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Abstract 

Background: Depression is a disabling and highly prevalent condition where genetic and epigenetic, such as DNA 
methylation (DNAm), differences contribute to disease risk. DNA methylation is influenced by genetic variation but 
the association between polygenic risk of depression and DNA methylation is unknown.

Methods: We investigated the association between polygenic risk scores (PRS) for depression and DNAm by con-
ducting a methylome-wide association study (MWAS) in Generation Scotland (N = 8898, mean age = 49.8 years) with 
replication in the Lothian Birth Cohorts of 1921 and 1936 and adults in the Avon Longitudinal Study of Parents and 
Children (ALSPAC) (Ncombined = 2049, mean age = 79.1, 69.6 and 47.2 years, respectively). We also conducted a replica-
tion MWAS in the ALSPAC children (N = 423, mean age = 17.1 years). Gene ontology analysis was conducted for the 
cytosine-guanine dinucleotide (CpG) probes significantly associated with depression PRS, followed by Mendelian 
randomisation (MR) analysis to infer the causal relationship between depression and DNAm.

Results: Widespread associations (NCpG = 71, pBonferroni < 0.05, p < 6.3 ×  10−8) were found between PRS constructed 
using genetic risk variants for depression and DNAm in CpG probes that localised to genes involved in immune 
responses and neural development. The effect sizes for the significant associations were highly correlated between 
the discovery and replication samples in adults (r = 0.79) and in adolescents (r = 0.82). Gene Ontology analysis 
showed that significant CpG probes are enriched in immunological processes in the human leukocyte antigen sys-
tem. Additional MWAS was conducted for each lead genetic risk variant. Over 47.9% of the independent genetic risk 
variants included in the PRS showed associations with DNAm in CpG probes located in both the same (cis) and distal 
(trans) locations to the genetic loci (pBonferroni < 0.045). Subsequent MR analysis showed that there are a greater num-
ber of causal effects found from DNAm to depression than vice versa (DNAm to depression: pFDR ranged from 0.024 to 
7.45 ×  10−30; depression to DNAm: pFDR ranged from 0.028 to 0.003).

Conclusions: PRS for depression, especially those constructed from genome-wide significant genetic risk variants, 
showed methylome-wide differences associated with immune responses. Findings from MR analysis provided evi-
dence for causal effect of DNAm to depression.
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Background
Depression is a highly prevalent condition and a lead-
ing cause of global disability [1], for which the underly-
ing biological mechanisms are unclear. Genetic factors 
account for a substantial proportion of differences in 
liability to depression, which has a twin-based herit-
ability of approximately 37% and with common genetic 
variants capturing around 6–10% of phenotypic vari-
ance [2, 3]. Recent genome-wide association studies 
(GWAS) have identified specific genetic risk variants 
for depression that implicate regional brain altera-
tions [4, 5]. Polygenic risk scores (PRS) derived from 
the results of GWAS studies, have been widely used to 
estimate additive genetic risk [6]. PRS is the sum of risk 
alleles, weighted by the effect sizes of an independent 
GWAS [7]. It provides a means to identify traits that 
share their genetic architecture with depression, which 
may help to prioritise factors of biological and mecha-
nistic relevance for the disorder [8].

DNA methylation (DNAm) at cytosine-guanine dinu-
cleotides (CpG) sites is one of the most studied epige-
netic markers and there is growing evidence of its role 
in understanding depression [9]. DNAm risk scores 
have been developed from the results of DNA meth-
ylome-wide association studies (MWAS; also widely 
referred to as epigenome-wide association studies or 
EWAS in contemporary literature) [9]. These can be 
used to predict prevalent depression in independent 
samples, and chronic depression that requires long-
term treatment [10]. DNAm is influenced by both 
genetic and environmental factors [9, 11] and, in blood 
tissue, it has a mean heritability of 19% across the 
methylome [12] with ~7% of its variance captured by 
common genetic variants [12]. For the highly heritable 
DNAm probes, genetic effects are consistent across tis-
sues [13] and developmental stages [12]. Genetic risk 
variants for diseases (e.g. schizophrenia) have been 
found enriched in DNAm variation [14–16]. Associa-
tions between genetic risk and epigenetic changes can 
enrich our understanding of the functional composition 
of genetic risk loci, and thus inform the mechanisms 
that lead to the onset of depression [17, 18]. However, 
systematic examination of the molecular genetic asso-
ciations between genetic risk of depression and DNAm 
has not, to the best of our knowledge, been conducted.

In the present study, we aim to investigate the asso-
ciation between PRS for depression and genome-wide 
DNA methylation. MWAS were conducted on four 

cohorts: Generation Scotland: Scottish Family Health 
Study (GS, discovery sample, N = 8898) [19, 20], the 
Lothian Birth Cohort (LBC1921) [21, 22], the Lothian 
Birth Cohort 1936 (LBC1936) [21, 22], Avon Longitu-
dinal Study of Parents and Children (ALSPAC) adults 
(adult replication sample, combined N = 2049) and 
ALSPAC children for replication (adolescent replica-
tion sample, N = 423) [23, 24]. Mendelian randomi-
sation (MR) was used to test for causal associations 
between DNAm and depression using data from the 
Genetics of DNA Methylation Consortium (GoDMC) 
(N = 25,561) and GS.

Methods
Sample descriptions
Generation Scotland: Scottish Family Health Study (GS)
GS is a family-based population cohort with over 24,000 
participants [19, 20] set up to identify the causes of com-
mon complex disorders, such as depression. DNAm 
data and genetic data were both collected, processed 
and quality-checked for 8898 people (mean age = 49.8 
years, SD of age = 13.7 years, 40.90% were men) in two 
sets. Sample sizes for set 1 and set 2 were 4757 (mean age 
= 48.5 years, SD of age = 14.0 years, 38.5% were men) 
and 4141 (mean age = 51.4 years, SD of age = 13.2 years, 
43.66% were men), respectively. Written informed con-
sent was obtained for all participants. The study was 
approved by the NHS Tayside Research Ethics committee 
(05/s1401/89).

