
Peterson et al. Genome Medicine           (2023) 15:18  
https://doi.org/10.1186/s13073-023-01166-7

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Genome Medicine

Automated prioritization of sick newborns 
for whole genome sequencing using clinical 
natural language processing and machine 
learning
Bennet Peterson1, Edgar Javier Hernandez2, Charlotte Hobbs3, Sabrina Malone Jenkins4, Barry Moore2, 
Edwin Rosales3, Samuel Zoucha4, Erica Sanford3,5, Matthew N. Bainbridge3, Erwin Frise6, Albert Oriol7, 
Luca Brunelli4, Stephen F. Kingsmore3 and Mark Yandell2*   

Abstract 

Background Rapidly and efficiently identifying critically ill infants for whole genome sequencing (WGS) is a costly 
and challenging task currently performed by scarce, highly trained experts and is a major bottleneck for application of 
WGS in the NICU. There is a dire need for automated means to prioritize patients for WGS.

Methods Institutional databases of electronic health records (EHRs) are logical starting points for identifying patients 
with undiagnosed Mendelian diseases. We have developed automated means to prioritize patients for rapid and 
whole genome sequencing (rWGS and WGS) directly from clinical notes. Our approach combines a clinical natural 
language processing (CNLP) workflow with a machine learning-based prioritization tool named Mendelian Phenotype 
Search Engine (MPSE).

Results MPSE accurately and robustly identified NICU patients selected for WGS by clinical experts from Rady 
Children’s Hospital in San Diego (AUC 0.86) and the University of Utah (AUC 0.85). In addition to effectively identify-
ing patients for WGS, MPSE scores also strongly prioritize diagnostic cases over non-diagnostic cases, with projected 
diagnostic yields exceeding 50% throughout the first and second quartiles of score-ranked patients.

Conclusions Our results indicate that an automated pipeline for selecting acutely ill infants in neonatal intensive 
care units (NICU) for WGS can meet or exceed diagnostic yields obtained through current selection procedures, which 
require time-consuming manual review of clinical notes and histories by specialized personnel.
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Background
It is estimated that 7 million infants are born worldwide 
with genetic disorders each year [1]. Admission to the 
neonatal intensive care unit (NICU) often provides the 
first opportunity for their diagnosis and treatment. Dis-
ease can progress rapidly in acutely ill infants, neces-
sitating timely diagnosis in the hope of implementing 
personalized interventions that can decrease morbid-
ity and mortality. Thus, rapid whole genome sequencing 
(rWGS) is increasingly being used as a first line diagnos-
tic test [2, 3].

Current estimates suggest that around 18% of neonates 
admitted to the NICU harbor a Mendelian disease, and 
rWGS diagnostic rates in this population are over 35% 
[4, 5]. Rapidly and efficiently identifying infants for WGS 
is costly and challenging, as large NICUs often see more 
than 1000 admissions per year, and neonatal clinical his-
tories evolve rapidly from the time of admission. Previ-
ous studies of rWGS in the NICU used inclusion criteria 
that limited enrollment to the first 96 h [3, 5] or 7 days [6] 
of admission or development of an abnormal response 
to standard therapy for an underlying condition, but 
these restrictions may miss the earliest opportunity to 
sequence a neonate. Minute-to-minute changes in labo-
ratory results, diagnostic imaging, and clinical trajectory 
suggest that constant automated vigilance, as opposed 
to one or two isolated points in time, may be optimal to 
identify infants most likely to benefit from WGS. Done 
manually, this would be prohibitively time-consuming 
and costly. Automated means to prioritize patients for 
WGS are thus badly needed. Indeed, this is the principal 
motivation for the work described here.

Phenotype descriptions are crucial components of the 
WGS diagnostic process, and many tools exist for com-
bining phenotypic terms with WGS data to prioritize 
disease-causing variants [7–10]. Current best practice is 
to describe patient phenotypes using Human Phenotype 
Ontology (HPO) terms [11]. These descriptions usually 
take the form of machine-readable phenotype term lists, 
an important prerequisite for automated analyses.

Care providers emphasize the importance of clinical 
notes for informing disease diagnosis, and HPO-based 
phenotype descriptions are generally compiled through 
manual review of these free text documents. Unfortu-
nately, this is a time-consuming process that requires 
highly trained experts and is a major bottleneck for appli-
cation of WGS in the NICU [12, 13].

