 isolated AROs

are common causes of healthcare-associated infection,
are often multidrug resistant, and can participate in
horizontal gene transfer between commensals and other
pathogens within the gut and environment [54–56]. Be-
cause sequencing has the potential to be more sensitive
at fecal detection of these organisms than bacterial cul-
ture [57], we sought to track these species within sam-
ples within our cohort. Accordingly, the ASVs associated
with each ARO isolate that we identified were mapped
by reconstructing rRNA genes in sequenced isolates,
conducting in silico PCR to obtain 16S rRNA gene se-
quences, and annotating them with DADA2 (Fig. 5).
ASVs corresponding to each cultured ARO (Fig. 5a–e)
were tracked over time after first study drug (Fig. 5f–j).
The relative abundance of the ASVs plotted in Fig. 5f–j
represent multiple related strains with identical 16S
rRNA sequences, which demonstrably contain all of the
cultured AROs but can also represent susceptible sub-
populations. However, with one exception, all of these
ASVs were absent in the donors by both culture and
metagenomics, allowing them to reliably measure the
trajectory of the patient-associated ASVs. The ASV cor-
responding to the cultured E. coli isolates was found in
one donor, and it was identified metagenomically in one
donor (donor 1-1-DP) at 0.1% abundance. Accordingly,
the two patients (patient IDs A2 and A26) receiving that
product were not considered for eradication analysis for
that ASV because we cannot distinguish between donor-
derived E. coli and recipient-derived E. coli. Given the
recent FDA alert of resistant E. coli infections after re-
ceipt of FMT [58], we confirmed that neither of these
patients developed invasive infections from this organ-
ism. Excluding the donor-origin ARO and matched

recipients, each other recipient sample that cultured an
ARO was also positive by metagenomic sequencing, val-
idating this mapping technique. Culture, however, de-
tected AROs from these species in only 26/111 (23.4%)
of the instances where that ASV was identified in the
metagenomes. This may reflect differences in isolate via-
bility in the stored fecal samples since dead cells will
yield positive DNA-based detection. Alternatively, this
may also reflect that ASVs for these species include both
AROs and antibiotic susceptible forms of these bacteria.
Thus, with this approach, the identified ASVs represent
an upper-bound for detection of these potential AROs
in the metagenomes.
After the first dose of RBX2660, the relative abun-

dance of each isolate-based ASV diminished sharply
(Fig. 5f–j). For each of these ASVs found in an individ-
ual’s earliest sample (n = 61 positive/130 total), if that
ASV was undetectable in the patient’s last sample, it was
considered eradicated. By this metric, 41/61 or 67% of
these species were eradicated (Additional file 4). During
the course of this study, 5 ASVs that were negative in
both donors and in the patient’s earliest timepoints later
became positive (3 Enterobacter ASV 15, 2 Escherichia
ASV 4). These were considered either undetectably low
abundance by metagenomic sequencing or environmen-
tally acquired.
Despite the early decrease that we observed for ASVs

corresponding to Enterococcus, Escherichia, and Entero-
bacter, some patients showed later variable increases in
their abundance over time (Fig. 5f, g, j). Their respective
eradication rates were 7/8 (87%), 9/22 (40%), and 7/10
(70%). However, Pluralibacter and Citrobacter both
remained at extremely low abundances (< 1% and .02%,
respectively) following the initial depletion (Fig. 4h, i),
with eradication rates of 5/6 (83%) and 7/7 (100%), re-
spectively. Interestingly, despite the trend towards ARO
decrease regardless of the outcome of first treatment, we
found a significant difference in the relative abundance
of both Escherichia (Fig. 5g, p < 0.01) and Pluralibacter
(Fig. 5i, p < 0.05) ASVs between SI and RI groups at 7
days post-treatment. This finding corroborates the above
analyses that sharp decreases in these genera may be as-
sociated with success whereas increased abundance at 7
days correlates with likelihood of failure of RBX2660.