Lothian Birth Cohort (LBC)1921 and LBC1936
Participants from LBC1921 and LBC1936 [21, 22] were 
born in 1921 and 1936. Almost all lived in the Edinburgh 
and surrounding Lothian area when recruited. They are a 
mostly healthy, community-dwelling sample of men and 
women. The sample used in the current analysis included 
1330 participants from both cohorts combined with 
genetic and DNAm data (LBC1921: mean age = 79.1 
years, SD of age = 0.6, 39.7% were men; LBC1936: mean 
age = 69.6 years, SD of age = 0.8, 50.6% were men; all 
participants were unrelated). Written informed consent 
was obtained from all participants. Ethics permission for 
LBC1921 was obtained from the Lothian Research Eth-
ics Committee (LREC/1998/4/183). Ethics permission for 
LBC1936 was obtained from the Multi-Centre Research 
Ethics Committee for Scotland (MREC/01/0/56) and the 
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Lothian Research Ethics Committee (LREC/2003/2/29) 
[25, 26].

Avon Longitudinal Study of Parents and Children (ALSPAC)
ALSPAC is an ongoing longitudinal population-based 
study that recruited pregnant women residing in Avon 
(South-West of England) with expected delivery dates 
between 1st April 1991 and 31st December 1992 [23, 24]. 
The cohort consists of 13,761 mothers and their part-
ners, and their 14,901 children, now young adults [27]. 
The study website contains details of all the data that is 
available through a fully searchable data dictionary and 
variable search tool (http:// www. brist ol. ac. uk/ alspac/ 
resea rchers/ our- data/). Ethical approval for the study was 
obtained from the ALSPAC Ethics and Law Committee 
and the Local Research Ethics Committees. A subsample 
of 719 unrelated mothers with DNAm data (mean age = 
47.2 years, SD of age = 4.6) were included in the repli-
cation study [28]. Supplementary analyses were also con-
ducted on a younger subsample with DNAm consisting 
of 423 young people (mean age = 17.1 years, SD of age 
= 1.1 and 41% were boys). Details of the selection of par-
ticipants for these subsamples are in the study by Relton 
et  al. [28]. Consent for biological samples has been col-
lected in accordance with the Human Tissue Act (2004).

Genotyping and imputation
Detailed information on the quality control and geno-
typing methods for GS [19], LBC1921, LBC1936 [29] 
and ALSPAC [30] has been previously published and is 
described briefly below. Analyses were conducted on 
European participants.

GS
Each sample was genotyped using the IlluminaHu-
manOmniExpressExome-8v1.0 BeadChip (48.8%) or 
Illumina HumanOmniExpressExome-8 v1.2 BeadChip 
(51.2%) with Infinium chemistry [31]. Quality control 
included removing participants with genotyping call 
rate <98%, SNP removal of those with a minor allele fre-
quency (MAF) <1%, call rate <98%, Hardy-Weinberg 
equilibrium (HWE) p-value <5 ×  10−6. Imputation was 
performed using the Sanger Imputation server with the 
Haplotype Reference Consortium reference panel (HRC.
r1-1). SNPs with an information metric [32] (INFO score) 
<0.8 were removed from the analysis.

LBC1921 and LBC1936
Genotyping was performed using the Illumina610-
Quadv1 chip (Illumina, Inc., San Diego, CA, USA). Par-
ticipants were excluded with a call rate <95%. SNPs were 
removed if MAF <5%, call rate <98%, HWE p-value 

<0.001. Imputation and quality control based on INFO 
score were the same as GS.

ALSPAC
Genotyping arrays used were the Illumina Human660W-
quad chip for mothers and Illumina HumanHap550-quad 
chip for children. SNPs with missingness >0.05, HWE 
p-value <1 ×  10−6 and MAF <0.01 were excluded. The 
above quality control steps were conducted on the entire 
genotyped sample. Imputation and quality control based 
on INFO score were consistent with similar procedures 
used in GS.

Polygenic profiling
PRS of depression were calculated using PRSice-2 [7] for 
GS, LBC1921, LBC1936 and ALSPAC separately, using 
the summary statistics of a genome-wide meta-analysis 
of depression by Howard et  al. [33] excluding individu-
als from GS previously included in that GWAS meta-
analysis. The summary statistics are available at the URL: 
https:// datas hare. ed. ac. uk/ handle/ 10283/ 3203 [33]. Nine 
p-value cut-offs were used for thresholding SNPs in the 
summary statistics (pT): 1, 0.5, 0.1, 0.05, 0.01, 1 ×  10−3, 1 
×  10−4, 1 ×  10−5 and 5 ×  10−8 for clumping and thresh-
olding. Each set of SNPs was used to generate a depres-
sion-PRS in GS. A separate PRS was generated using the 
lead genetic risk variants or their closest proxies (in LD 
r2>0.1) reported in the GWAS by Howard et al. [33] for 
supplementary analysis. Details of the PRS profiling pro-
cedures and validation in the GS can be found elsewhere 
[33] (also see Additional file  1: Supplementary methods 
and Additional file 1: Tables S1-S2).

Subsequently, using the lead risk variants reported by 
Howard et  al. [33], we tested for individual SNP-CpG 
associations in GS. Lead risk variants were selected by 
extracting the most significant proxy SNPs (p < 5 ×  10−8) 
in linkage disequilibrium (LD R2 > 0.01) with the lead 
variants reported in the Howard et al. study [4]. A total of 
96 SNPs were available and thus selected as leading risk 
variants for further analysis.