Natural language processing (NLP) is a class of com-
putational methods for generating structured data from 
unstructured free text. Recent work has begun to explore 
the utility of using clinical natural language processing 
technologies (CNLP) to automatically generate descrip-
tions directly from clinical notes, with several groups 

demonstrating that rWGS diagnosis rates using CNLP 
derived descriptions can equal or exceed those obtained 
using manually compiled ones [12, 14]. This is a signifi-
cant step towards scalability and automation. The ability 
to automatically survey all NICU admissions daily, for 
example, would mean that rWGS candidates could be 
ranked as part of an ever-evolving triage process based 
upon the latest contents of their EHRs.

Although the use of HPO descriptions for WGS-
based Mendelian diagnosis is now established prac-
tice [7–10, 14], the benefit of prioritization of patients 
for sequencing based on HPO terms is not known. To 
explore the feasibility of such an approach, we have 
combined a CNLP workflow with a machine learning-
based prioritization tool we call the Mendelian Phe-
notype Search Engine (MPSE) [15]. MPSE employs 
HPO-based phenotype descriptions derived from 
patient EHRs to compute a score. This score can be 
used to determine the likelihood that a Mendelian con-
dition is contributing to a patient’s clinical presentation 
and, thus, can be used for the prioritization of patients 
for WGS. To demonstrate feasibility, we used a highly 
curated clinical dataset consisting of 1049 patients 
admitted to a level IV NICU (the highest level of acuity 
for a NICU) and their clinic notes; 293 of these chil-
dren had rWGS, with 85 receiving a diagnosis. Our 
cross validated results indicate that an entirely auto-
mated CNLP/MPSE-based selection process for rWGS 
can obtain diagnostic rates equaling or exceeding those 
obtained though manual review and selection as per 
current best practice. A second independent replica-
tion study at the University of Utah provides additional 
support for these conclusions, demonstrating that 
MPSE operates effectively at both institutions.

Methods
Datasets
Our clinical dataset consisted of 293 probands who 
underwent rWGS at Rady Children’s Hospital in San 
Diego (RCHSD), 85 of which received a molecular diag-
nosis of Mendelian disorder. These cases were a sam-
ple of convenience drawn from symptomatic children 
enrolled in previously published studies that examined 
the diagnostic rate, time to diagnosis, clinical utility, out-
comes, and health care utilization of rWGS between 26 
July 2016 and 25 September 2018 at RCHSD (ClinicalTri-
als.gov identifiers: NCT03211039, NCT02917460, and 
NCT03385876) [2, 5, 12, 16, 17]. All subjects had a symp-
tomatic illness of unknown etiology in which a genetic 
disorder was suspected. The diagnosed individuals repre-
sent a real-world population comprised of different Men-
delian conditions resulting from diverse modes of disease 
inheritance and disease-causing genotypes [3, 14]. To this 
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cohort, we added every NICU admission at RCHSD in 
the year 2018. The 756 additional patients and their clinic 
notes provide a diversity of phenotypes not necessarily 
associated with Mendelian diseases. In total, the RCHSD 
dataset consisted of 1049 individuals.

A second independent dataset of 35 probands that were 
sequenced as part of the University of Utah NeoSeq pro-
gram [18] and 2930 randomly selected (as per IRB; see 
Declarations) University of Utah level III NICU patients 
from 2010 to 2022 was retrospectively analyzed to evalu-
ate the utility of the RCHSD training data for prioritizing 
probands for rWGS at a second institution. Additional 
file 1: Table S1 and Table S2 show clinical diagnosis fre-
quencies for sequenced RCHSD and Utah NeoSeq cases 
broken down by positive/negative rWGS diagnostic sta-
tus. These tables highlight the variety and complexity 
of Mendelian disease phenotypes found in upper level 
NICUs. They also show a lack of overrepresented disease 
and phenotype categories among cases or controls. This 
lack of recurrent signal is consistent with the fact that 
there are over 7000 known Mendelian diseases, many of 
which have highly variable phenotypes. These facts led 
us to pursue a general, rather than disease-by-disease 
approach for prioritizing probands for rWGS.

