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Abstract

Background: Rapid advances in the past decade have shown that dysbiosis of the gut microbiome is a key
hallmark of rheumatoid arthritis (RA). Yet, the relationship between the gut microbiome and clinical improvement
in RA disease activity remains unclear. In this study, we explored the gut microbiome of patients with RA to identify
features that are associated with, as well as predictive of, minimum clinically important improvement (MCII) in
disease activity.

Methods: We conducted a retrospective, observational cohort study on patients diagnosed with RA between 1988
and 2014. Whole metagenome shotgun sequencing was performed on 64 stool samples, which were collected
from 32 patients with RA at two separate time-points approximately 6–12 months apart. The Clinical Disease
Activity Index (CDAI) of each patient was measured at both time-points to assess achievement of MCII; depending
on this clinical status, patients were distinguished into two groups: MCII+ (who achieved MCII; n = 12) and MCII−
(who did not achieve MCII; n = 20). Multiple linear regression models were used to identify microbial taxa and
biochemical pathways associated with MCII while controlling for potentially confounding factors. Lastly, a deep-
learning neural network was trained upon gut microbiome, clinical, and demographic data at baseline to classify
patients according to MCII status, thereby enabling the prediction of whether a patient will achieve MCII at follow-
up.
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Results: We found age to be the largest determinant of the overall compositional variance in the gut microbiome
(R2 = 7.7%, P = 0.001, PERMANOVA). Interestingly, the next factor identified to explain the most variance in the gut
microbiome was MCII status (R2 = 3.8%, P = 0.005). Additionally, by looking at patients’ baseline gut microbiome
profiles, we observed significantly different microbiome traits between patients who eventually showed MCII and
those who did not. Taxonomic features include alpha- and beta-diversity measures, as well as several microbial taxa,
such as Coprococcus, Bilophila sp. 4_1_30, and Eubacterium sp. 3_1_31. Notably, patients who achieved clinical
improvement had higher alpha-diversity in their gut microbiomes at both baseline and follow-up visits. Functional
profiling identified fifteen biochemical pathways, most of which were involved in the biosynthesis of L-arginine, L-
methionine, and tetrahydrofolate, to be differentially abundant between the MCII patient groups. Moreover, MCII+
and MCII− groups showed significantly different fold-changes (from baseline to follow-up) in eight microbial taxa
and in seven biochemical pathways. These results could suggest that, depending on the clinical course, gut
microbiomes not only start at different ecological states, but also are on separate trajectories. Finally, the neural
network proved to be highly effective in predicting which patients will achieve MCII (balanced accuracy = 90.0%,
leave-one-out cross-validation), demonstrating potential clinical utility of gut microbiome profiles.

Conclusions: Our findings confirm the presence of taxonomic and functional signatures of the gut microbiome
associated with MCII in RA patients. Ultimately, modifying the gut microbiome to enhance clinical outcome may
hold promise as a future treatment for RA.

Keywords: Rheumatoid arthritis, Gut microbiome, Clinical disease activity index, Minimum clinically important
improvement, Shotgun metagenomic sequencing, Machine-learning, Deep-learning neural network

Background
Rheumatoid arthritis (RA) is a chronic autoimmune in-
flammatory disease characterized by symmetric polyarti-
cular inflammation and destruction primarily of the
synovial joints, as well as of other organ systems [1]. The
prognosis of RA has improved over recent decades in
parallel with advancements in diagnosis and treatment,
particularly the widespread use of biologic and targeted
synthetic disease-modifying anti-rheumatic drugs
(DMARDs) that enable many persons with RA to
achieve low disease activity or clinical remission. How-
ever, the exact etiology and pathogenesis of RA are not
yet fully understood [2]. In this regard, population-based
studies have provided promising evidence that genetic
factors contribute to RA onset [3–7]; however, the low
concordance rate of RA in monozygotic twins largely
suggests the role of non-genetic, environmental factors
influencing the incidence of RA [4]. These non-genetic
factors include smoking history [8], acute infections [9],
and oral and gut microbiota [10].
During the past decade, the role of the gut micro-

biome in RA pathogenesis has been demonstrated by
several experimental studies [11–16]. For example,
Maeda et al. have shown increased sensitivity to arthritis
(via auto-reactive T cell activation in the intestine) in
germ-free SKG mice following fecal microbiota trans-
plantation from early RA patients [15]. In addition, an-
other study reported that inflammatory arthritis was
strongly attenuated in K/BxN mice under germ-free
(GF) conditions; however, the introduction of segmented
filamentous bacteria restored splenic auto-antibodies,

serum auto-antibodies, and T-helper 17 (Th17) cells
[12]. Moreover, the role of gut microbiome in RA patho-
genesis is further supported by the attenuation of arth-
ritis in Il1rn−/− mice by Tobramycin antibiotic
treatment, which led to the decrease in relative abun-
dances of gut commensals, such as Helicobacter, Flexis-
pira, Clostridium, and Dehalobacterium [16].
Cross-sectional, human gut microbiome studies have

elucidated the potential role of gut microbiome “dysbio-
sis” in RA [13, 14, 17, 18]. A study by Chen et al. found
lower gut microbial diversity and species richness among
RA patients compared to healthy controls; interestingly,
patients using methotrexate (MTX) and hydroxychloro-
quine (HCQ) were observed to have higher gut micro-
biome diversity and richness than patients not on these
medications, possibly indicating partial restoration of
normal gut microbiome features with these treatments
[13]. Additionally, patients with RA displayed significant
improvement in disease activity after being provided
with probiotics containing Bacillus coagulans [19] or
Lactobacillus casei [20, 21], providing promising evi-
dence towards probiotic therapies in RA treatment.
Moreover, another study revealed significant associations
between the relative abundance of gut microbial taxa
(e.g., Euryarchaeota, Gammaproteobacteria, Erysipelotri-
chi, and Coriobacteriales) and the disease activity score
on 28 joints (DAS28) [22]. Lastly, to demonstrate the
potential of targeting the gut microbiome to modulate
host immune response and to treat arthritis, Marietta
et al. have shown that the oral administration of Prevo-
tella histicola, which is a human gut-derived commensal
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bacterium, in transgenic mice expressing RA-associated
DQ8 genes can suppress collagen-induced arthritis via
regulation of the mucosal immune system [23].
Certainly, there has been a vast array of recent animal-

model studies, cross-sectional case-control studies, and
clinical trials showing that a perturbed gut microbiome
is a key hallmark of RA. Yet, despite this wide range of
novel findings, the association of the gut microbiome
with minimum clinically important improvement (MCII)
in disease activity in RA patients has yet to be closely ex-
amined. The MCII represents the minimal meaningful
change (reduction) in quantitative disease activity, and is
relevant to patients in terms of improvement in disease
symptoms and associated clinical parameters [24]. Al-
though the primary goal in RA management is to
achieve and sustain clinical remission or, at least, low
disease activity, the MCII in disease activity is also fre-
quently used in clinical settings to evaluate the initial re-
sponse to treatments. For this, there exists a variety of
measurements to quantify RA disease activity, including
the Disease Activity Score on 28-joints (DAS28), the
Simplified Disease Activity Index (SDAI), and the Clin-
ical Disease Activity Index (CDAI) [25, 26]. Among
these quantitative indices, the CDAI is one of the most
straightforward to use, as it is designed as a simple nu-
merical addition of four components (clinician evaluator
global assessment, patient global assessment, 28-swollen
joint count, and 28-tender joint count), and does not re-
quire acute-phase reactant laboratory tests for its calcu-
lation [26].
As medicine evolves towards becoming a big data-

centric and bioinformatics-driven discipline [27–29],
one of the most promising translational opportunities
with gut microbiome datasets arises from their pre-
dictive capabilities. In particular, through integrating
key biological features (e.g., taxa, functions, genes) of
the microbiome with cutting-edge, machine-learning
approaches, large-scale data from gut microbiomes
are positioned to inform various health and wellness
applications and to guide or complement clinical
practice. To this point, the gut microbiome has been
demonstrated in recent years to facilitate detection of
disease [30–34]; classification of disease subtypes and
progression stages [35–37]; prediction of clinical out-
comes and treatment efficacy [38–42]; personalized
nutrition by prediction of postprandial glycemic re-
sponse [43–45]; and estimation of chronological age
[46]. Notably, in a recent study, by applying a
random-forest machine-learning model to stool meta-
genomic data from treatment-naive, new-onset RA
patients, Artacho et al. found that the gut micro-
biome can aid in the prediction of response to oral
administration of methotrexate [47]. Taken together,
these examples highlight the potential value of