(See figure on previous page.)
Fig. 5 Antibiotic-resistant organisms cultured from patient and donor stools and the corresponding ASVs from species were tracked over time.
a–e Antibiotic susceptibility profiles for each cultured organism from any sample from donor and patient with the corresponding phylogenetic
tree. All breakpoints in antibiotic concentration were determined by CLSI 2016 criteria. Taxonomic labels are derived from DADA2 ASV
assignments, with Enterobacter being further specified from family level based on metaphlan2 and MALDI-TOF taxonomy assignments. The
designation A indicates recipient and D indicates donor. The following number indicates the study ID number followed by timepoint of isolation.
A and E connote single colonies on separate plates. f–j Each of the ASVs corresponding to the species in a–e are shown in relative abundance
over time in 131 fecal samples from 28 patients and 4 donors after the first study treatment. *p < 0.05, **p < 0.01 for relative abundance
differences 7 days after therapy between SI and RI groups using Mann-Whitney U test. TMP-SMX, trimethoprim-sulfamethoxazole
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After 2nd study drug in the RI group, ASVs correspond-
ing to Escherichia, Citrobacter, and Enterococcus did not
decrease as dramatically with variable levels thereafter
especially for Escherichia (Additional file 5: Fig. S8).
ASV tracking in metagenomic samples allowed us to
quantitatively assess the maximum possible abundance
of these potential healthcare-associated infection-causing
organisms. Importantly, this method of ASV tracking
does not simultaneously measure phenotypic antibiotic
resistance. As aforementioned, if patients carried closely
related susceptible strains that were not found in the
healthy donors, these could inflate the ASV totals.
Nevertheless, this apparent rebound effect in ARO abun-
dance that we identified via deeply sequencing isolates is
especially important to consider when attempting to
eradicate AROs completely from patient microbiomes
via donor microbiota transfer. Furthermore, this method
of tracking ASVs of predicted AROs in metagenomic
samples is sensitive and robust to false negatives, and so
it identifies frequent eradication and an overall decrease
in AROs after microbiota-restoration therapy. We next
proceeded to assess whether overall ARG content and
identity decreased concomitantly with decreasing ARO
abundance.

Antibiotic resistance gene abundance decreases over
time commensurate with adoption of donor microbiota
We annotated and quantified ARGs in each shotgun
metagenome using ShortBRED with ARG markers built
from the CARD database [37]. The most abundant ARG
families (as determined by marker count per million
reads) corresponding to major antibiotic classes were
chosen for representation in Fig. 6a. For each gene fam-
ily, the normalized gene abundance of all samples at
timepoint 0 was compared to all samples from successful
treatments (SI group) at timepoint 180 and to all donor
samples (Fig. 6a, b). We chose to examine 180 days after
intervention because prior research has shown micro-
biome recovery for healthy adults after antibiotic expos-
ure [59]. For vancomycin, where multiple genes are
required for functional resistance, the minimal complete
cluster had to be present to be counted in this analysis.
In every gene family, the abundance at timepoint 0 in
patients was significantly different than in donors; and
by timepoint 180, the abundance of that gene family in
the patient had more closely approached that in the
donor (Fig. 6a, b; pairwise Wilcoxon with Benjamini-
Hochberg correction, p < 0.05). This was not always a
decrease over time. Tetracycline resistance genes were
most abundant within the donors and were gradually
adopted by the recipients (Fig. 6a). Tetracycline resist-
ance is commonly observed among healthy individuals
given the inherent resistance of the most common mi-
crobial taxa [60, 61]. Within the β-lactamases, opposite