DNAm data
GS
Genome-wide DNAm data was obtained from whole-
blood samples using the Illumina Infinium Methylation 
EPIC array (https:// emea. suppo rt. illum ina. com/ array/ 
array_ kits/ infin ium- methy latio nepic- beadc hip- kit. html). 
Data processing was performed separately for each 
set. Quality control (QC) and normalisation were con-
ducted using R packages ‘ShinyMethyl’ (version 1.28.0) 
[34], ‘watermelon’ (version 1.36.0) [35] and ‘meffil’ (ver-
sion 1.1.1) [36]. Details of the protocol are described 
elsewhere [37]. In summary, quality control procedures 

http://www.bristol.ac.uk/alspac/researchers/our-data/
http://www.bristol.ac.uk/alspac/researchers/our-data/
https://datashare.ed.ac.uk/handle/10283/3203
https://emea.support.illumina.com/array/array_kits/infinium-methylationepic-beadchip-kit.html
https://emea.support.illumina.com/array/array_kits/infinium-methylationepic-beadchip-kit.html
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removed probes if there was an outlying log median 
methylated signal intensity against unmethylated signal 
for each array, or a bead count <3 in ≥5 % of the total 
probe sample, or a detection p-value >0.05 for set 1 and 
p-value >0.01 for set 2 in ≥0.5% of the total sample in 
each respective set. Cross-hybridising probes that map to 
genetic variants at MAF >0.05 and polymorphic probes 
were removed [38]. Samples were excluded if sex predic-
tion from methylation data was inconsistent with self-
reported data, or a detection p-value >0.05 for set 1 and 
p-value >0.01 for set 2 found in >1% of the overall probes 
for each set respectively. The data was then normalised 
using the ‘dasen’ method from the ‘waterRmelon’ R pack-
age (version 1.36.0).

The raw intensities were then transformed into M-val-
ues by log-transforming the proportional methylation 
intensity [39]. The M-values were corrected using a lin-
ear-mixed model, controlling for relatedness using the 
GCTA-estimated genetic relationship matrix [40] for set 
1. This step was omitted for set 2 as all participants were 
unrelated within the set and to set 1. The residualised 
M-values for 769,526 autosomal CpG probes were then 
used for further analysis.

LBC1921 and LBC1936
Genome-wide DNAm data was obtained from blood 
sample using the HumanMethylation450K array (https:// 
emea. illum ina. com/ conte nt/ dam/ illum ina- marke ting/ 
docum ents/ produ cts/ datas heets/ datas heet_ human 
methy latio n450. pdf ) [41, 42]. Quality control and nor-
malisation were performed using the ‘minfi’ R package 
(version 1.38.0) [41]. Probes with low call rate (<95%), 
outlying M-values (>3 SD from mean) or identified as 
cross-hybridising and polymorphic were removed [43]. 
Participants with insufficient cell count information were 
excluded from analysis.

All participants in LBC1921 and LBC1936 with methyl-
ation data were unrelated. M-value transformation were 
conducted consistently with the GS sample. Data for 
409,319 CpG probes were retained for further analysis.

ALSPAC
Illumina Infinium HumanMethylation450 Beadchip 
arrays were used for measuring genome-wide DNAm 
data from peripheral blood samples [28]. The R package 
‘meffil’ (version 1.1.1) was used for pre-processing, qual-
ity control and normalisation as previously reported 
[36]. Further removal of probes was conducted based 
on background detection (p > 0.05) and if they reached 
beyond the 3 times inter-quantile range from 25 to 75% 
or identified as cross-hybridising or polymorphic [43]. 
Related (IBD >0.1) participants were not included in the 
analyses [30].

M-value transformation was conducted. In total, 
481,600 and 449,595 CpG probes remained for analysis 
on ALSPAC adults and children, respectively.

Statistical models for MWAS
A discovery MWAS was initially conducted in GS. Two 
separate analyses were conducted on sets 1 and 2, and the 
final summary statistics were obtained by meta-analysing 
the two sets of results using METAL (version released in 
2011) [44]. We used the default analysis scheme without 
genomic control correction (genomic inflation factors 
reported in the Additional file  1: Supplementary meth-
ods). P-values for the meta-analysis were obtained from 
a fixed-effect inverse-variance model. A sensitivity anal-
ysis was conducted on the unrelated participants in GS 
(methods and results reported in Additional file 1: Sup-
plementary methods). A replication analysis on adults 
was then conducted on the total sample from LBC1921, 
LBC1936 and ALSPAC adults. Replication MWAS was 
first conducted separately for each cohort and then meta-
analysed using the same parameters for the discovery 
analysis. Finally, an additional replication MWAS was 
conducted on ALSPAC children. All analyses were con-
ducted using R (version 3.5.1) under Linux environment.

Linear regression was used to test the associations 
between depression-PRS and for each CpG using the R 
package ‘limma’ [45] (version 3.48.0) for GS, LBC1921 
and LBC1936. The ‘lmFit’ function was first implemented 
to test the association for each CpG. The inference sta-
tistics of each linear model was then adjusted using the 
‘eBayes’ function, by which an empirical Bayes method 
was used to adjust for gene-wise variance using a shrink-
age factor. Moderated t-statistics and p-values were 
produced by this step. In ALSPAC, the analyses were 
conducted using the ‘meffil’ (version 1.1.1) R package, 
using the ‘sva’ option [36].

Self-reported smoking status, smoking pack years, 
DNAm-estimated white-blood cell proportions (CD8+T, 
CD4+T, natural killer cells, B cells and granulocytes) 
[37], batch, the first 20 principal component derived 
from the M-values, the first 10 principal components 
derived from the imputed genetic data, age and sex were 
included as covariates for the discovery methylome-wide 
association analysis (see Additional file  1: Supplemen-
tary Methods and Additional file 1: Table S3 for details). 
Where possible, the same covariates were used in the 
replication analyses, although only smoking status (and 
not pack years) was available in LBC 1921, LBC 1936 and 
ALSPAC. Details for all the covariates included in the 
replication analysis can be found in the Additional file 1: 
Supplementary methods. MWAS were conducted for 
the nine depression-PRS scores separately. P-values were 
Bonferroni-corrected (p-value threshold = 6.5 ×  10−8 for 

https://emea.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_humanmethylation450.pdf
https://emea.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_humanmethylation450.pdf
https://emea.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_humanmethylation450.pdf
https://emea.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_humanmethylation450.pdf
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EPIC array used in GS, 1.1 ×  10−7 for 450k array used for 
replication analysis in LBC1921, LBC1936 and ALSPAC 
adults, and 1.1×10−7 for replication in ALSPAC chil-
dren). Standardised regression coefficients are reported 
as effect sizes. For the significant CpG probes, gene sym-
bol annotation and UCSC classification of CpG Island 
positions were acquired from the ‘UCSC_RefGene_
Name’ and ‘Relation_to_Island’ columns, respectively, 
from the annotation object generated by the ‘Illumina-
HumanMethylationEPICanno.ilm10b4.hg19’ R package 
(version 3.13) [46].