translating microbiome data into new prognostic tools
for all areas of precision medicine.
In this study, by investigating the association of gut

microbiome profiles from RA patients with MCII and
with other patient factors, we demonstrate a computa-
tional approach for utilizing gut microbiome information
to identify which patients are likely to show clinical im-
provement independent of baseline clinical features. To
this end, we collect shotgun stool metagenomes from a
pilot cohort of 32 patients with RA at two separate time-
points (i.e., baseline and follow-up) approximately 6–12
months apart. First, we examine the association of gut
microbiome with MCII in RA disease activity. Our re-
sults show that the status of whether clinical improve-
ment is achieved (or not) is a significant factor
contributing to the variance in gut microbiome taxo-
nomic composition. Next, for each time-point, we exam-
ine microbiome properties (alpha- and beta-diversity,
microbial taxa, and biochemical pathways) that differen-
tiate patients who eventually show clinical improvement
from those who do not. Afterwards, we identify taxo-
nomic and functional features whose magnitude of and/
or direction of change (from baseline to follow-up) var-
ies differently between these two patient groups. Finally,
we train a deep-learning neural network model on base-
line microbiome, clinical, and demographic data to as-
sess how well we can predict whether MCII in disease
activity is attained. Encouragingly, we find that the
neural network achieves a 90.0% balanced accuracy in
leave-one-out cross-validation, with a compelling accur-
acy in those who showed clinical improvement (12 cor-
rectly predicted among 12 total). Overall, our study
offers novel insights into how gut microbial signatures
are connected to the trajectory of disease activity in RA,
and provides proof-of-concept evidence that accurately
forecasting MCII from a stool sample may be possible.

Methods
Patient enrollment, eligibility criteria, and sample
collection
The study population consisted of consecutive patients
with RA attending the outpatient practice of the Division
of Rheumatology at Mayo Clinic in Rochester, Minne-
sota. Eligibility required patients to be adults 18 years of
age or older with a clinical diagnosis of RA by a rheuma-
tologist on the basis of the American College of
Rheumatology/European League Against Rheumatism
2010 revised classification criteria for RA [48]. Patients
were excluded if they did not comprehend English; were
unable to provide written informed consent; or were
members of a vulnerable population (e.g., incarcerated
subjects). On the other hand, patients were eligible irre-
spective of use of any particular medication.
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From 86 patients fulfilling the eligibility criteria, stool
samples were collected from patients who had two out-
patient visits approximately 6–12 months apart; whose
clinical data (to assess CDAI and MCII) and demo-
graphic information were fully available at both clinical
visits; who were not in clinical remission at both visits.
In all, this study includes 32 participants, of whom
65.6% (21 of 32) were female.
For whole metagenome shotgun sequencing, stool

samples were stored in our ongoing Mayo Clinic
Rheumatology Biobank. This biorepository was created
for long-term storage of diverse biological samples (e.g.,
serum, plasma, stool, white blood cells) from de-
identified RA patients for use in research. Clinical and
demographic data, including the numbers of tender and
swollen joints, patient and evaluator global assessments,
C-reactive protein (CRP, mg/L), smoking status, and ti-
ters for rheumatoid factor (RF, IU/mL) and anti-cyclic
citrullinated peptide antibodies (ACPA), were collected
from the electronic medical records. All patients pro-
vided written informed consent. The study was approved
by the Mayo Clinic Institutional Review Board (no. 14-
000616).

Determination of minimum clinically important
improvement (MCII) in RA disease activity
The CDAI of each patient was measured at two time-
points. By taking into account the swollen joint count
(of 28 joints), tender joint count (of 28 joints), and the
global assessments of disease activity (scored 0–10 on a
visual analog scale) by both patient and clinician, the
CDAI is scored on a scale ranging from 0 to 76 points
[25]. The level of disease activity can be interpreted as
low (2.9 ≤ CDAI ≤ 10), moderate (10 < CDAI ≤ 22), or
high (22 < CDAI), while CDAI ≤ 2.8 indicates the state
of remission [49]. A decrease in CDAI of at least 1 for
patients with low disease activity; of at least 6 for pa-
tients with moderate disease activity; and of at least 12
for patients with high disease activity between two con-
secutive visits is considered as MCII in RA disease activ-
ity [24]. Based upon these criteria, the study participants
can be partitioned into two groups: (i) patients who
showed clinical improvement (MCII+) and (ii) patients
who did not show clinical improvement (MCII−) at
follow-up visit.

Stool sample collection, DNA extraction, and shotgun
metagenome sequencing
Stool samples from patients with rheumatoid arthritis
were stored in their house-hold freezers (−20 °C) prior
to shipment on dry ice to the Medical Genome Facility
Research Core at Mayo Clinic (Rochester, MN). Once
received, the samples were stored at −80 °C until DNA
extraction. DNA extraction from stool samples was

conducted as follows: Aliquots were created from parent
stool samples using a tissue punch, and the resulting
child samples were then mixed with reagents from the
Qiagen Power Fecal Kit. This included adding 60 uL of
reagent C1 and the contents of a power bead tube (gar-
net beads and power bead solution). These were then
vigorously vortexed to bring the sample punch into solu-
tion and centrifuged at 18,000× g for 15 min. From
there, the samples were added into a mixture of mag-
netic beads using a JANUS liquid handler. The samples
were then run through a Chemagic MSM1 according to
the manufacturer’s protocol. After DNA extraction,
paired-end libraries were prepared using 500 ng genomic
DNA according to the manufacturer’s instructions for
the NEBNext Ultra library prep kit (New England Bio-
Labs). The concentration and size distribution of the
completed libraries were determined using an Agilent
Bioanalyzer DNA 1000 chip (Santa Clara, CA) and Qubit
fluorometry (Invitrogen, Carlsbad, CA). Libraries were
sequenced at 23–70 million reads per sample following
Illumina’s standard protocol using the Illumina cBot and
HiSeq 3000/4000 PE Cluster Kit. The flow cells were se-
quenced as 150 × 2 paired-end reads on an Illumina
HiSeq 4000 using the HiSeq 3000/4000 sequencing kit
and HiSeq Control Software HD 3.4.0.38. Base-calling
was performed using Illumina’s RTA version 2.7.7.

Quality filtration of sequenced reads
Sequenced reads were processed with the KneadData
v0.5.1 quality-control pipeline (http://huttenhower.sph.
harvard.edu/kneaddata), which uses Trimmomatic v0.36
[50] and Bowtie2 v2.3.2 [51] for removal of low-quality
read bases and human reads, respectively. Trimmomatic
v0.36 was run with parameters SLIDINGWINDOW:4:
30, and Phred quality scores were thresholded at “< 30.”
Illumina adapter sequences were removed, and trimmed
non-human reads shorter than 60 bp in nucleotide
length were discarded. Potential human contamination
was filtered by removing reads that aligned to the hu-
man genome (reference genome hg19).

Taxonomic and functional profiling of stool
metagenomes
Taxonomic profiling was performed using the MetaPh-
lAn2 v2.7.8 [52] phylogenetic clade identification pipe-
line with default parameters. Briefly, MetaPhlAn2
classifies metagenomic reads to taxonomies based on a
database (mpa_v20_m200) of clade-specific marker
genes derived from ~ 17,000 microbial genomes (corre-
sponding to ~ 13,500 bacterial and archaeal, ~ 3500 viral,
and ~ 110 eukaryotic species). Microbes of viral origin
and those that were labeled as either unclassified or un-
known were excluded from further analyses. Afterwards,
microbiome profiles were normalized using total sum-
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scaling (TSS) normalization to get the relative abun-
dances (i.e., proportions) of microbial taxonomic ranks.
Functional profiling of annotated MetaCyc biochem-

ical pathways of stool metagenomes was quantified using
the HUMAnN v2.8 pipeline [53] with default parameters
and with the UniRef90 EC-filtered database integrated
into the pipeline. Similarly to the case with taxonomic
ranks, MetaCyc pathways unmapped or unintegrated
onto the UniRef90 EC-filtered database were discarded
from further analyses, and relative abundances of the
remaining MetaCyc pathways were calculated using TSS
normalization.