effects were seen based on the origin of those genes,
where AmpC-type β-lactamases were depleted while
CblA genes were acquired and enriched (Fig. 6b).
Altogether, the overall mean abundance of ARGs de-
creased over time (Fig. 6c), but not significantly in those
patients requiring a repeated intervention nor after 2nd
study drug (Additional file 5: Fig. S9). However, the best
predictor of ARG carriage was not time from interven-
tion but microbiota DFD. We observed a negative linear
correlation between adoption of donor microbiota con-
formation as measured by 1-DFD closest to 1 (indicating
increased donor similarity) and ARG carriage (Fig. 6d).
The ARG burden therefore parallels the progress of
RBX2660 engraftment as measured by 16S rRNA gene-
based distance from donor (Fig. 2), showing a significant
correlation in a linear mixed effects model (LR 17.68587,
p < 0.0001). This overarching correlation holds true re-
gardless of treatment status or origin of the ARGs. How-
ever, the strongest decrease was seen in patient-origin
ARGs. There was no relationship between donor dis-
tance and the ARGs not present in baseline samples or
donor (Additional file 5: Fig. S10). The rapidly changing
patient microbiota samples had approximately 1 to 2 or-
ders of magnitude greater variation than donor samples
taken over the same time frame (Additional file 6). We
therefore observed a strong ability of the donor micro-
biota to displace ARGs in the recipient, with the
strength of this effect contingent on engraftment of the
donor microbiota. Therefore, we have documented the
ability of donor microbiota to reduce ARO species and
ARG abundance as a collateral benefit of RBX2660 when
successfully administered for prevention of recurrent
CDI.

Discussion
Microbiota transplantation has been utilized with great
success to prevent recurrent CDI in many different trials
and population subsets [18, 62, 63], albeit placebo-
controlled clinical trial data [64] are still limited. How-
ever, suppression of blooms of C. difficile that cause CDI
symptoms is not the same as pathogen eradication, nor
does it necessarily operate by the same mechanism as
would successful eradication or even suppression of
ARO abundance. To characterize the effects and influ-
ences of this procedure on ARGs and carrier microbes,
we have tracked bacterial taxonomic composition, mi-
crobial functional pathways, ARO colonization, and
ARG abundance within the human gut microbiome for
6 months after the procedure. To aid in discerning direc-
tionality of association, we analyzed a cohort with vari-
able engraftment, which can be leveraged as a dose-
response relationship between treatment and effects
from the gut microbiota. Engraftment of the donor
microbiota was determined via 16S rRNA gene
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sequencing of the patient and donor, and calculation of
weighted UniFrac distance from donor (DFD) 7 days
after product delivery. Patients with successful RBX2660
treatment were distinguishable from those who required
further treatment based on their microbiome taxonomic
and functional composition 1 week after treatment
(Figs. 2, 3, and 4). Furthermore, we have identified key
taxa associated with CDI treatment outcomes.

Specifically, members of the Lachnospiraciae family
(Blautia spp., Roseburia, and Anaerostipes) were corre-
lated with success whereas high abundance of Proteo-
bacteria (Escherichia, Klebsiella, and Pluralibacter) at
day 7 was associated with the necessity of additional
treatment in this cohort (Figs. 3 and 4).
The taxonomic restructuring was dominated by reduc-

tion of Enterobacteriaceae initially after therapy (Fig. 5).