Individual SNP-CpG DNAm association tests were also 
performed, using the same covariates and p-value correc-
tions as used in the PRS association analyses.

Gene ontology analysis
Gene ontology analysis was conducted on the MWAS 
results from GS using the ‘gometh’ function in R pack-
age missMethyl [47]. Default settings were used, which 
include correction for the number of probes per gene. 
CpGs that showed significant association with depres-
sion-PRS at pT < 5 ×  10−8 in the discovery analysis were 
selected as CpGs of interest, ‘EPIC’ was chosen for array 
type and all CpGs included in the analysis were used as 
the background list. Analyses were conducted on the 
Gene Ontology (GO) terms and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways separately, by 
specifying the ‘collection’ parameter as ‘GO’ and ‘KEGG’, 
respectively. FDR correction was applied for all analyses.

Colocalisation analysis
We used Howard et al.’s depression GWAS [4] for depres-
sion-associated SNPs and GoDMC summary statistics 
for methylation quantitative trait loci (mQTL) analysis 
with PGC studies and GS study removed, which resulted 
in 32 remaining studies imputed to the 1000 Genome 
reference panel [13]. We used the package ‘gwasglue’ 
(version 0.0.0.9000, https:// mrcieu. github. io/ gwasg lue/) 
[48] to extract SNPs that were ± 1 Mb of each of the 102 
genome-wide significant, lead SNPs identified in Howard 
et al. [33] and then extracted the same SNPs within those 
regions from the GoDMC mQTL analysis. We used the 
coloc.abf function with default parameters in the ‘coloc’ 
package in R (version 5.1.0) [49] to perform colocalisa-
tion analysis for each SNP association. The method tests 
for five mutually exclusive scenarios in a genetic region: 
 H0: there exist no causal variants for either trait;  H1: there 
exists a causal variant for trait one only;  H2: there exists 
a causal variant for trait two only;  H3: there exist two 
distinct causal variants, one for each trait; and  H4: there 
exists a single causal variant common to both traits.

MR
Three MR methods, inverse-variance weighted (IVW), 
weighted median (WM) and MR-Egger, were used to test 
for causal effects between DNAm and depression using 
the ‘TwoSampleMR’ R package (version 0.5.6) [50, 51].

GWAS summary statistics for DNAm were from 
GoDMC and GS. mQTL summary statistics from 
GoDMC included 32 cohorts with 25,561 participants 
from European ancestry [13]. The summary statistics 
were computed using a two-phased design. First, every 
study performs a full analysis of all candidate mQTL 
associations, returning only associations at a threshold of 
p < 1 ×  10−5. All candidate mQTL associations at p < 1 
×  10−5 are combined to create a unique ‘candidate list’ of 
mQTL associations. The candidate list (n = 120,212,413) 
is then sent back to all cohorts, and the association esti-
mates are obtained for every mQTL association on the 
candidate list. Candidate mQTL associations were meta-
analysed using fixed-effect inverse-variance method. 
Details of the database can be found elsewhere [13]. 
mQTL summary statistics from GS (N = 8898) included 
a full set of all SNPs with no p-value thresholding. Sum-
mary mQTL statistics from GS were generated using 
the OmicS-data-based Complex Trait Analysis pack-
age (https:// cnsge nomics. com/ softw are/ osca/# eQTL/ 
mQTLA nalys is) [52]. Covariates were consistent with the 
MWAS for depression-PRS discovery analysis. Further 
details of the mQTL analysis can be found in the Addi-
tional file 1: Supplementary methods.

Summary statistics for depression GWAS by Howard 
et al. [33] were used. A total of 807,553 unrelated, Euro-
pean participants were included in the analysis. Details 
for the study can be found elsewhere [33].

GoDMC, GS and depression GWAS samples were 
mutually exclusive. Individual cohorts that overlapped 
with the Howard et  al. depression GWAS and GS were 
removed from the GoDMC mQTL meta-analysis. 
Depression GWAS summary statistics from Howard 
et  al. (2019) were calculated excluding GS participants 
[33]. See Additional file  1: Supplementary methods for 
details.

First, we used mQTL summary statistics from GoDMC 
to identify causal effects from DNAm to depression. Sec-
ond, we used full mQTL summary statistics from GS 
to replicate the findings and to test the causal effect to 
DNAm and depression bi-directionally. Finally, in con-
trast to the univariable MR analyses (that is, each risk-
outcome pair tested separately), a multi-variable MR 
analysis was conducted to test for direct causal associa-
tions from DNAm at multiple CpGs to depression, using 
the mQTL data from GS. Using this method, all CpG 
probes where there was evidence of a potential causal 
effect on depression were entered into the two-sample 

https://mrcieu.github.io/gwasglue/
https://cnsgenomics.com/software/osca/#eQTL/mQTLAnalysis
https://cnsgenomics.com/software/osca/#eQTL/mQTLAnalysis
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MR analysis simultaneously, in order to prioritise SNPs 
that showed the strongest independent casual associa-
tions with depression.

Exposures were selected from CpG probes found sig-
nificantly associated with depression-PRS generated 
using the p-threshold = 5 ×  10−8. The probes were fur-
ther removed from analyses if they did not present in 
the GoDMC/GS mQTL data or had <5 independent 
genetic instruments overlapping with the outcome sum-
mary statistics. In result, 15 probes were selected for final 
analyses.

Scripts for all the above analyses can be found in the 
GitHub repository: https:// github. com/ xshen 796/ MDD_ 
PRS_ MWAS [53]. A detailed summary for the directo-
ries of each individual analysis can be found in the URL: 
https:// github. com/ xshen 796/ MDD_ PRS_ MWAS/ wiki.

Results
Discovery MWAS of depression‑PRS in GS
MWAS with depression‑PRS at all p‑thresholds
There were 71 CpG probes significantly associated with 
depression-PRS with p-threshold (pT) at 5 ×  10−8 (p < 
6.3 ×  10−8 to reach significance after Bonferroni correc-
tion). In contrast to many other studies that use polygenic 
risk profiling at different thresholds to predict depression 
[54], both the number of significant associations and the 
effect sizes decreased as PRSs were calculated at increas-
ingly lenient thresholds (Fig.  1). For pT of 1 ×  10−6, 29 

CpGs were associated with depression-PRS (Additional 
file 1: Fig. S1). No significant associations were found for 
PRS using p-value thresholds greater than or equal to 1 
×  10−4. Quantile-quantile plot and statistics for genomic 
inflation factors (ranged from 0.960 to 0.970) can be 
found in Additional file  1: Fig. S2 and Table  S4. Results 
using the depression-PRS calculated using only genome-
wide significant variants are presented below.