Permutational multivariate analysis of variance based
upon taxonomic composition of microbial communities
Bray-Curtis distance matrices based on arcsine, square-
root transformed relative abundances of microbial taxa
(phylum to species) in stool metagenomes (collected at
both clinical visits) were generated using the R “vegan”
package v2.5.6. A permutational multivariate analysis of
variance (PERMANOVA) [54] was performed on the
distance matrix using the “adonis” function. P values for
the test statistic (pseudo-F) were based on 999 permuta-
tions to assess the contribution of clinical and demo-
graphic characteristics (age group [age < 64 years; age ≥
64 years], sex [male; female], smoking status [smoker;
non-smoker], use of conventional synthetic disease-
modifying anti-rheumatic drugs [csDMARDs], use of
biologic disease-modifying anti-rheumatic drugs
[bDMARDs], use of prednisone, and MCII patient group
[MCII+; MCII−]) to the total variance in gut microbial
community composition (of note, categorical age group
was used due to the uneven and skewed distribution of
continuous age). Intra-subject longitudinal variation was
accounted for by constraining permutations to within
visits using the “strata” argument. Both marginal (i.e.,
univariate analysis) and adjusted (i.e., multivariate ana-
lysis controlling for multiple covariates simultaneously)
models were used to evaluate percent variance and sig-
nificance of associations between gut microbiome com-
position and patient factors.

Comparisons of alpha- and beta-diversity between MCII
patient groups
Overall ecology of gut microbiomes was evaluated by
calculating alpha-diversity (Fisher’s Index and richness)
and beta-diversity (Bray-Curtis distance between all
sample-pairs) based upon untransformed relative abun-
dances of microbial species in each stool metagenome
using the R “vegan” package v2.5.6. Multiple linear re-
gression models (MLRMs) were then constructed using
the R “stats” package v3.6.3 to determine the alpha-
diversity indices that were significantly different between
MCII+ and MCII− groups. MLRMs were adjusted for

clinical and demographic characteristics that explained
significant proportions of the variance in gut microbial
community composition. Mann-Whitney U test was
used to evaluate the statistical significance of the differ-
ence in beta-diversity between the patient groups.

Identification of differentially abundant microbial taxa
and biochemical pathways between MCII patient groups
To identify differentially abundant microbial taxa and
biochemical pathways between MCII+ and MCII−
groups (at either baseline or follow-up), MLRMs were
constructed for arcsine, square-root transformed relative
abundance of each taxon and pathway. All MLRMs were
designed to model the relationship between a taxon/
pathway and MCII patient group, while adjusting for
clinical and demographic characteristics found to be sig-
nificantly associated with gut microbiome compositional
variance according to the aforementioned PERMA-
NOVA analysis. Taxa and pathways were considered as
differentially abundant between the two MCII patient
groups if both of the following conditions were met: (i)
the corresponding regression coefficient for the patient
group was significant (P < 0.05) and (ii) detected in at
least a third of all samples in order to avoid spurious as-
sociations based upon rarely seen events.

Quantification of fold-change in gut microbial taxa and
biochemical pathways
Microbial taxa and biochemical pathways detected in at
least a third of all samples were considered for the calcu-
lation of fold-change (log2(FC)) from baseline to follow-
up visit. As log2(FC) cannot be calculated if a taxon/
pathway is absent (i.e., relative abundance = 0) at either
of the visits, a small pseudo-count (1.0 × 10−5) was
added to both the numerator and denominator when
calculating fold-changes. Then, MLRMs were designed
for each taxon and pathway to identify any significant
differences (P < 0.05) in log2(FC) of relative abundances
between the two MCII patient groups. All MLRMs were
adjusted for clinical and demographic characteristics
found to be significantly associated with gut microbiome
compositional variance according to the aforementioned
PERMANOVA analysis.

Construction of neural networks for predicting MCII and
CDAI
Two separate multi-layer (deep) feedforward artificial
neural networks with stochastic gradient descent using
back-propagation, which were provided by the Python
version of the “H2O” package v3.26.0.3, were con-
structed to meet the following two objectives (i.e., output
layer): (i) classify a patient as MCII+ or MCII− from all
baseline gut microbiome (relative abundances of 176
taxonomic ranks and of 262 MetaCyc pathways), clinical
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(CDAI, use of medications [bDMARDs, csDMARDs, and
prednisone], HAQ, pain, and CRP), and demographic
data (age, sex, and smoking status). In other words, pre-
dict whether a patient will achieve MCII based upon all
identifiable baseline features. This model’s predictive
performance was evaluated by leave-one-out cross-
validation on all baseline profiles. Furthermore, Gedeon’s
technique [55], which uses a score function based upon
hidden neuron activations, is implemented on the train-
ing set to calculate variable importance; and (ii) predict
CDAI using the aforementioned microbiome, clinical
(except for CDAI), and demographic data as input pre-
dictor variables for the neural network. Predictive per-
formance of this second model was evaluated by a leave-
one-patient-out cross-validation method. More specific-
ally, in each cross-validation loop, both samples from
the same patient were allocated as the internal validation
set, while all remaining samples were used as the in-
ternal training set for constructing the neural network to
predict CDAI scores of the allocated two samples. For
both objectives, the default input parameters were used
for model-training except for the following: Epochs =
“10,000” and Random seed = “1234.” See http://docs.h2
o.ai/h2o/latest-stable/h2o-docs/data-science/deep-
learning.html for all parameters of the neural network
and their default values. Data curation and model imple-
mentation was performed in Python v3.6.4 on individual
cloud instances utilizing Amazon Web Services (AWS).

MCII prediction with other machine-learning classifiers
Three different machine-learning models (logistic re-
gression, random forest, and support-vector machines)
from the “scikit-learn” package v0.24.1 were trained with
the aforementioned baseline stool metagenome samples
to create a classifier for predicting MCII status. The pre-
dictive performance of each classifier was evaluated by
leave-one-out cross-validation. Of note, default options
were used for the model training except for the follow-
ing: logistic regression classifier, max_iter = “1000”; ran-
dom forest, random_state = “1.”

Results
Study population
From a total of 86 patients with RA whose blood and/or
stool samples were stored in our ongoing biobank, we
identified 51 patients who had at least two available stool
samples collected at least 6 to 12months apart (102 total
samples). From these 51 patients, we found 36 patients
(72 samples) who had fully available clinical data and
demographic information at both clinical visits, thereby
leading to the exclusion of 15 patients (30 samples). We
excluded an additional 4 patients (8 samples) from fur-
ther analysis because they were in clinical remission at
both clinical visits. Hence, this retrospective,

observational cohort study includes 32 participants (64
samples), of whom 65.6% (21 of 32) were female.
At the time of baseline stool sample collection, the pa-

tients had established disease with a mean age of 64.9
years (s.d. = 11.0), and a mean disease duration of 8.2
years (s.d. = 8.2). A summary of the patient enrollment,
eligibility criteria, and sample collection protocol is pro-
vided in the “Methods” section. At baseline, all patients
were on treatment with biologic disease-modifying anti-
rheumatic drugs (bDMARDs, 46.9%), conventional
synthetic disease-modifying anti-rheumatic drugs
(csDMARDs, 87.5%), or prednisone (46.9%). For any
medication, no association was found between its use (at
either baseline or follow-up visit) and MCII in RA dis-
ease activity (Fig. 1), showing the critical need for more
effective predictors of clinical improvement in RA. Base-
line and follow-up visits were separated by a mean dur-
ation of 9.5 months (s.d. = 3.6 months), which was
numerically longer for patients who attained MCII than
for patients who did not attain MCII though not statisti-
cally significant (median 363 vs. 252 days, respectively; P
= 0.08, Mann-Whitney U test). At all instances of stool
sample collection, disease activity of patients varied from
remission to high disease activity, with a mean CDAI of
16.3 (s.d. = 13.7) and 13.6 (s.d. = 11.6) at baseline and
follow-up, respectively.
In total, 12 of the 32 (37.5%) total study participants