Fig. 6 Antibiotic resistance gene abundance correlates with distance from the donor. a ARGs were quantified in metagenomic sequences (N = 21
patients and 4 donors) and summarized by mechanism. All ARG counts were transformed by log (ARG + 1) for visibility. b Two gene families
within the β-lactamase class show opposite trajectories (N = 21 patients and 4 donors). c Patient-origin ARGs shown over time after RBX2660. d
ARG abundance is plotted versus 1-(distance from donor) using weighted UniFrac. A generalized mixed effects log normal regression model of
the formula ARGs ~ DFD + (1| PatientID) is shown, where DFD was significantly predictive of and correlated with ARG count compared to the
null model (Chisq = 72.28, d.f.(full) = 1, p < 2.2 × 10−16). For c and d, all patients of both outcome groups were included for 153 total samples with
patient N = 25 and donor N = 4. a–c Significance was determined by pairwise Wilcoxon with Benjamini-Hochberg correction. *p < 0.05; **p < 0.001
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These species are known to bloom after use of antibiotics,
and their presence in high numbers at baseline is expected
in this cohort. Our observation that increased pathways
dedicated to flagellin and motility are associated with
treatment failure is consistent with the knowledge that
Proteobacteria such as E. coli and Klebsiella are often flag-
ellated and motile (Additional file 1: Fig. S3). In treatment
of this dysbiosis, the Enterobacterales give way to Firmi-
cutes, particularly Lachnospiraciae. It has been previously
demonstrated that Blautia obeum expresses bile salt hy-
drolases that have been shown to suppress C. difficile ger-
mination in animal models [65]. Another important player
is Akkermansia muciniphila, which has been inversely as-
sociated with mucosal membrane pathology in multiple
gastrointestinal disorders [66, 67]. Specifically, Akkerman-
sia spp. are important for mucin degradation, and their
relative absence is associated with insulin resistance, dia-
betes, and inflammatory bowel disease in both human co-
horts and animal models (reviewed in [68]). In this cohort,
healthy donors and patients with successful donor engraft-
ments contain stable lower levels of Akkermansia mucini-
phila, while pre-treatment samples and potentially
dysbiotic microbiomes (high microbiota DFD) have widely
varying levels. We speculate that in this instance, Akker-
mansia is a surrogate for microbiome health, a hypothesis
that would require further validation in other cohorts and
models. C. difficile itself was not among the microbial taxa
with strong associations to CDI symptoms. This could be
because sampling often occurred days or weeks apart from
reported CDI symptoms (Fig. 1). Restoration of the micro-
biome to a healthy configuration as quantified by low
microbiota DFD is the best microbiome correlate with
symptom reduction that we identified. That sporulation
was a positive predictor of success is intriguing because it
may suggest that colonization resistance to C. difficile may
be enhanced by other sporulating bacteria, as has been
speculated in development of more defined probiotic
cocktails for treatment of CDI [20, 69–71]. In this sample
set of 29 patients, those whose microbiota DFD reduced
by less than 20% by day 7 were more likely to require fur-
ther treatment (Fig. 2b). In support of this, increased
abundance of Bacteroidia and Clostridia 7 days after
RBX2660 correlated with a recurrence-free interval in a
prior study [46]. Thus, our study identifies several taxa
correlated with FMT success or failure that can be evalu-
ated in larger, placebo-controlled studies.
The overall convergence of patient microbiomes with

donors in both taxonomy and microbial functional path-
ways was concordant with a competitive mechanism of
donor microbial engraftment similar to that identified by
Smillie et al. [22]. Previous literature has demonstrated
that the efficacy of FMT on CDI symptoms depends on
engraftment efficiency [22], and we corroborate that
here with this investigational microbiota therapeutic.

Another intriguing finding supported by this study is
that over the follow-up period after treatment, patients
can and do acquire both taxa and ARGs that were not
present at baseline or in the donor [22]. In our study,
those taxa and ARGs (Additional file 5: Fig. S10) did not
show any engraftment completion-related trends, so they
behaved differently than either patient or donor origin.
These taxa and genes could either be undetectably low
at baseline and in the donor, or they could come from
the environment. This highlights the potential import-
ance of the patient’s environment after FMT for deter-
mining and maintaining a healthy gut microbiota
composition.
We hypothesized that microbiota restoration would be

accompanied by a decrease in ARO and ARG carriage.
This hypothesis was indeed true with greatest impact
when the recipient’s microbiota adopted a conformation
similar to the donor at 7 days after therapy (Figs. 5, 6).
This observation underscores the dramatic and immedi-
ate restructuring of the microbial ecology of the gut fol-
lowing a successful FMT in all three levels of taxonomy,
microbial metabolism, and ARG carriage. In order to
better address the impact of the FMT intervention and
fates of ARO and ARG thereafter, a placebo group
should be included in future studies [64]. Post-FMT
microbiota composition is dictated largely by abundance
in the donor and recipient. ARG abundance was higher
before treatment, and after RBX2660 was directly corre-
lated with DFD. That is, better engraftment of the FMT
leads to a more donor-like conformation and reduced
ARG abundance. For AROs, we did not observe this uni-
versally. We instead found that for VRE and ARO En-
terobacteriaceae, relative abundances as high as 40%
were reduced by donor product. Thus, outcome of FMT
is not exclusively based on taxonomic abundance of ei-
ther the donor or recipient prior to administration.
The effects of microbiota restoration on AROs is a