DNAm association with depression‑PRS at a GWAS p‑value 
association threshold of 5 ×  10−8

The most significant associations of DNAm with depres-
sion-PRS were found in the major histocompatibility 
complex (MHC) region (25–35 Mb on Chromosome 
6, Fig.  2), with 45/71 (63.4%) of significant associations 
within this region (pBonferroni ranged from 0.03 to 7.28 × 
 10−11). The top ten probes that showed the greatest asso-
ciations are listed in Additional file 1: Table S5 (all pBon-

ferroni < 8.62 ×  10−8). After pruning (r < 0.1 for at least 
two nearest probes, window = 3 Mb), the top CpG probe 
identified within the MHC region  was cg14345882 (all 
 pBonferroni = 7.28 ×  10−11). UCSC gene database anno-
tation shows genes that are nearest to the significant 
probes in the MHC region are, for example, TRIM27, 
HIST1H2AI and BTN3A2. See Tables 1 and 2, Additional 
file 1: Table S5 and Additional file 2: Table S10.

Supplementary MWAS were conducted on two addi-
tional depression-PRSs to investigate the associations 

Fig. 1 Number of CpG probes associated with polygenic risk scores (PRS) at nine different p-thresholds (pTs) for discovery analysis. X-axis represents 
the pTs used for generating PRS. Y-axis shows the number of probes significantly associated with the given PRS. The four different lines represent 
four types of methods to define significance

https://github.com/xshen796/MDD_PRS_MWAS
https://github.com/xshen796/MDD_PRS_MWAS
https://github.com/xshen796/MDD_PRS_MWAS/wiki
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found within the MHC region. Two additional PRSs 
were calculated using (1) the independent genetic risk 
variants reported in the depression GWAS by Howard 
et al. with a wider pruning window of 3 Mb and retain-
ing only one variant in the MHC region and (2) SNPs 
located outside of MHC region, respectively. Analysis 
(1) was conducted to identify if the associations found 
in the MHC region were due to the additive effect of 
many genetic variants included in the MHC region. 
Analysis (2) was conducted to find out if the CpG asso-
ciations found within the MHC region were conferred 
by genetic variants located trans to this region. The 
number of significant associations found within the 
MHC region for the PRS calculated using independ-
ent genetic risk variants reduced from 71 to 41, at the 
depression GWAS PRS p-value threshold of 5 ×  10−8. 
No CpGs within the MHC region were found to be sig-
nificantly associated with the PRS generated from vari-
ants mapping without the MHC region. See Additional 
file 1: Fig. S3.

Outside of the MHC region, 26 probes showed signifi-
cant associations with depression-PRS estimated across the 
genome at pT of 5 ×  10−8 (pBonferroni ranged from 0.049 to 
2.41 ×  10−16). The top ten probes are listed in Additional 
file 1: Table S5. Genes mapping near to the top probes were 
associated with histone deacetylase, DNA binding and tran-
scriptional processes (such as MAD1L1, TCF4 and RERE), 
and neuronal plasticity and growth (for example, NEGR1).

The effect sizes for the significant CpG probes showed 
high correlations between Set 1 and 2 (r = 0.84), and direc-
tion for all significant associations was consistent between 
sets. For these significant probes, the distance to the near-
est depression risk locus was significantly lower than those 
that were not significant (significant versus not significant: 
standardised Cohen’s d = 0.920, p < 1 ×  10−32). There 
were 12.7% of all significant CpGs located outside of 1 Mb 
boundaries of genetic risk loci for depression and outside 
of the region consisted of SNPs in LD (R2>0.1) with the 
genetic risk loci (see Additional file 2: Table S10).

Replication depression‑PRS MWAS in LBC1921, LBC1936 
and ALSPAC
MWAS of depression‑PRS on pT of 5 ×  10−8 on adult 
and adolescent samples (LBC1921, LBC1936 and ALSPAC)

Replication in adults We looked at a subset of CpG 
probes that were significant in the discovery MWAS analy-
sis and found that the standardised effect sizes were corre-
lated between the discovery and replication meta-MWAS 
of LBC1921, LBC1936 and ALSPAC adults, with (Nprobe 
= 49, r = 0.79) or without the probes located in the MHC 
region (Nprobe = 14, r = 0.74). There were 98.0% associa-
tions found in the discovery MWAS which remained in the 
same direction and 77.6% and 67.3% remained significant 
before and after Bonferroni correction within the replica-
tion analysis, respectively. See Fig. 3.

Fig. 2 Manhattan plot for the discovery methylome-wide association study (MWAS) for PRS of pT at 5 ×  10−8 in Generation Scotland (GS). Each dot 
represents a CpG probe. X-axis represents the relative position of the probes in the genome. Y-axis represents −log10-transformed p-values. The red 
dashed line represents the significance threshold for Bonferroni correction
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Table 1 Results for gene ontology (GO) analysis for the MWAS on PRS at pT 5 ×  10−8. Analyses were conducted separately for 
including and excluding the MHC region. Top ten GO terms are listed in the table. BP=biological process, CC=cellular component and 
MF=molecular function

GO ID Ontology Term N DE PDE PFDR

With MHC region GO:0072643 BP Interferon-gamma secretion 22 2 2.24E−04 1

GO:0003050 BP Regulation of systemic arterial blood pressure by atrial natriuretic peptide 2 1 2.64E−03 1