Phenotype descriptions
Highly curated, manually created HPO-based phenotype 
descriptions were provided for each of the 293 RCHSD 
and 35 University of Utah WGS cases, as described in 
NSIGHT1 [3]. Corresponding CNLP-derived pheno-
type descriptions were generated for all 1049 RCHSD 
probands and 2965 University of Utah probands by NLP 
analysis of clinical notes using CLiX ENRICH (Clini-
think, Alpharetta, GA) [14, 19]. Clinical notes dated 
post-rWGS were excluded from analysis to prevent pos-
sible confounding from knowledge of sequencing results. 
CLiX was run in default mode with “acronyms on.”

MPSE
The Mendelian phenotype Search Engine (MPSE) 
employs Human Phenotype Ontology (HPO)-based 
descriptions to prioritize patients, determining the like-
lihood that a Mendelian condition underlies a patient’s 
phenotype, based upon a training dataset. MPSE does 
not attempt to determine which Mendelian disease 
might underlie the patient’s phenotype, rather it seeks 
to categorize patients as positive or negative for Men-
delian disease. MPSE employs a simple, well-established 
approach: Naïve Bayes [20]. Briefy, MPSE uses the differ-
ences in HPO term frequencies between a collection of 
cases and controls to score each proband. The algorithm 
employs the BernoulliNB package from scikit-learn, a 
general-purpose machine learning library written in the 

Python programming language [21]. We also discovered 
that the number of terms in a proband’s HPO descrip-
tion correlated modestly with age  (r2 = 0.0725); accord-
ingly, we used a linear regression to control for this effect. 
Although one can envision many algorithmic approaches 
to classification other than Naïve Bayes, e.g., support vec-
tor machines or neural nets, for this proof of principle 
study, we sought to demonstrate feasibility and provide 
baseline performance metrics. Future work will explore 
more sophisticated approaches to data modeling.

Cross validation
We validated our results using leave-one-out cross 
validation (i.e., k-fold cross validation, with k = 1) [22]. 
More specifically, using the RCHSD data, we created 
1049 different training datasets—each differing by a sin-
gle proband—scoring each proband against a (different) 
version of MPSE, trained using a data subset that did 
not contain the proband being scored. All performance 
metrics were computed using this cross-validation 
scheme. Using the cross-validated model derived from 
the RCHSD dataset, we then carried out an independent 
replication study using the clinical notes of 2965 Univer-
sity of Utah level III NICU admits. This dataset includes 
35 WGS probands sequenced to date by the University of 
Utah NeoSeq program [18].

Results and discussion
Previous work [10, 12, 23], including our own [14], has 
demonstrated the utility of HPO-based, CNLP-derived 
phenotype descriptions for post sequencing diagnos-
tic applications. Here, we explore the feasibility of using 
CNLP phenotype descriptions, manufactured using the 
same NLP protocols, for triaging patients for WGS. To 
do so, we combined a natural language processing (NLP) 
workflow based around the commercially available CLiX 
tool [19] with an ML-based prioritization tool we call 
MPSE, the Mendelian Phenotype Search Engine.

MPSE (see the “Methods” section) employs the Human 
Phenotype Ontology (HPO) [11] to prioritize patients. 
The a priori likelihood that a patient has a Mendelian 
condition is a computed probability based on the exist-
ence of HPO terms in the patient’s phenotype that are 
similar to those patients who previously had WGS. To 
investigate feasibility, we utilized curated RCHSD clini-
cal data: 1049 level IV NICU admissions and their clini-
cal notes. Of these 1049 patients, 293 had rWGS and 85 
received a molecular diagnosis. We validated the results 
presented below using leave-one-out cross validation; 
see the “Methods” section for details. To examine the 
broader applicability of the RCHSD training data to 
other NICUs, we also carried out a second independent 
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replication study using the clinical notes of 2965 patients 
from the University of Utah level III NICU.

Automated generation of HPO terms
We obtained HPO phenotype descriptions for all 
probands from clinical notes using Clinithink, a third 
party NLP tool [19]. Automatically generating phe-
notypic descriptions via NLP is a major strength, as it 
enables the creation of large and dynamic pools of HPO-
based phenotype descriptions for downstream prioritiza-
tion activities.

Comparison of the CNLP descriptions to their cor-
responding manually compiled ones revealed notable 
differences with regards to HPO term numbers and con-
tents. The CLiX generated descriptions for the RCHSD 
and NeoSeq cohorts had an average of 114.8 terms (min: 
3, median: 91, max: 1000) and 64.5 terms (min: 1, median: 
58, max: 300) respectively, whereas the corresponding 
manually created descriptions averaged 4.1 terms (min: 
1, median: 3, max: 24) and 9.5 terms (min: 3, median: 9, 
max: 16) respectively.