achieved MCII in RA disease activity at their follow-up
visit. The average change in CDAI for these 12 patients
was –16.7 (s.d. = 12.8) units, which was, as expected, sig-
nificantly different from the average change in CDAI of
5.7 (s.d. = 8.9) units for the remaining 20 of 32 (62.5%)
patients who did not show improvement in RA disease
activity (P = 6.9 × 10–6, Mann-Whitney U test). We used
Fisher’s exact test to identify significant differences in
categorical variables (e.g., age group, sex, smoking status,
medication use, presence of rheumatoid factor or anti-
cyclic citrullinated peptides antibodies), and Mann-
Whitney U test to identify significant differences in con-
tinuous clinical measurements (CDAI, health assessment
questionnaire [HAQ], swollen joint count [SJC], tender
joint count [TJC], C-reactive protein [CRP], patient’s
and physician’s health status assessment) between two
patient groups: MCII+ (i.e., patients who showed MCII
in disease activity based upon the change in CDAI from
baseline to follow-up visit) and MCII– (i.e., patients who
did not show MCII) (Table 1). At baseline, we found
a significant association between MCII patient group
(i.e., MCII+ and MCII–) and CDAI (P = 0.03). At
follow-up visit, we found the following factors to be sig-
nificantly associated with MCII patient group: CDAI (P
= 1.9 × 10–3), change in CDAI from baseline (P = 6.9 ×
10–6), pain (VAS) (P = 2.8 × 10–3), TJC (P = 0.01), pa-
tient global evaluation of disease activity (pt_vas) (P =
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6.3 × 10–3), and provider global evaluation of disease ac-
tivity (md_vas) (P = 0.01). No significant difference in
age between the two patient groups was observed at ei-
ther baseline or follow-up (P = 0.09).

MCII patient group explains significant variance in gut
microbial community composition
We performed a PERMANOVA analysis to evaluate the
patient characteristics that contribute to the variance in
gut microbial communities of patients with RA
(Methods). Using univariate (marginal) models, as well
as multivariate (adjusted) models that jointly take into
consideration all measurable factors, we considered
MCII patient group, age group, sex, smoking status,
baseline CDAI, and medication use (for csDMARDs,
bDMARDs, and prednisone). Of note, we assume that
the resulting percent variance explained by each variable
in the adjusted model is statistically independent of
other variables.
We found that MCII patient group explained 3.8% of

the total variance in gut microbial communities (P =
0.002, PERMANOVA; Table 2 and Fig. 2a), after con-
trolling for age group, CDAI, sex, smoking status, use of
bDMARDs, csDMARDs, and prednisone, and intra-
subject longitudinal variation. The adjusted model also
showed that age group, use of csDMARDs, sex, and
smoking status significantly explained 7.7%, 3.1%, 2.9%,
and 2.7% of the total variance, respectively (Table 2 and
Fig. 2b–e), indicating partial dependence of gut micro-
biome profiles on these other factors; however, CDAI (P
= 0.056, PERMANOVA; Fig. 2f), treatment with
bDMARDs (P = 0.280, PERMANOVA; Fig. 2g) and with
prednisone (P = 0.284, PERMANOVA; Fig. 2h) were not
found to have any significant association with gut micro-
bial community composition (Table 2). Taking into

account these observations, we additionally controlled
for age group, use of csDMARDs, sex, and smoking sta-
tus in subsequent analyses for investigating the differ-
ences in gut microbiome profiles between patients of the
MCII+ and MCII− groups.

Features of baseline gut microbiomes significantly differ
between MCII+ and MCII− patient groups
At baseline, we observed Bacteroidetes and Firmicutes as
the most abundant phyla based upon relative abun-
dances (Additional file 1: Figure S1a); Bacteroidales and
Clostridiales as the most abundant orders (Additional
file 1: Figure S1b); and Bacteroidaceae as the most abun-
dant family (Additional file 1: Figure S1c). We next in-
vestigated the baseline gut microbiomes of all 32
patients to identify differences in ecological diversities
(e.g., alpha-/beta-diversity) or in individual taxonomic
and functional features between the two MCII patient
groups. In effect, by knowing—albeit retrospectively—
the clinical outcomes in advance, we have asked: on the
basis of gut microbiome information, can differences at
baseline not only provide hypotheses that connect gut
microbiome to clinical improvement, but also reveal bio-
markers predictive of the clinical course?
We found higher species-level alpha-diversity, that is,

Fisher’s Index (P = 0.004, MLRM; and Fig. 3a) and rich-
ness (P = 0.007, MLRM; and Fig. 3b), and higher beta-
diversity, that is, Bray-Curtis distances between all pairs
of samples (P = 0.002, Mann-Whitney U test; and Fig.
3c) in the MCII+ group compared to the MCII− group.
In addition, we sought to identify microbial taxa and
microbiome-derived annotated MetaCyc biochemical
pathways that were differentially abundant between the
two MCII patient groups at baseline. Our analysis un-
covered the following six microbial taxa as higher in the

Fig. 1 Overview of medication use by all 32 study participants shows no association with clinical improvement. P values from Fisher’s exact test
(right) indicate statistical significance of association between MCII patient group and medication use/non-use at both visits. No significant
association for any medication was found. bDMARDs, biologic disease-modifying anti-rheumatic drugs. csDMARDs, conventional synthetic
disease-modifying anti-rheumatic drugs. MCII, minimum clinically important improvement. MCII+, patients who showed MCII. MCII−, patients who
did not show MCII. N/A, not available
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Table 1 Demographic and clinical characteristics of the study population

Patient characteristics Visit 1 (baseline) Visit 2 (follow-up)

Minimum clinically important
improvement patient group*

P value** Minimum clinically important
improvement patient group*

P value**

MCII+ (n =
12)

MCII− (n =
20)

MCII+ (n = 12) MCII− (n = 20)

Duration between visits (days), median [Q1,
Q3]a

- - - 363.0 [302.5, 377.5] 252.0 [212.0,
341.3]

0.08

Sex 0.70 0.70

Female, n (%) 7 (58.3) 14 (70.0) 7 (58.3) 14 (70.0)

Male, n (%) 5 (41.7) 6 (30.0) 5 (41.7) 6 (30.0)

Age, mean ± s.d. 68.0 ± 12.8 63.2 ± 9.7 0.09 68.9 ± 13.1 64.0 ± 9.7 0.09

< 64 years, n (%) 3 (25.0) 10 (50.0) 0.27 3 (25.0) 10 (50.0) 0.27

≥ 64 years, n (%) 9 (75.0) 10 (50.0) 9 (75.0) 10 (50.0)

Smoking status 0.52 0.27

Smoker, n (%) 0 (0) 2 (10.0) 0 (0) 3 (15.0)

Non-smoker, n (%) 12 (100) 18 (90.0) 12 (100) 17 (85.0)

Clinical measurements
bCDAI, median [Q1, Q3] 19.8 [12.6, 30.1] 9.3 [6.4, 13.7] 0.03 2.7 [1.0, 7.7] 14.0 [10.1, 21.7] 1.9 ×

10−3

ΔCDAI, median [Q1, Q3] - - - − 15.1 [− 19.2, −
10.0]

2.7 [− 0.2, 9.8] 6.9 ×
10−6

cHAQ, median [Q1, Q3] 0.6 [0.4, 0.9] 0.8 [0.3, 1.1] 0.57 0.4 [0.3, 0.8] 0.7 [0.4, 1.2] 0.09

Pain (VASd 0–100mm), median [Q1, Q3] 41.0 [11.8, 67.8] 26.5 [14.8, 56.3] 0.61 9.5 [8.0, 36.0] 63.0 [31.8, 78.5] 2.8 ×
10−3

28-swollen joint count (SJC), median [Q1, Q3] 6.5 [0.0, 13.3] 1.5 [0.0, 4.3] 0.12 0.0 [0.0, 2.0] 1.0 [0.8, 4.8] 0.08