GO:0021691 BP Cerebellar Purkinje cell layer maturation 2 1 3.27E−03 1

GO:0021590 BP Cerebellum maturation 3 1 3.64E−03 1

GO:0021699 BP Cerebellar cortex maturation 3 1 3.64E−03 1

GO:1902412 BP Regulation of mitotic cytokinesis 6 1 3.88E−03 1

GO:0032609 BP Interferon-gamma production 105 2 4.06E−03 1

GO:0072686 CC Mitotic spindle 103 2 4.94E−03 1

GO:0046340 BP Diacylglycerol catabolic process 4 1 5.24E−03 1

GO:0048408 MF Epidermal growth factor binding 4 1 5.99E−03 1

Without MHC region GO:0072686 CC Mitotic spindle 101 2 2.14E−03 1

GO:0003050 BP Regulation of systemic arterial blood pressure by atrial natriuretic peptide 2 1 2.30E−03 1

GO:1902412 BP Regulation of mitotic cytokinesis 6 1 2.31E−03 1

GO:0021691 BP Cerebellar Purkinje cell layer maturation 2 1 2.45E−03 1

GO:0021590 BP Cerebellum maturation 3 1 2.56E−03 1

GO:0021699 BP Cerebellar cortex maturation 3 1 2.56E−03 1

GO:0046340 BP Diacylglycerol catabolic process 4 1 4.06E−03 1

GO:0051315 BP Attachment of mitotic spindle microtubules to kinetochore 13 1 4.23E−03 1

GO:0021578 BP Hindbrain maturation 6 1 4.40E−03 1

GO:0021626 BP Central nervous system maturation 7 1 4.51E−03 1

Table 2 Results for pathway analysis for the MWAS on PRS at pT 5 ×  10−8. Analyses were conducted separately for including and 
excluding the MHC region. Top ten Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways are listed in the table

KEGG pathway ID Description N DE P PFDR

With MHC region path:hsa05322 Systemic lupus erythematosus 112 1.5 0.093896415 1

path:hsa04914 Progesterone-mediated oocyte maturation 88 1 0.10085395 1

path:hsa04110 Cell cycle 123 1 0.110965189 1

path:hsa04217 Necroptosis 147 1 0.116705111 1

path:hsa04114 Oocyte meiosis 117 1 0.118584815 1

path:hsa04925 Aldosterone synthesis and secretion 95 1 0.137824504 1

path:hsa04613 Neutrophil extracellular trap formation 159 1.5 0.148531242 1

path:hsa04514 Cell adhesion molecules 136 1 0.156764027 1

path:hsa04723 Retrograde endocannabinoid signalling 134 1 0.157693357 1

path:hsa05034 Alcoholism 163 1.5 0.162889755 1

Without MHC region path:hsa04914 Progesterone-mediated oocyte maturation 88 1 0.077051 1

path:hsa04110 Cell cycle 123 1 0.079099 1

path:hsa04114 Oocyte meiosis 116 1 0.082834 1

path:hsa04514 Cell adhesion molecules 118 1 0.098456 1

path:hsa04925 Aldosterone synthesis and secretion 92 1 0.104019 1

path:hsa04723 Retrograde endocannabinoid signalling 133 1 0.113819 1

path:hsa05203 Viral carcinogenesis 152 1 0.127128 1

path:hsa05166 Human T-cell leukaemia virus 1 infection 193 1 0.1555 1

path:hsa04662 B cell receptor signalling pathway 76 0 1 1

path:hsa05224 Breast cancer 143 0 1 1
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We then looked at the probes within and outside of the MHC 
region separately. Within the MHC region, effects for the 
top independent probe remained in the same direction and 
was significantly replicated (pBonferroni = 8.24 ×  10−58). For 
the probes outside of the MHC region, 92.9% of the effects 
remained in the same direction, 35.7% were nominally signifi-
cant and 7.1% were significant after Bonferroni correction.

Replication in adolescents Standardised effect sizes 
for the significant CpG probes found in the discovery 
MWAS were highly correlated with those in the MWAS 
on adolescents from ALSPAC (all CpG probes: Nprobe = 

50, r = 0.81; no MHC region: Nprobe = 14, r = 0.64. Effect 
for 89.8% of the probes remained in the same direction, 
68.0% remained nominally significant and 46.0% were 
significant after Bonferroni correction.

Within the MHC region, effects for the top independent 
probe remained in the consistent direction and was sig-
nificant (pBonferroni = 1.71 ×  10−12). For the probes out-
side of the MHC region, effects for 85.7% of the probes 
remained in the same direction, 21.4% were nominally 
significant and 7.1% were significant after Bonferroni 
correction.

Fig. 3 Replication MWAS in Lothian Birth Cohort (LBC) 1921, LBC1936 and Avon Longitudinal Study of Parents and Children (ALSPAC) adults. 
a Manhattan plot for the replication MWAS for PRS of pT at 5 ×  10−8. Each dot represents a CpG probe. X-axis represents the relative position 
of the probes in the genome. Y-axis represents −log10-transformed p-values. The red dashed line represents the significance threshold for 
Bonferroni correction. b Scatter plot showing the correlation of standardised regression coefficients between the discovery (GS) and replication 
(LCB1921+LBC1936+ALSPAC adults) analysis. Each dot represents a CpG probe. Probes shown in the figure are those associated with 
depression-PRS of pT at 5 ×  10−8 in the discovery MWAS (in GS). Dots in green represent probes locate in the major histocompatibility complex 
(MHC) regions and those in red represent other probes that locate outside of the MHC region c  Number of CpG probes significantly associated with 
polygenic risk scores (PRS) at nine different pTs for replication analysis. X-axis represents the pTs used for generating PRS. Y-axis shows the number 
of probes significant associated with the given PRS. The four different lines represent four types of methods to define significance
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MWAS for depression‑PRS on all p‑thresholds on adult 
samples
Meta-analysis of the MWAS of depression-PRS for repli-
cation cohorts (LBC1921, LBC1936 and ALSPAC adults) 
showed that, for depression-PRS of pT at 5 ×  10−8, 1 × 
 10−6, 1 ×  10−4 and 0.001, the number of significant CpG 
probes were 60, 48, 16 and 2, respectively. Similar to the 
discovery analysis, no significant associations were found 
for PRS of pT ≥ 0.01.

A full list of results for replication analysis can be found 
in Additional file  1: Figs. S4-S7 and Additional file  2: 
Table S10.