Prioritizing patients
We first sought to evaluate how effective our CNLP/
MPSE pipeline was at prioritizing patients for WGS. 
In other words, did the children originally selected for 

WGS by physicians have higher MPSE scores than those 
who were not selected? Figure  1 demonstrates that this 
is the case. As can be seen, the distributions of MPSE 
raw scores for the RCHSD and Utah WGS-selected 
children are well-separated from unsequenced ones. 
RCHSD sequenced cases had an average MPSE score of 
26.6 while unsequenced controls had an average score 
of − 31.7, statistically different by Student’s independent 
samples t-test (p < 2e−16). The difference in mean MPSE 
score between Utah sequenced cases (17.3) and unse-
quenced controls (-33.7) was also statistically different 
(p = 2e−12). The insert shows a receiver operator char-
acteristic (ROC) curve for the RCHSD data (AUC 0.86), 
indicating that MPSE can effectively prioritize probands 
for rWGS. The corresponding AUC for the Utah data 
was 0.85, essentially identical to the RCHSD result (ROC 
curve not shown). A possible clinical application scenario 
can be imagined where MPSE score cutoffs are used to 
prioritize patients for further review by physicians. For 
the RCHSD training cohort described here, for exam-
ple, taking only MPSE scores > 30 would prioritize 30% 
(89/293) of cases and 4% (31/756) of controls, while tak-
ing only MPSE scores > 90 would prioritize 14% (40/293) 
of cases and 0.8% (6/756) of controls. Anonymized MPSE 
scores for each patient in these cohorts are tabulated in 
Additional file 1: Tables S3 and S4.

Fig. 1 Automatically identifying probands with Mendelian phenotypes and prioritizing them for WGS using NLP-derived HPO phenotype 
descriptions. Distributions of MPSE raw scores for RCHSD sequenced (red) and RCHSD unsequenced (blue) probands. Score distributions for Utah 
NeoSeq (green) and Utah unsequenced probands (purple). Insert: Receiver operator characteristic (ROC) curve for RCHSD data. MPSE scores are -log 
likelihood ratios
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Cardinal phenotype terms
MPSE also provides means to identify, and highlight for 
expert review, those terms in a phenotype description 
that are most consistent with Mendelian disease. We 
refer to these terms as the proband’s cardinal phenotypes. 
Figure 2 shows a CNLP phenotype description as a word 
cloud, wherein font sizes have been scaled by their indi-
vidual contributions to the proband’s final MPSE score; 
those with the highest scores are shown in red; these are 
the proband’s MPSE cardinal phenotypes. These views of 
the patient’s phenotype description are designed to speed 
physician review and improve explainability.

MPSE diagnostic rates
To estimate MPSE-driven diagnostic rates, RCHSD and 
University of Utah sequenced probands were scored 
using leave-one-out cross validation, as described in 
the “Methods” section. The diagnostic fraction for these 
cohorts was 29% (85/293) and 43% (15/35), respectively. 
It should be borne in mind that this RCHSD diagnostic 

rate is for the specific dataset under analysis. It is not the 
RCHSD institutional WGS diagnostic rate. To facilitate 
comparison between these groups, we randomly re-sam-
pled the larger RCHSD dataset so that it too had a 43% 
(85/198) diagnostic rate.

Figure  3 shows projected diagnostic rates for these 
cohorts as a function of their MPSE scores. The nega-
tive slopes of the red, green, and blue curves indicate 
that when using CNLP, higher MPSE scores are asso-
ciated with diagnosed probands at both institutions. 
For instance, the top 25% of probands ranked on their 
MPSE scores from CNLP-generated phenotypes show 
very high diagnostic rates, approaching 100% for the 
highest MPSE scores. Moreover, for the CNLP datasets, 
diagnostic rates remain at or above the cohort diag-
nostic fraction of 43% at every MPSE score percentile. 
In contrast, the MPSE scores calculated from manu-
ally curated phenotypes (gray curve) are at best weakly 
associated with diagnostic status. This is not a result 
of inferiority of the physician-generated phenotypes; 