28-tender joint count (TJC), median [Q1, Q3] 4.5 [0.0, 15.0] 1.5 [0.8, 5.3] 0.45 0.0 [0.0, 0.5] 3.0 [2.0, 9.0] 0.01
ept_vas, median [Q1, Q3] 45.5 [28.8, 59.0] 28.0 [14.5, 52.3] 0.56 10.5 [8.0, 35.0] 49.0 [32.0, 71.3] 6.3 ×

10−3

fmd_vas, median [Q1, Q3] 37.5 [21.3, 55.0] 20.0 [10.0, 25.0] 0.06 5.0 [0.0, 12.5] 25.0 [8.8, 50.0] 0.01

Rheumatoid factor (RF) 0.43 0.43

Positive, n (%) 8 (66.7) 8 (40.0) 8 (66.7) 8 (40)

Negative, n (%) 3 (25.0) 7 (35.0) 3 (25.0) 7 (35.0)

not available 1 (8.3) 5 (25.0) 1 (8.3) 5 (25.0)

Anti-citrullinated protein antibodies (ACPA) 0.44 0.44

Positive, n (%) 9 (75.0) 10 (50.0) 9 (75.0) 10 (50.0)

Negative, n (%) 3 (25.0) 8 (40.0) 3 (25.0) 8 (40.0)

Not available 0 (0) 2 (10.0) 0 (0) 2 (10.0)
gCRP (mg/L), median [Q1, Q3] 5.9 [2.9, 18.3] 2.9 [2.9, 5.1] 0.06 2.9 [2.9, 4.3] 2.9 [2.9, 10.0] 0.77

Treatment use
hbDMARDs (user), n (%) 6 (50.0) 9 (45.0) 1 5 (41.7) 8 (40.0) 1
icsDMARDs (user), n (%) 11 (91.7) 17 (85.0) 1 11 (91.7) 16 (80.0) 0.63

Prednisone (user), n (%) 6 (50.0) 9 (45.0) 1 5 (41.7) 9 (45) 1
aUpper and lower quartiles; bCDAI, Clinical Disease Activity Index; cHAQ, Health Assessment Questionnaire; dVAS, visual analog scale; ept_vas, Patient global
evaluation of disease activity; fmd_vas, Provider global evaluation of disease activity; gCRP, C-reactive protein; hbDMARDs, biologic disease-modifying anti-
rheumatic drugs (Abatacept, Adalimumab, Certolizumab, Etanercept, Infliximab, Rituximab, Tocilizumab); icsDMARDs, conventional synthetic disease-modifying
anti-rheumatic drugs (Azathioprine, Hydroxychloroquine, Leflunomide, Methotrexate, Sulfasalazine); *Patients were stratified into two groups (MCII+ or MCII−)
depending on whether minimum clinically important improvement (MCII) was achieved at follow-up visit; **Fisher’s exact test and Mann-Whitney U test was used
to test for statistical significance among categorical and continuous variables, respectively
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MCII+ group: Negativicutes (class), Selenomonadales
(order), Prevotellaceae (family), Coprococcus (genus),
Bacteroides sp. 3_1_19 (species), and Bilophila sp. 4_1_
30 (species), whereas Eubacterium sp. 3_1_31 (species)
was found to be higher in the MCII− group (P < 0.05;
and Fig. 3d). Moreover, we found fifteen MetaCyc path-
ways that were differentially abundant between MCII+
and MCII− groups at baseline (P < 0.05, MLRM; and
Fig. 3e). Six of these pathways, which include multiple
ones for tetrahydrofolate biosynthesis and L-methionine
biosynthesis, were significantly more abundant in pa-
tients of the MCII+ group than in those of the MCII–
group; in contrast, the remaining nine pathways, the ma-
jority of which being for L-arginine and L-ornithine bio-
synthesis, and L-rhamnose degradation, were more
abundant in patients of the MCII group. Taken together,
our results show that gut microbiomes of the two diver-
ging patient groups start at different ecological states
even before reaching their clinical endpoints.
As was in the case at baseline, we observed a signifi-

cant difference in species-level Fisher’s Index (P = 0.037,
MLRM; Additional file 1: Figure S2a) between the two
MCII patient groups at follow-up visit. However, rich-
ness (P = 0.094, MLRM) and Bray-Curtis distances be-
tween all sample-pairs (P = 0.310, Mann-Whitney U
test) did not show significant differences (Additional file
1: Figure S2b–c). Thirteen microbial clades, including
Negativicutes, Bifidobacteriales, and Selenomonadales
(order); Bifidobacteriaceae, Prevotellaceae, and Oscillos-
piraceae (family); Bifidobacterium and Veillonella
(genus); and Clostridium leptum and Roseburia inulin-
vorans (species), were found to significantly differ be-
tween the MCII+ and MCII− groups at follow-up visit
(P < 0.05, MLRM; Additional file 1: Figure S2d). Lastly,
MetaCyc pathway-level analysis at follow-up visit
showed that only “Superpathway of Polyamine

Biosynthesis II” was differentially abundant between the
two patient groups (P < 0.011, MLRM; Additional file 1:
Figure S2e).

Gut microbiome taxa and functions show significant
differences in fold-change from baseline to follow-up
between MCII patient groups
We examined the longitudinal variation in relative abun-
dances (i.e., fold-change from baseline to follow-up) of
microbial taxa and of biochemical pathways. From this,
we sought to identify differences in how the gut micro-
biome changes in association with clinical outcomes (i.e.,
showing clinical improvement or not). First, we found
that patients of the MCII+ and MCII− groups showed
significant fold-change differences in the following eight
microbial taxa (P < 0.05, MLRM; Fig. 4a, Additional file
1: Figure S3a): (i) Gammaproteobacteria (class), Oscilli-
bacter (genus), Veillonella (genus), and Bacteroides vul-
gatus (species) were higher in the MCII+ group. This
result suggests that these four taxa increased in relative
abundance more highly and/or frequently in the MCII+
group compared to the MCII− group; and (ii) Coprococ-
cus (genus), Ruminococcus (genus), Anaerotruncus coli-
hominis (species), and Oscillibacter sp. KLE_1728
(species) were higher in the MCII− group. In other
words, these four taxa increased in relative abundance
more highly and/or frequently in the MCII− group than
in the MCII+ group.
In the MCII+ group, the relative abundances of four

taxa (Gammaproteobacteria, Oscillibacter, Veillonella,
and Bacteroides) increased from baseline to follow-up
(median log2(fold-change) ≥ 0.1), whereas four taxa
(Coprococcus, Ruminococcus, Anaerotruncus colihominis,
and Oscillibacter sp. KLE_1728) decreased in abundance
(median log2(fold-change) ≤ − 0.1) (Fig. 4a, Additional
file 1: Figure S3a). In the MCII− group, the relative
abundances of three taxa (Coprococcus, Ruminococcus,
and Anaerotruncus colihominis) increased from baseline
to follow-up (median log2(fold-change) ≥ 0.1), while two
taxa (Gammaproteobacteria and Oscillibacter) decreased
in abundance (median log2(fold-change) ≤ − 0.1). Strik-
ingly, these observations imply that the changes in rela-
tive abundances (from baseline to follow-up) of
Gammaproteobacteria, Coprococcus, Oscillibacter, Rumi-
nococcus, and Anaerotruncus colihominis in the MCII+
group and those in the MCII− group generally diverged
in opposite directions.
Next, we identified seven biochemical pathways as

having significantly different fold-changes between the
two MCII patient groups (P < 0.05, MLRM; Fig. 4b,
Additional file 1: Figure S3b): (i) four pathways, includ-
ing those involving sugar metabolism (e.g., rhamnose
degradation, a heptose derivative biosynthesis, GDP-
mannose biosynthesis), had higher fold-changes in the

Table 2 Patient characteristics contributing to the variance in
gut microbial community composition