Pathway enrichment analysis
GO terms and KEGG pathways were assessed for 
the genes associated with depression-PRS of pT at 
5 ×  10−8. There were 118 enriched GO terms nomi-
nally significant but none was significant after FDR 
correction (pmin = 2.02 ×  10−3). The majority of the 
nominally significant GO terms were associated with 
immune response and brain maturation. No enriched 
KEGG pathways reached significance (p > 0.089). The 
top ten GO terms and KEGG pathways are listed in 
Tables 1 and 2.

SNP–CpG mapping for the depression risk loci
SNP-CpG probe associations were investigated by con-
ducting MWAS for each of the independent genetic risk 
loci for depression. The analysis aimed to further inform 
individual associations between each genetic risk locus 
and DNA methylation. There were 3969 CpG probes 
that showed significant associations with at least one 
leading genetic risk variant after Bonferroni correction. 
Significant associations after Bonferroni correction are 
described below (p < 1.31 ×  10−7).

There were 94 of the 96 genetic risk variants tested 
showed significant cis association with CpGs within 1 
Mb distance (see Fig. 4). There were 46 genetic risk vari-
ants (47.9% of all variants tested) that showed trans asso-
ciations outside of their 1-Mb window and 33 variants 
(34.4% of all variants tested) that had trans associations 
with CpGs located on at least one different chromosome.

Five genetic loci showed associations with methyla-
tion levels at CpGs located in more than eight of the dis-
tal autosomal chromosomes (see Fig.  4). Genes close to 
these genetic risk variants were involved in, for exam-
ple, nucleic acid transcription activities, which includes 
nucleic acid binding (ZNF179 and ESR2), mitotic assem-
bly (MAD1L1) and encoding proteins that colocalise with 
transcription factors (RERE). Regional association plots 

Fig. 4 Heatmap showing the SNP-CpG mapping. Each row and column represents a CpG probe and depression risk locus, respectively. Those 
tests that are not significant after Bonferroni correction are left blank. For those significant associations, a darker cell represents a higher −
log10-transformed p-value. All CpG probes and depression risk loci were categorised based on which chromosome (CHR) they locate. Within each 
chromosome, probes and SNPs are aligned from left to right or from bottom to top based on their genomic position
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showing genes within 1 Mb distance from the five genetic 
variants can be found in Additional file 1: Fig. S8.

Colocalisation analysis
We hypothesised that SNPs influencing risk for depres-
sion and those influencing DNAm would be shared. 
Colocalisation analysis, however, indicated that there 
was no strong evidence  (PP4>0.8,  PP4/PP3 > 5) [55] for 
shared genetic factors between loci for depression and 
DNAm. The posterior probability for one region was 
supportive of a suggestive colocalised association signal 
for both depression and DNAm in that region  (PP4 = 
0.71) [56]. Within this region, the SNP with the highest 
posterior probability of being shared SNPs for the two 
traits (66%) was rs73163796, which colocalised with 
genetic variation influencing a smoking-associated 
CpG site, cg15099418 [57]. Additional file  3 contains 
results for all 102 regions investigated in colocalisation 
analysis.

MR
Discovery MR: causal effect of DNAm on depression using 
GoDMC data
Eight probes: cg06552810, cg07519229, cg14159747, 
cg14345882, cg14844989, cg19624444, cg23275840 and 
cg26647111, showed significant causal effect using the 
IVW and WM methods (absolute βIVW ranged from 
0.017 to 0.040, pFDR ranged from 4.48 ×  10−3to 3.44 × 
 10−8, absolute βWM ranged from 0.012 to 0.038, pFDR 
ranged from 1.75 ×  10−3 to 2.07 ×  10−16, pFDR for Q-sta-
tistics ranged from 0.071 to 8.74 ×  10−7). Effect sizes for 
the above probes were consistent between the IVW and 
WM methods. No significant causal effect on depres-
sion was found using the MR-Egger method for these 
probes (βMR-Egger ranged from 0.004 to 0.034, pFDR ranged 
from 0.703 to 0.319). However, the direction of effects 
remained the same with the IVW and WM methods 
and the test for MR-Egger intercept showed no evidence 
of horizontal pleiotropy (pFDR for MR-Egger intercept 
ranged from 0.797 to 0.267).

Results are also shown in Fig.  5 and Additional file  1: 
Fig. S9 and Table S6.

Replication MR: causal effect of DNAm on depression using 
GS data
A replication MR was conducted to look at the causal 
effect of DNAm on depression, using an independent set 
of mQTL data. All of the potentially causal MR effects 
of DNAm to depression found in the discovery analy-
sis showed consistent direction in the replication analy-
sis and across all three MR methods. For all three MR 
methods, the effect sizes were highly correlated between 

discovery and replication analyses (r ranged from 0.641 
to 0.953). Four out of eight significant effects found in 
the discovery MR analysis were significant for all three 
MR methods in the replication analyses (absolute βIVW 
ranged from 0.048 to 0.199, pIVW-FDR ranged from 1.20 
×  10−7 to 1.15 ×  10−26; absolute βWM ranged from 0.032 
to 0.192, pWM-FDR ranged from 3.53 ×  10−3 to 7.45 × 
 10−30). Three other probes (cg06552810, cg14844989 
and cg26647111) showed significant causal effect at IVW 
and WM MR methods (see statistics in Additional file 1: 
Table  S3). MR-Egger intercepts were not significantly 
deviated from 0 for all replication MR (pFDR > 0.61), and 
thus showed no evidence of horizontal pleiotropy. See 
Additional file 1: Table S7.

Multi‑variable MR: independent causal effect of DNAm 
on depression using GS data
We next tested for causal associations between DNAm at 
multiple CpGs from the discovery analysis to depression. 
The significant probes were entered into the two-sample 
MR analysis simultaneously, to identify the set of inde-
pendent CpGs that showed the strongest and independent 
casual associations with depression using the IVW method. 
Three probes showed putatively causal effects when all 
CpGs were considered simultaneously. They are as follows: 
cg23275840 on chromosome 4, cg14345882 on chromo-
some 6 and cg14844989 on chromosome 11 (absolute βIVW 
ranged from 0.129 to 3.028, pFDR ranged from 0.025 to 2.21 
×  10−7, see Additional file 1: Fig. S10 and Table S8). Genes 
annotated with these CpG probes are BTN3A2 and CORIN. 
These genes are involved in signalling receptor binding in 
the brain and in hormonal regulation.