Fig. 2 An automatically generated HPO-based phenotype description scored by MPSE. In this word-cloud, size and color are proportional to each 
HPO term’s contribution to the proband’s final MPSE prioritization score. Previously diagnosed by RCHSD using WGS, this child is heterozygous for a 
large deletion on the X chromosome which spans the PCDH19 gene, causative for female-restricted X-linked epileptic encephalopathy
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rather, it is due to the fact that MPSE was trained using 
deep CNLP-derived phenotype data; recall that CNLP 
compared to manual review resulted in 64.5 vs 9.5 HPO 
terms/proband, respectively. Collectively, these results 
indicate that an MPSE-based prioritization pipeline in 
conjunction with manual review could increase diag-
nostic rates above those obtained solely through expert 
manual case-review.

Impact of note types
Both RCHSD and the University of Utah limit manual 
review of clinical notes to a subset of note types deemed 
most informative by their institution’s expert reviewers. 
This is done to speed review by avoiding less informa-
tive and redundant note types. A potential advantage of 
CNLP is that volume is no longer an issue, and every note 
can be processed. We thus sought to evaluate the utility 
of processing all notes for every proband. The results of 
this experiment are also shown in Fig. 3, where the blue 
and green curves summarize diagnostic enrichment as 
a function of MPSE score and note volumes. AUC for 
the top 50% of high scoring probands using all clinical 
notes vs. using only the selected note types is quite simi-
lar—62% and 65%, respectively. Thus, for the Utah data-
set, using all available notes for every proband does not 
negatively impact diagnostic rates.

Impact of patient populations
It is worth noting that underlying NICU populations 
differ between RCHSD and the University of Utah. 
Whereas RCHSD is a level IV NICU, the University of 
Utah operates a level III NICU, with the most severely 
ill patients transferred to Intermountain’s Primary Chil-
dren’s neighboring level IV facility. Thus, patients in the 
Utah dataset are likely to have fewer conditions requir-
ing surgical interventions and a higher level of intensive 
care. Despite being trained using the RCHSD level IV 
data, Fig.  1 makes it clear that the lesser acuity of level 
III patients compared to level IV patients did not inter-
fere with MPSE’s ability to identify suitable candidates 
for sequencing nor did it negatively impact the correla-
tion between MPSE score and Mendelian diagnostic rates 
(Fig.  3). This finding suggests MPSE’s robustness to dif-
ferences in NICU patient populations.

Conclusions
We have demonstrated the feasibility of prioritiz-
ing individuals for WGS, using automated means, 
and that supplementing clinical review with this auto-
mated process could meet or exceed diagnostic yields 
obtained solely through manual review of clinical 
notes. More sophisticated machine learning techniques 
might further improve the accuracy of prioritization. 

Fig. 3 MPSE projected diagnostic rates. Higher MPSE scores correspond to increased probability of diagnosis, and projected diagnostic rates 
remain at or above the cohort diagnostic fraction of 43% at every MPSE score percentile
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Neural and Bayesian networks and random forest-
based approaches generally outperform naïve Bayes. 
Likewise, addition of other metadata such as provider 
billing codes, medication histories, ancestry, and socio-
economic indicators might still further improve perfor-
mance. Nevertheless, even without such enhancements, 
our CNLP/MPSE workflow prioritized patients for 
rWGS with relatively high accuracy (AUC = 0.86), with 
maximal projected diagnostic yields highly enriched 
for the top scoring quartile. These results bode well for 
future improved versions of the pipeline.

The ability of MPSE to accurately distinguish 
sequenced from unsequenced probands at both RCHSD 
and the University of Utah demonstrates the generaliz-
ability of the RCHSD training data, at least between two 
leading research institutions. The fact that MPSE was 
trained using RCHSD’s level IV NICU patients and rep-
licated in Utah’s level III NICU also provides some indi-
cation of MPSE’s robustness and applicability. Broader 
generalization, however, remains to be proven. Gener-
alization is important because as WGS-based diagnosis 
becomes more widespread, and patients considered for 
testing become more diverse, clinical cultures and insti-
tutional differences in clinical note taking might render 
the parameters derived from the RCHSD training dataset 
less effective at some sites. In this regard, the ability of the 
pipeline to consume all notes for every proband is clearly 
an advantage, as it means adopters need not establish 
cross institutional equivalents in note types; instead, they 
can simply harvest every available clinical note for every 
proband.