Patient
characteristicsφ

Marginal model Adjusted model

Variance (%) P value# Variance (%) P value#

Age group 7.7 0.001 7.7 0.001

MCII patient group 4.4 0.003 3.8 0.002

csDMARDs 3.7 0.008 3.1 0.008

Sex 3.1 0.024 2.9 0.013

Smoking status 4.0 0.009 2.7 0.028

CDAI 2.3 0.120 2.3 0.056

bDMARDs 1.8 0.324 1.6 0.280

Prednisone 1.7 0.350 1.6 0.284
φEach patient characteristic was measured for 32 patients at both clinical
visits. All 64 gut microbiome samples were analyzed simultaneously using
Permutational Multivariate Analysis of Variance (PERMANOVA); #PERMANOVA
was used to test for statistical association between corresponding patient
characteristic and variance within microbiome composition
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Fig. 2 Principal Coordinates Analysis (PCoA) ordination plots of gut microbiome samples from patients with RA (n = 32). PERMANOVA analysis
finds that the variance in gut microbial community composition can be explained by a MCII patient group, b age group, c use of csDMARDs, d
sex, e smoking status, but not by f CDAI, g use of bDMARDs, nor h use of prednisone. All 64 gut microbiome samples (from 32 patients at both
clinical visits) were analyzed simultaneously using PERMANOVA, while intra-subject longitudinal variation was accounted for by constraining
permutations to within visits. R2 and P values were derived from the adjusted PERMANOVA models. Each circle and triangle signifies baseline and
follow-up, respectively. Lines connect time-points of the same patients. MCII, minimum clinically important improvement. MCII+, patients who
showed MCII. MCII−, patients who did not show MCII. Non-integer “n” corresponds to cases wherein the patient reported differently at baseline
than at follow-up
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Fig. 3 Differences in baseline gut microbiome features between MCII+ and MCII– patient groups. In regard to alpha-diversity, significantly higher
species-level a Fisher’s Index (P = 0.004, MLRM) and b richness (P = 0.007, MLRM) were observed in the MCII+ group. c For beta-diversity, a
higher distribution of Bray-Curtis distances between sample-pairs was found in the MCII+ group (P = 0.002, Mann-Whitney U test). d Among the
seven microbial taxa found to have significantly different distributions between the two patient groups, six were of higher abundance in the
MCII+ group. e A total of fifteen MetaCyc biochemical pathways were identified as differentially abundant between the MCII+ and MCII− groups.
Except for beta-diversity, multiple linear regression models (MLRMs) were used to test for the statistical significance of the relationship between
MCII patient group and microbiome features, while controlling for age group, sex, smoking status, and csDMARD use. P value corresponds to the
regression model coefficient for the MCII patient group. *, 0.01 ≤ P < 0.05; **, 0.005 ≤ P < 0.01. MCII, minimum clinically important improvement.
MCII+, patients who showed MCII. MCII−, patients who did not show MCII. Taxonomic ranks: c, class; o, order; f, family; g, genus; s, species.
MetaCyc pathways: A, Superpathway of S-adenosyl-L-methionine Biosynthesis; B, L-homoserine and L-methionine Biosynthesis; C, Superpathway
of L-methionine Biosynthesis; D, L-methionine Biosynthesis I; E, Superpathway of Tetrahydrofolate Biosynthesis and Salvage; F, Superpathway of
Tetrahydrofolate Biosynthesis; G, L-ornithine de novo Biosynthesis; H, Superpathway of Pyridoxal 5′-phosphate Biosynthesis and Salvage; I, L-
rhamnose Degradation I; J, CMP-3-deoxy-D-manno-octulosonate Biosynthesis I; K, L-arginine Biosynthesis IV; L, L-arginine Biosynthesis I; M, L-
arginine Biosynthesis III; N, L-arginine Biosynthesis II; O, L-ornithine Biosynthesis
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Fig. 4 (See legend on next page.)
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MCII+ group; and (ii) three pathways (“Superpathway of
Aromatic Amino Acid Biosynthesis”, “Chorismate Bio-
synthesis from 3-dehydroquinate”, and “myo-, chiro- and
scyllo-inositol Degradation”) had higher fold-changes in
the MCII− group.
As seen for microbial taxa, changes in relative abun-

dance of five of these seven biochemical pathways were
in opposite directions in the two patient groups: ADP-L-
glycero- and beta-D-manno-heptose Biosynthesis, and
Lipid IVA biosynthesis (Fig. 4b, Pathway A and C, re-
spectively) generally increased in the MCII+ group, but
decreased in the MCII– group; myo-, chiro- and scyllo-
inositol Degradation (Fig. 4b, Pathway E), Chorismate
Biosynthesis from 3-dehydroquinate (Fig. 4b, Pathway
F), and Superpathway of Aromatic Amino Acid Biosyn-
thesis (Fig. 4b, Pathway G) generally decreased in the
MCII+ group, but increased in the MCII− group. Al-
though it is yet uncertain why the relative abundances of
these particular microbial taxa and biochemical path-
ways increase (or decrease) in one patient group but de-
crease (or increase) in the other, such analyses into the
changes of distinct gut microbiome features, and how
these changes are relevant to clinical improvement, can
shed new light on additional insights not provided by
cross-sectional datasets.

Gut microbiome is a predictive marker for clinical
improvement and clinical disease activity in patients with
RA
Having the capability to reliably predict whether a pa-
tient will show clinical improvement—independent of
prior treatment and clinical course—would address what
has been a steep challenge in the clinical practice of RA.
As described above, we identified differences in baseline
gut microbiome properties between MCII+ and MCII−
patient groups. As an extension of these findings, we
next turned to the question of how accurately baseline
gut microbiome profiles and clinical and demographic

data, combined with a machine-learning approach, can
predict MCII class for a particular patient or group of
patients; this essentially enables us to forecast whether a
patient will have a good prognosis, that is, achieving
MCII or not. To this end, we used a neural network
classification model that incorporates baseline micro-
biome, clinical, and demographic data as the input vari-
ables to classify patients into one of the two MCII
patient groups (Fig. 5a; Methods). The neural network
model was able to distinguish the two groups with
reasonably high prediction accuracy in leave-one-out
cross-validation: a balanced accuracy (i.e., average of the
proportions of MCII+ and MCII− samples that were
correctly classified) of 90.0%, as the classification accur-
acy for the MCII+ and MCII− group was 100.0% (12 of
12) and 80.0% (16 of 20), respectively (Fig. 5b). Encour-
agingly, we were able to correctly predict MCII in all
twelve patients who did indeed show clinical improve-
ment. Furthermore, the deep-learning neural network
provided the best classification performance when com-
pared to logistic regression, support vector machines,
and random forests (Methods; Additional file 1: Figure
S4), thereby proving its utility over other machine-
learning classifiers.
Next, by finding which input features were the most

informative in the classification process (Methods), we
rank-ordered all features based upon their scaled im-
portance as determined by the neural network. We
found that the top-ranked features were mainly com-
posed of taxonomic and functional components from
gut microbiome data (Fig. 5c). Of note, the top five im-
portant features were the Sucrose Degradation III path-
way, Parabacteroides sp. D25 (species), Roseburia
(genus), Fatty Acid and beta-oxidation II pathway, and
Biotin Biosynthesis I pathway. Interestingly, data from
clinical and demographic characteristics were ranked
much lower: the highest ranked non-microbiome feature
was related to the use of csDMARDs, which was ranked