MR: causal effects of depression liability on DNA methylation
MR provided no consistent evidence of a causal effect of 
depression liability on DNA methylation. The effects to 
cg09256413 and cg16996682 were significant for the IVW 
method (absolute βIVW ranged from 0.066 to 0.086, pFDR 
ranged from 0.028 to 0.003), but the effects were not sig-
nificant for neither WM nor MR-Egger methods (abso-
lute βWM/MR-Egger ranged from 0.003 to 0.251, pFDR>0.12). 
The effect from depression to cg14345882 was significant 
for both IVW and MR-Egger (βIVW/MR-Egger − 0.004 to − 
6.905, pFDR < 8.85 ×  10−5), but the effect was not signifi-
cant for the WM method (βWM = 0.004, pFDR = 0.882) 
with an opposite direction to the other two methods, 
and there was strong evidence for heterogeneity between 
genetic instruments (p for Q-statistics <1 ×  10−328). All 
other effects were not significant after FDR correction 
(pFDR > 0.074).

See Fig. 5, Additional file 1: Fig. S11 and Table S9.
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Discussion
PRS for depression showed widespread associations with 
peripheral blood DNAm across the methylome in Gener-
ation Scotland: Scottish Family Health Study Cohort (GS, 
N = 8898). DNAm associations showed highly consist-
ent results in the replication analysis in adults (N = 2049, 
rβ = 0.79) and in adolescents (N = 423, rβ = 0.81). Sig-
nificant CpG probes are enriched in immunological pro-
cesses in the human leukocyte antigen (HLA) system and 
neuronal maturation and development. Influence from 
the genetic risk of depression was both local (cis) and dis-
tal (trans). Five genetic risk loci showed widespread trans 
effect across more than eight of the autosomal chromo-
somes. Finally, using Mendelian randomisation (MR), we 
found evidence of a mutually causal effect of DNAm on 
liability to depression at CpG probes associated with PRS 
for depression.

The probes associated with genetic risk variants for 
depression map to genes including TRIM27, BTN3A2 
and HIST1H2AI. These HLA-related genes have been 
widely found associated with psychiatric conditions 
such as schizophrenia and bipolar disorder [6]. Other 
genes that located outside of the MHC region, such as 
MAD1L1, RERE, SORCS3 and ANKK1, are associated 
with neuronal development and guidance of neuronal 
growth [58], transcriptional processes [59, 60] and other 
risk factors for depression, for example, obesity, smoking 
and abnormal physical development [61].

DNAm is associated with both genetic and environ-
mental factors that collectively contribute to disease 
liability [62]. The present study focuses on investigating 
the associations between genetic risk of depression and 
DNAm, as well as the mechanism of genetic risk that 
penetrates through DNAm to disease liability. To our 
knowledge, this is the first such investigation using PRS 
for depression, which is likely to be due to a lack of sta-
tistical power within previously available samples. How-
ever, small-scale twin studies, although using a different 
design, have shown consistent findings with the pre-
sent study. For example, differential methylation in CpG 
probes mapping near MAD1L1 were found in affected 
depression patients compared with their unaffected 
monozygotic twins [63]. The finding was replicated later 
in a large-scale study of 724 twin pairs [64]. Compared to 
the previous and smaller-scale twin studies that showed 
small numbers of findings, the present study showed 
novel associations implicating genes involved in brain 
maturation and synaptic processing. This may indicate a 
broader mechanistic and potentially mediating role for 
DNAm in conferring the downstream effects of genetic 
risk. Our findings also highlight that DNAm may facili-
tate the functional interpretation of genetic risk loci.

MR provided evidence for a causal effect of methyla-
tion levels at CpG probes associated with lead SNPs on 
depression. After controlling for functional pleiotropy 
shared between CpG probes, three probes showed an 

Fig. 5 Mendelian randomisation (MR) analysis on DNAm and depression using data from the Genetics of DNA Methylation Consortium (GoDMC). 
a Discovery MR testing causal effect of DNAm to depression using GoDMC data. b Replication MR testing effect of DNAm using GS data to 
depression. c MR of reversed directionality testing the causal effect from depression to DNAm. X-axes represent p-values for MR analyses. Y-axes 
represent the individual tests conducted
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independent causal effect on depression. Genes anno-
tated with these independent probes are associated with 
phenotypes such as lower total brain volume [65], higher 
C-reactive protein [66], obesity [67] and adverse lifestyle 
factors such as smoking [68], which are implicated in both 
patients with depression and those who have been exposed 
to early environmental risks, such as childhood trauma 
[69]. These phenotypes have also been shown to have 
causal effects on depression in previous MR studies [4, 5].

Statistical evidence was stronger for the causal effect 
from DNAm to depression compared to the opposite 
direction, despite that more genetic variants were used 
for the reversed causal effect, and thus statistical power 
was greater (NSNP for DNAm to depression ranged from 
4 to 22 and NSNP for depression to DNAm was 122). The 
highly consistent methylome-wide associations found 
across adults and adolescents may indicate that early 
genetic influence on DNAm result in a predominantly 
directional effect from DNAm to depression [70].

The present study utilises large samples with replication 
analyses yielding highly consistent results. One limitation 
for interpreting the current findings is that DNAm data 
was collected from blood samples that may not reflect 
the most relevant cell types in depression. Nevertheless, 
studies have shown that the genetic drivers of DNAm 
have similar effects across multiple cell types [13, 71]. The 
greater accessibility of DNAm from whole blood also has 
clear sample size and other methodological advantages 
compared to measures obtained from neural tissue post-
mortem, and it is more likely that these measures could be 
used in future clinical applications. Future studies could 
further expand the scope by including other cell and tissue 
types. In addition, findings from the present study were 
supported by European samples. Future studies regarding 
other ancestry groups are necessary for identifying more 
generalisable genetic-epigenetic associations.

Conclusions
In the current study, we demonstrate that genome-
wide genetic risk variants for depression show wide-
spread methylome-wide DNAm associations both 
individually and when combined in a risk score. These 
changes implicate antigen processing and immune sys-
tem responses and may provide clues to the underlying 
mechanisms of depression.
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