More broadly, generalizability of training data must be 
distinguished from generalizability of the CNLP/MPSE 
workflow. The CNLP portion of the pipeline can be used 
to create a similar dataset for any institution engaged 
in WGS-based diagnosis, and, because it is a bayesian 
classifier, retraining MPSE using these data is straight-
forward. While we chose to use the CLiX CNLP tool, 
any NLP software able to produce high-fidelity HPO-
based phenotype descriptions could be used upstream 
of MPSE. Going forward, we will explore the utility of 
retraining and combining models derived from multi-
institutional datasets to further improve performance. 
Recent work has also demonstrated the utility of WGS 
for pediatric intensive care unit (PICU) patients, where 
genome-based diagnoses have ended years-long diagnos-
tic odysseys [24]. The PICU generally has a more heter-
ogeneous patient population than the NICU, because it 
includes patients from less than 12 months through 18 
years of age, and a broader array of medical conditions 
such as cancer, organ transplant, and trauma. Thus, an 
automated tool such as MPSE that could help identify 
the relatively less common percentage of PICU patients 

with underlying Mendelian disorders could be especially 
useful for this population. These facts suggest that large 
medical systems may have other, non-pediatric patients 
who would also benefit from WGS—if they could be 
found. MPSE could in principle be used to search elec-
tronic medical record databases for such patients. Out-
patient pediatric specialty clinics might also benefit from 
using this type of automated tool.

Re-analysis of previously negative WGS cases is also 
increasingly an issue. The last decade has witnessed a 
huge increase in numbers of genes and variants associ-
ated with Mendelian conditions [25, 26], with 250 newly 
described disorders annually, suggesting that many indi-
viduals previously undiagnosed by gene panels, WES, 
and WGS, could benefit from reanalysis in light of our 
ever-expanding knowledge of genetic disease. Recent 
work has validated this hypothesis [27, 28]. However, 
limited reimbursement and resources mean that, to be 
cost-effective, only those patients with the highest likeli-
hood of diagnosis are currently reanalyzed using WGS 
technologies. Once again, automated approaches such 
as the one described here might provide a means to 
locate and prioritize these patients for reanalysis. High 
MPSE scores might also be used to strengthen argu-
ments for reimbursement. More generally, we foresee 
MPSE as an electronic decision support tool for facili-
tating the patient review process.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13073- 023- 01166-7.

Additional file 1: Table S1. Clinical diagnosis frequencies for sequenced 
RCHSD cases broken down by positive/negative molecular diagnosis 
status. Table S2. Primary clinical diagnoses for sequenced Utah NeoSeq 
cases broken down by positive/negative molecular diagnosis status. 
Table S3. Individual MPSE scores for RCHSD cohort patients. Table S4. 
Individual MPSE scores for Utah NeoSeq cohort patients.

Acknowledgements
We thank Aaron Quinlan and Gabor Marth for many helpful discussions in the 
early stages of the project.

Authors’ contributions
MY, BP, CH, and SK wrote the manuscript. BP, JH MY, CH, SK, SMJ, and LB 
designed the study and analysis strategy. MY, BP, and JH developed the MPSE 
algorithm. EF, CH, SMB, and MY guided requirements. MM, BP, JH, SZ, and MY 
performed the data analysis. EJ, ESK, and MNB compiled cases and clinical 
evidence. CH, EF, and EJ provided feedback on features and development. AO, 
SMJ, LB, and SK sponsored the project and provided helpful discussions and 
edits of the manuscript. The authors read and approved the final manuscript.

Funding
The preparation of this manuscript was supported by a grant from the 
Conrad Prebys Foundation and by NIH grants UL1TR002550 from NCATS to 
E.J. Topol (with sub-award to Rady Children’s Institute for Genomic Medicine). 
The Utah NeoSeq Project was funded by the Center for Genomic Medicine 
at the University of Utah Health, ARUP Laboratories, the Ben B. and Iris M. 
Margolis Foundation, the R. Harold Burton Foundation, and the Mark Miller 
Foundation. This work utilized resources and support from the Center for 

https://doi.org/10.1186/s13073-023-01166-7
https://doi.org/10.1186/s13073-023-01166-7


Page 8 of 9Peterson et al. Genome Medicine           (2023) 15:18 

High Performance Computing at the University of Utah. The computational 
resources used were partially funded by the NIH Shared Instrumentation grant 
1S10OD021644-01A1.