(See figure on previous page.)
Fig. 4 MCII+ and MCII− groups display significantly different fold-changes in microbial taxa and biochemical pathways from baseline to follow-
up. a Eight microbial taxa showed significant differences in fold-changes (from baseline to follow-up) between the MCII+ and MCII– patient
groups (P < 0.05, MLRM). Among these eight, relative abundances diverged in opposite directions in five taxa: Gammaproteobacteria and
Oscillibacter increased in relative abundance from baseline to follow-up in the MCII+ patient group, but decreased in MCII– patient group;
alternatively, the relative abundances of Coprococcus, Ruminococcus, and Anaerotruncus colihominis decreased at the follow-up visit in MCII+
patients, but increased in MCII– patients. b Seven MetaCyc biochemical pathways were identified as having significantly different fold-changes
between the two patient groups (P < 0.05, MLRM). Relative abundances diverged in opposite directions in five biochemical pathways: ADP-L-
glycero- and beta-D-manno-heptose Biosynthesis (A) and Lipid IVA biosynthesis (C) increased in the MCII+ group, but decreased in the MCII−
group; myo-, chiro- and scyllo-inositol Degradation (E), Chorismate Biosynthesis from 3-dehydroquinate (F), and Superpathway of Aromatic Amino
Acid Biosynthesis (G) decreased in the MCII+ group, but increased in the MCII− group. P values shown above the box plots were found using
multiple linear regression models (MLRMs) designed to test for the statistical significance of the association between MCII patient group and fold-
change in relative abundances of microbial taxa/pathways. These models were controlled for the following patient factors: age group, sex,
smoking status, duration (days) between baseline and follow-up visits, and use of csDMARDs. *, 0.01 ≤ P < 0.05. Taxonomic ranks: c, class; o, order;
f, family; g, genus; s, species. MetaCyc pathways: A, ADP-L-glycero- and beta-D-manno-heptose Biosynthesis; B, L-rhamnose degradation I; C, Lipid
IVA biosynthesis; D, GDP-mannose Biosynthesis; E, myo-, chiro- and scillo-inositol Degradation; F, Chorismate Biosynthesis from 3-dehydroquinate;
G, Superpathway of Aromatic Amino Acid Biosynthesis
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78th (out of 448) in regard to feature importance,
followed by sex (female), which was ranked 87th. Hence,
microbiome features were deemed to be more important
to the neural network classifier in predicting the likeli-
hood of clinical improvement.

Surprisingly, the highest ranked (gut microbiome) fea-
tures of importance were not differentially abundant be-
tween the two MCII groups (P > 0.05, MLRM;
Additional file 1: Figure S5). This seemingly counterintu-
itive result implies that the most important features to

Fig. 5 Performance evaluation of neural network-based prediction models in determining minimum clinically important improvement and
disease activity score (CDAI). a A neural network model was designed to classify patients into one of two MCII patient groups using baseline gut
microbiome, clinical, and demographic input features. In leave-one-out cross-validation, this resulted in b a confusion matrix of model predictions
showing an overall classification accuracy of 87.5% and a balanced accuracy of 90.0%. MCII+, patients who showed MCII. MCII−, patients who did
not show MCII. c A ranked-order of model input features (total: 448) based upon their scaled (from 0 to 1) importance showing that microbiome
data were much more influential contributors to the neural network’s decision-making process than clinical and demographic information. Far
left: ranked most important; far right: ranked least important. d Another neural network model was constructed to predict CDAI from the same
input variables (excluding CDAI) in leave-one-patient-out cross-validation. e CDAI predictions were made on both samples from the same left-out
patient in each cross-validation loop (see the “Methods” section). In the scatter-plot, predictions made across all 32 iterations of cross-validation
are shown simultaneously. Overall correlation between observed and predicted scores: Spearman’s ρ = 0.37 (P = 0.003; 95% confidence interval:
[0.12, 0.58]). Dashed violet line indicates “y = x,” i.e., an exact match between the observed and predicted values
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the neural network are not necessarily required to have
significant associations with the target variable, that is,
MCII status; rather, a nonlinear combination and com-
plex arrangement of the highly ranked features may as-
sert strong predictive power. Alternatively, weakly
associated features in unison were actually regarded as
important for the supervised classification task.
Having shown that gut microbiome data can be used

to predict whether (or not) a patient will show MCII, we
developed another neural network model to evaluate
how well the aforementioned predictor variables can
predict CDAI (Fig. 5d; Methods). The direct prediction
of a clinical disease activity score using the gut micro-
biome has yet to be performed in any chronic disease,
although a previous study by Tedjo et al. used a Random
Forests classifier with operational taxonomic units
(OTUs) of the gut microbiome in Crohn’s Disease to dif-
ferentiate between active disease and remission [56]. By
using a leave-one-patient-out cross-validation scheme,
wherein predictions in each cross-validation loop were
made on both samples from a single left-out patient
(Methods), we found that our neural network achieved a
moderate, yet significant, correlation between observed
(actual) and predicted CDAI (Spearman’s ρ = 0.37, P =
0.003; Fig. 5e). Interestingly, the predicted CDAI fits a
lower slope compared to the slope of an exact match be-
tween observed and predicted values. CDAI beyond ~ 15
were under-predicted, whereas CDAI below ~ 15 were
over-predicted; this threshold could possibly indicate a
breakpoint at which our model exhibits different rela-
tionships between the response and predictor variables.
In summary, the gut microbiome shows promise as a
non-invasive screening tool for predicting clinical im-
provement and perhaps also for monitoring RA disease
activity.

Discussion
To the best of our knowledge, this is the first study to
date that uses shotgun metagenomic sequencing of stool
to investigate the ties between the gut microbiome and
MCII in RA disease activity independent of the initial
measurement of conditions or prior treatment. This
study addresses the following key questions: What are
the distinct microbes and functions that define gut ecol-
ogies in patients who achieve MCII compared to pa-
tients who do not? Are these specific gut microbiome
“signatures” predictive of MCII? Or in other words, how
well does the gut microbiome forecast the trajectory of
RA disease activity irrespective of prior clinical course?
To this end, we compared the baseline gut microbiome
compositions between RA patients who eventually
showed improvement in disease activity and those who
did not. First, we found that the status of MCII is signifi-
cantly associated with the variation in gut microbiome

community composition. Next, a more detailed examin-
ation of baseline gut microbiomes allowed us to identify
higher levels of alpha-diversity (which is often associated
with good health) and beta-diversity in the MCII+ group
(i.e., patients who achieved clinical improvement) than
in the MCII− group (i.e., patients who did not achieve
clinical improvement). Additionally, we identified several
microbial taxa and microbiome-derived MetaCyc bio-
chemical pathways as differentially abundant between
the two MCII patient groups. Furthermore, we observed
several taxa and pathways as having significant differ-
ences in fold-change (from baseline to follow-up) be-
tween the two patient groups. Lastly, we demonstrate
that the integration of gut microbiome and machine-
learning technology could theoretically be an avenue for
the prediction of disease course in RA. More specifically,
by incorporating baseline microbiome, clinical, and
demographic data into a deep-learning neural network,
we were able to effectively classify patients into their
MCII+ or MCII group, thereby allowing us to forecast
MCII in patients with RA. With further development,
such prognostic biomarkers could identify patients who
will achieve MCII with a given therapy earlier on,
thereby sparing them the expense and risk of other ther-
apies that are less likely to be effective. Conversely, such
tools can detect patients whose disease symptoms are
less likely to improve, and perhaps allow clinicians to
target and monitor them more closely. In all, our proof-
of-concept study targets a significant unmet medical
need in RA, and demonstrates the utility of the gut
microbiome for the precision medicine era.
We identified several microbial taxa at baseline, in-

cluding Coprococcus, Bilophila sp. 4_1_30, and Prevotel-
laceae, to have significantly different relative abundances
between the MCII+ and MCII patient groups, even after
controlling for demographic and clinical confounders.
Coprococcus was found to be relatively higher in the
MCII+ group compared to the MCII group. Microor-
ganisms of this genus are known to produce butyrate,
which is known for its anti-inflammatory effects [57–
63]. For example, a study in mice showed that butyrate
can suppress inflammation by inhibiting histone deacety-
lases (HDACs) in bone marrow cells [58]. Previously, the
administration of an HDAC inhibitor in vivo was found
to promote the production and suppressive function of
Foxp3+ regulatory T (Treg) cells [64]. The anti-
inflammatory effect of butyrate was also shown in
Staphylococcus aureus cell-stimulated human mono-
cytes, to which adding butyrate led to a reduction and
increase of proinflammatory cytokine IL-12 and anti-
inflammatory cytokine IL-10, respectively [59]. In
addition, Bilophila sp. 4_1_30 was found to be higher in
patients of the MCII+ group. The role of Bilophila spe-
cies in inflammatory or auto-immune diseases is not yet