topic of hope and contention in the literature [72]. We
add to that body of literature ASV tracking of potential
AR pathogens and longitudinal relative abundance from
well-sampled 16S rRNA gene sequencing, which is
among the most sensitive detection methods available.
The eradication rate from all cultured ARO taxa (67%)
was within the wide range of 37.5–87.5% expected based
on FMT for any condition [72]. Between genera of AROs
in this study, eradication rates varied from 40% in Escheri-
chia to 100% in Citrobacter. The slight rebound of relative
abundance found in 3/5 of tracked ASVs at 180 days
would potentially be undetectable by culture. Yet this re-
bound could be clinically important, as further antibiotic
selection on a patient with incomplete eradication could
be riskier than on a patient who has been successfully
decolonized. Importantly, while we only cultured ARO E.
coli from one donor product (compared to 40 other ARO
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isolates from patients), we did metagenomically detect this
ASV in both of the recipients of this donor product. This
finding is especially important after two individuals suf-
fered bacteremia from ESBL producing E. coli present in
donor FMT resulting in the FDA requiring donor screen-
ing questionnaires and MDRO testing of donor stool [53,
58]. This finding highlights the importance of screening
donor products for ARO isolates to reduce their risk of ac-
quisition by recipients. Establishing appropriate detection
thresholds for bacteria targeted for donation, eradication,
and replacement is therefore critically important in these
studies.
This study presents taxa and microbial functional

pathways that require larger datasets and further valid-
ation prior to incorporation into clinical practice. Fur-
thermore, sample storage conditions and freeze-thaw
cycles have been shown to decrease certain taxa, espe-
cially Bacteroidetes [73], which is an inherent limitation
of performing microbiome analyses on archived fecal
samples. Additionally, this study did not include a pla-
cebo group that did not receive FMT in order to
characterize the natural history of ARG and ARO de-
crease after finishing a course of antibiotics. The abun-
dance of ARGs in the gut microbiome was even more
clearly responsive to treatment in a strong inverse rela-
tionship to engraftment, as measured by DFD. It is rea-
sonable that both shedding and transmission of
microbes reduce when they are present at lower abun-
dance in the gut, but the epidemiology of this remains
unquantified. The high initial burden of ARGs and
AROs in CDI patients [23], along with growing inci-
dence (and/or reporting) of CDI [74], is an important
additional motivation for global surveillance of AR and
development of methods to combat its spread. Finally,
most microbiome analyses to date have focused on
metagenomic sequencing of bacteria in stool samples,
but emerging research suggests that viruses, prokaryotes,
and small molecules can also meaningfully impact health
and disease [75, 76]. Therefore, future studies should
consider a multi-omics and multi-kingdom approach to
better predict outcomes after FMT to both restore
microbiome health and limit ARG and ARO carriage.

Conclusions
We have demonstrated here that in addition to the im-
portant prevention of recurrent CDI, when the donor
microbiome optimally engrafts after microbiota-
restoration therapy, ARG and ARO abundance in the re-
cipient gut microbiomes substantially decrease. Abun-
dance of ASVs corresponding to species that are
potentially multidrug resistant in baseline samples was
immediately reduced and often to undetectable levels,
but a late rebound for some patients indicates incom-
plete eradication. Further studies are needed to quantify