Availability of data and materials
Due to patient privacy, data sharing consent, and HIPAA regulations, the raw 
data used in this study cannot be submitted to publicly available databases. 
However, anonymized output from MPSE for all patients reported here are 
tabulated in Additional file 1: Tables S3 and S4. MPSE source code, documen-
tation, and synthetic datasets are available on GitHub (https:// github. com/ 
Yande ll- Lab/ MPSE) [15]. No new WGS data are presented in this study.

Declarations

Ethics approval and consent to participate
The need for Institutional Review Board Approval at Rady Children’s Hospital 
for the current study was waived as all data used from this project had 
previously been generated as part of IRB approved studies and none of the 
results reported in this manuscript can be used to identify individual patients. 
The studies from which cases were derived were previously approved by 
the Institutional Review Boards of Rady Children’s Hospital. The University of 
Utah Institutional Review Board approved the use of human subjects for this 
research, under a waiver for the requirement to obtain informed consent.

Consent for publication
Not applicable. All patient data presented is de-identified.

Competing interests
EF is an employee of Fabric Genomics Inc.. MY is a consultant to Fabric 
Genomics Inc., which has a co-marketing agreement with Clinithink Inc. BM 
and JH have received consulting fees and stock grants from Fabric Genomics 
Inc. The remaining authors declare that they have no competing interests.

Author details
1 Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, 
USA. 2 Department of Human Genetics, Utah Center for Genetic Discov-
ery, University of Utah, Salt Lake City, UT, USA. 3 Rady Children’s Institute 
for Genomic Medicine, San Diego, CA, USA. 4 Division of Neonatology, Depart-
ment of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, 
USA. 5 Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, 
USA. 6 Fabric Genomics Inc., Oakland, CA, USA. 7 Rady Children’s Hospital, San 
Diego, CA, USA. 

Received: 25 August 2022   Accepted: 27 February 2023

References
 1. Church G. Compelling Reasons for repairing human germlines. N Engl J 

Med. 2017;377(20):1909–11. https:// doi. org/ 10. 1056/ NEJMp 17103 70.
 2. Farnaes L, Hildreth A, Sweeney NM, et al. Rapid whole-genome sequencing 

decreases infant morbidity and cost of hospitalization. NPJ Genomic Med. 
2018;3:10. https:// doi. org/ 10. 1038/ s41525- 018- 0049-4.

 3. Petrikin JE, Cakici JA, Clark MM, et al. The NSIGHT1-randomized controlled 
trial: rapid whole-genome sequencing for accelerated etiologic diagnosis 
in critically ill infants. NPJ Genomic Med. 2018;3:6. https:// doi. org/ 10. 1038/ 
s41525- 018- 0045-8.

 4. French CE, Delon I, Dolling H, et al. Whole genome sequencing reveals that 
genetic conditions are frequent in intensively ill children. Intensive Care 
Med. 2019;45(5):627–36. https:// doi. org/ 10. 1007/ s00134- 019- 05552-x.

 5. Kingsmore SF, Cakici JA, Clark MM, et al. A randomized, controlled trial of the 
analytic and diagnostic performance of singleton and trio, rapid genome 
and exome sequencing in ill infants. Am J Hum Genet. 2019;105(4):719–33. 
https:// doi. org/ 10. 1016/j. ajhg. 2019. 08. 009.

 6. Dimmock D, Caylor S, Waldman B, et al. Project Baby Bear: Rapid precision 
care incorporating rWGS in 5 California children’s hospitals demonstrates 
improved clinical outcomes and reduced costs of care. Am J Hum Genet. 
2021;108(7):1231–8. https:// doi. org/ 10. 1016/j. ajhg. 2021. 05. 008.

 7. Smedley D, Robinson PN. Phenotype-driven strategies for exome prioritiza-
tion of human Mendelian disease genes. Genome Med. 2015;7(1):81. 
https:// doi. org/ 10. 1186/ s13073- 015- 0199-2.

 8. Singleton MV, Guthery SL, Voelkerding KV, et al. Phevor combines multiple 
biomedical ontologies for accurate identification of disease-causing 
alleles in single individuals and small nuclear families. Am J Hum Genet. 
2014;94(4):599–610. https:// doi. org/ 10. 1016/j. ajhg. 2014. 03. 010.