Gupta et al. Genome Medicine          (2021) 13:149 Page 15 of 20



fully understood. A couple of studies have shown the
positive association of Bilophila species (in particular B.
wadsworthia) with pro-inflammatory immune responses
[65, 66], while another study has shown that Bilophila
species have negative associations with LPS-induced,
TNFɑ-mediated immune responses in whole blood per-
ipheral blood mononuclear cells [67]. Lastly, Prevotella-
ceae was also found to have greater abundance in the
MCII+ group. Some species in this family are known for
their pro-inflammatory effects [14, 68]; therefore, this
observation possibly suggests that host immune re-
sponses to Prevotellaceae are specific to particular spe-
cies and/or strains [69].
At baseline, 26 of the total 32 patients were on antifo-

late drugs (methotrexate and/or sulfasalazine). In par-
ticular, methotrexate is a folate pathway antagonist
known to competitively inhibit dihydrofolate reductase
(DHFR), which participates in tetrahydrofolate (THF)
biosynthesis [70]. Interestingly, in our study, microbial
biochemical pathways involved in tetrahydrofolate bio-
synthesis at baseline were found to be more abundant in
patients of the MCII+ group (Fig. 3e). Although it is yet
unclear as to why THF biosynthesis pathways were more
abundant in the gut of RA patients who eventually ob-
tained clinical improvement, the elevated presence of
these pathways may be possibly linked to a protective
role in patient outcome.
In addition to baseline differences in microbial taxa

between the MCII+ and MCII− groups, we observed dif-
ferences in the abundances of fifteen biochemical path-
ways at baseline. Ten of these differentially abundant
pathways are involved in the biosynthesis of amino acids,
such as arginine, methionine, and ornithine. All four
pathways involved in methionine biosynthesis were
found to be more abundant in the MCII+ group. Inter-
estingly, dietary supplementation with high levels of me-
thionine has been shown to attenuate arthritis severity
in arthritic rats, and also to increase levels of serum
Insulin-like Growth Factor-1 (IGF-I) [71], and to this
point, IGF-I was previously found to be significantly
lower in female patients with RA than in controls [72].
Alternatively, all four arginine biosynthesis pathways
were of lower abundance in the MCII+ group. A re-
cently published study has shown that restriction of ar-
ginine improves outcome in multiple murine arthritis
models by controlling the metabolism and formation of
multi-nuclear giant cells [73].
Patients of the MCII+ and MCII− groups exhibited

significantly different fold-changes from baseline to
follow-up visit in eight microbial taxa, including Bacter-
oides vulgatus, Coprococcus, and Ruminococcus, and in
seven MetaCyc biochemical pathways, including L-
rhamnose degradation I, GDP-mannose Biosynthesis,
and Superpathway of Aromatic Amino Acid Biosynthesis

(Fig. 4). These differences in fold-changes of microbiome
features (taxa/pathways) are likely effects of a complex
combination of a number of factors, which could pos-
sibly include the use of certain medications. Indeed, sev-
eral studies have shown that pharmaceutical drugs can
be a modulator of gut microbiome composition and
metabolic activity [74–76]. In this regard, a recently pub-
lished study demonstrated that treatment with metho-
trexate (MTX) in RA patients induced compositional
changes in members of the gut microbiota, such as Bac-
teroidetes, Lachnoclostridium, Collinsella aerofaciens,
Dielma fastidiosa, and Prevotella copri, alongside the re-
duction in multiple immune cell types, which include ac-
tivated T cells, IFN-γ+ T cells, myeloid cells, and B cells
[77]. Along these lines, the use of csDMARDs (which in-
cludes methotrexate) was found to be significantly asso-
ciated with gut microbiome composition in our
PERMANOVA analysis. Collectively, our results could
implicate various aspects of the gut microbiome with
improvement in chronic, debilitating symptoms in RA,
raising the interesting possibility of intervening on these
markers, e.g., introducing specific desirable bacterial
strains into the gut or targeting microbial metabolic
pathways as a basis for therapeutic intervention.
Several limitations should be acknowledged when

interpreting our results. First and foremost, the relatively
small sample size used in our study limits the
generalization of the findings to a broader range of RA
conditions. It was beyond the scope of this retrospect-
ive, observational cohort study to restrict the time of
follow-up between clinical visits, leading to variability in
the duration of follow-up. While this study is the first to
associate gut microbiome signatures with MCII in RA,
we do note that our results were derived from a pilot co-
hort of 32 patients; therefore, conducting more analyses
and validation on larger cohorts with pre-specified clin-
ical endpoints is the crucial next step to strengthen and
confirm our findings. Second, our results could be influ-
enced by confounders inherent to our cohort of patients.
We do acknowledge that there may be geographical/cul-
tural biases in our results, since the patients included in
this study are mostly from the midwest region of the
United States. Our statistical methods to identify associ-
ations between the gut microbiome and MCII were con-
trolled for age, sex, smoking status, follow-up duration,
and medication use. However, dietary habits were not
assessed, which is a variable well known to influence the
composition of the gut microbiome [78, 79]. Import-
antly, we were not able to statistically control for patient
BMI, as current height and weight were found to be
missing in several patient records. Of note, obesity is not
only strongly tied to gut microbiome [80–82], but also
known as a prognostic factor in RA. More specifically,
patients with obesity have been found to be less likely to
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respond to disease-modifying therapy [83]. How much
BMI plays a role in shaping the current results will be
addressed in our future studies. Third, we lose most of
the significant (P < 0.05) “hits” found using the MLRMs
after Benjamini-Hochberg correction, which could be at-
tributed to a number of factors: (i) lack of strong separ-
ation (in gut microbiome) between two study groups
having the same disease diagnosis; (ii) comparatively
small sample sizes; and (iii) controlling for several poten-
tially confounding factors simultaneously. Fourth, as is
often the case in retrospective cohort studies, we cannot
completely eliminate the possibility of patient selection
bias. For example, patients may not elect to return for a
follow-up visit depending on a certain disease severity.
Additionally, among the patients whose clinical samples
were available in our biobank, some clinical/demo-
graphic data were incomplete for both time-points. Such
reasons result in exclusion of these patients from our
study, and therefore may bias the type of patients who
were analyzed. Fifth, all descriptions of annotated bio-
chemical pathways of the gut microbiome allude to func-
tional potential, that is, functional possibilities derived
from genetic content. We did not employ transcripto-
mics or proteomics technologies to assess enzyme abun-
dances; metabolomics to detect small-molecules, or
cellular assays to determine metabolic flux. However,
these are all promising methods that we can later use to
obtain much richer insight into how microbial metabol-
ism affects RA disease course. Sixth, clearly our study
cannot provide causal mechanisms underlying the asso-
ciations between the gut microbiome and MCII in RA
disease activity. However, a closer investigation on par-
ticular microbial taxa or microbiome-derived pathways
identified in our study may provide a promising launch-
pad for future studies delving into specifically how alter-
ations in the gut microbiome influence RA-associated
changes in human physiology or in systemic, chronic in-
flammation. Seventh, all predictions regarding the MCII
patient group and CDAI were performed in cross-
validation on the original discovery cohort. It remains to
be seen how well the robustness of our prediction
models will hold up when demonstrated on an inde-
pendent validation cohort once available. Finally, al-
though we found that the gut microbiome is surprisingly
predictive of MCII, our study is limited by the fact that
we collected stool samples and assessed patients’ disease
activity at only two time-points. It could be possible that
associations between gut microbiome and MCII may not
persist past the second visit. Surely, future studies ex-
tending this current work will need to entail having lar-
ger cohorts, patients with new-onset RA, and several
longitudinal sample collections, while considering more
potentially confounding factors (e.g., geography, race/
ethnicity, diet, and lifestyle).

Conclusions
Several aspects of the gut microbiome are associated
with future prognosis in RA, providing motivation for
further studies on the effect of intestinal microflora and
various patient factors on autoimmune response and
clinical course. Additionally, shotgun metagenomic se-
quencing of microbial communities in stool samples can
serve as an effective and reliable predictor of whether
patients with RA will achieve clinically important im-
provement in disease activity. Ultimately, we expect our
work to be one cornerstone for a suite of new, omics
data-based clinical tools to aid in early detection, diagno-
sis, prognosis, and treatment in RA [84, 85]. Looking
ahead, possible solutions to treat chronic auto-immune
or inflammatory diseases could well involve modifying
the gut microbiome to an ecological state primed to en-
hance clinical outcome.
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