epidemiological benefits such as decreased transmission
to other people and the environment. Thus, RBX2660
and microbial therapeutics in general represent an ef-
fective method to alter the gut community composition
together with all its metabolic and potentially pathologic
attributes. The abundance of ARGs and AROs can po-
tentially be lastingly reduced with this method, making
it a promising tool in combating the global threat of
antibiotic resistance.
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Additional file 1: Fig. S1. Study protocol for Phase II clinical trial
NCT01925417 adapted from reference [25]. Samples specifically used for
this study depicted in Fig. 1. Fig. S2. The relative abundance of bacterial
phyla in all patients are shown at day 0 (panel A) and in all donor
samples from the 4 donors (panel B). The patient IDs are marked in gray
if symptoms resolved in a single dose of the study drug and in red if
they required repeat intervention. A) Patient ID is listed after the letter A
on the x axis with relative abundance of each phylum in stacked bar
chart format on the y-axis. B) Donor samples are named as donor num-
ber.samplenumber followed by DS for donor substance. Fig. S3. linear
discriminant analysis compares functional pathway abundance, as anno-
tated by HUMAnN2 and visualized with LEfSe, at day 7 between the two
outcome groups. In red are pathways more enriched in the reinterven-
tion (RI) group, while those patients who recovered after a single treat-
ment had a significantly higher abundance of the pathways in green.
Fig. S4. Shown are the HUMAnN2 functional pathway abundances for all
patients with both day 0 and day 7 samples. Fig. S5. The relative abun-
dance of Akkermansia muciniphila ASV 2 is shown over time stratified by
outcome. A) The patient IDs are marked in gray if symptoms resolved in
a single dose of the study drug, in red if they required repeat interven-
tion, and black if they come from the donor. B) Akkermansia muciniphila
ASV2 abundance after re-intervention. Fig. S6. The PCA analysis from
Main Fig. 2 is reproduced here via the dual principal component function
of phyloseq, which uses Euclidean distances. The overall taxonomic com-
position is graphed in Panel A, while Panel B shows the directionality of
the influence of individual taxa upon those samples. Fig. S7. A) The rela-
tive abundance of Clostridioides difficile is tracked here using species-
specific toxin genes detected in metagenomic sequences via ShortBRED.
The gene count was normalized to the number of metagenomic reads
and expressed in terms of copies per metagenome. B) The relative abun-
dance for the ASV corresponding to C. difficile is shown in the bottom
panel. The patient IDs are marked in gray if symptoms resolved in a sin-
gle dose of the study drug and in red if they required repeat
intervention.

Additional file 2. This table shows cultured isolates, their associated
ASVs, their taxonomy assignments according to DADA2 and MALDI-TOF,
and antibiotic sensitivity results in terms of their clearance zone sizes and
the interpretations of sensitive, intermediate, or resistant. Final taxonomy
assignments were confirmed by genomic alignments with type strains.

Additional file 3. All genomic resistance gene annotations from
Resfinder for all MDRO isolates are listed here, with their specific genomic
location, predicted phenotype, and % identity to reference genes.

Additional file 4. The eradication status of ARO found in each patient is
summarized here. If the first sample (notated as Patient ID – Dose
number – Days from previous dose) was positive according to the ASV
quantified by DADA2 and the last sample from the same patient was
negative, the status for that ASV is shown as negative. Acquired means it
was first negative (in both patient and donor) and later positive, absent
means all samples were negative, masked means the donor was positive,
and insufficient samples means the first and last sample were the same.
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Additional file 5 Fig. S8. Relative abundance of ASVs corresponding to
A) Enterobacter, B) Escherichia, C) Citrobacter, and D) Enterococcus tracked
temporally after second dose of RBX2660 in the RI group. Fig. S9.
Patient origin ARGs over time after A) first RBX2660 and B) second
RBX2660 in the RI group. All comparisons non-significant as determined
by pairwise Wilcoxon with Benjamini Hochberg correction. n = 17 total
patients with A) 27 and B) 45 samples. Fig. S10. Abundance of resistance
genes in each metagenomic sample compared to their DFD for resist-
ance genes that were not detected in patients’ day 0 samples or in the
donors. For these genes, their abundance and the distance from donor
are uncorrelated.

Additional file 6. The two tables show the total ARG hits in RPKM for
donors and patients at each sample collection timepoint, as well as the
standard deviation and variance over time.
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