 9. Cipriani V, Pontikos N, Arno G, et al. An improved phenotype-driven tool 
for rare mendelian variant prioritization: benchmarking exomiser on real 
patient whole-exome data. Genes. 2020;11(4). https:// doi. org/ 10. 3390/ 
genes 11040 460.

 10. Birgmeier J, Haeussler M, Deisseroth CA, et al. AMELIE speeds Mendelian 
diagnosis by matching patient phenotype and genotype to primary litera-
ture. Sci Transl Med. 2020;12(544):eaau9113. https:// doi. org/ 10. 1126/ scitr 
anslm ed. aau91 13.

 11. Groza T, Köhler S, Moldenhauer D, et al. The human phenotype ontol-
ogy: semantic unification of common and rare disease. Am J Hum Genet. 
2015;97(1):111–24. https:// doi. org/ 10. 1016/j. ajhg. 2015. 05. 020.

 12. Clark MM, Hildreth A, Batalov S, et al. Diagnosis of genetic diseases in 
seriously ill children by rapid whole-genome sequencing and automated 
phenotyping and interpretation. Sci Transl Med. 2019;11(489):eaat6177. 
https:// doi. org/ 10. 1126/ scitr anslm ed. aat61 77.

 13. James KN, Clark MM, Camp B, et al. Partially automated whole-genome 
sequencing reanalysis of previously undiagnosed pediatric patients can 
efficiently yield new diagnoses. NPJ Genomic Med. 2020;5(1):1–8. https:// 
doi. org/ 10. 1038/ s41525- 020- 00140-1.

 14. De La Vega FM, Chowdhury S, Moore B, et al. Artificial intelligence enables 
comprehensive genome interpretation and nomination of candidate 
diagnoses for rare genetic diseases. Genome Med. 2021;13(1):153. https:// 
doi. org/ 10. 1186/ s13073- 021- 00965-0.

 15. Peterson B, Hernandez J, Hobbs C, et al. Mendelian Phenotype Search 
Engine 2023. https:// github. com/ Yande ll- Lab/ MPSE

 16. Dimmock DP, Clark MM, Gaughran M, et al. An RCT of rapid genomic 
sequencing among seriously ill infants results in high clinical utility, 
changes in management, and low perceived harm. Am J Hum Genet. 
2020;107(5):942–52. https:// doi. org/ 10. 1016/j. ajhg. 2020. 10. 003.

 17. Sweeney NM, Nahas SA, Chowdhury S, et al. Rapid whole genome 
sequencing impacts care and resource utilization in infants with congenital 
heart disease. NPJ Genomic Med. 2021;6(1):29. https:// doi. org/ 10. 1038/ 
s41525- 021- 00192-x.

 18. Nicholas TJ, Al-Sweel N, Farrell A, et al. Comprehensive variant calling from 
whole-genome sequencing identifies a complex inversion that disrupts 
ZFPM2 in familial congenital diaphragmatic hernia. Mol Genet Genomic 
Med. 2022;10(4):e1888. https:// doi. org/ 10. 1002/ mgg3. 1888.

 19. Clinithink. Clinithink: AI Solutions Company, Clinical Data Solutions for 
Life Science & Healthcare. Accessed March 5, 2021. https:// www. clini 
think. com.

 20. Ng AY, Jordan MI. On discriminative vs. generative classifiers: a compari-
son of logistic regression and naive Bayes. Adv Neural Inf Process Syst. 
2001;14:8.

 21. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in 
Python. J Mach Learn Res. 2011;12(85):2825–30.

 22. Hastie T, Friedman J, Tibshirani R. The Elements of Statistical Learning. 1st ed. 
New York: Springer; 2001. https:// link. sprin ger. com/ book/ 10. 1007/ 978-0- 
387- 21606-5. Accessed 20 Apr 2022

 23. Deisseroth CA, Birgmeier J, Bodle EE, et al. ClinPhen extracts and prioritizes 
patient phenotypes directly from medical records to expedite genetic 
disease diagnosis. Genet Med. 2019;21(7):1585–93. https:// doi. org/ 10. 1038/ 
s41436- 018- 0381-1.

 24. Sanford EF, Clark MM, Farnaes L, et al. Rapid whole genome sequencing has 
clinical utility in children in the PICU. Pediatr Crit Care Med J Soc Crit Care 
Med World Fed Pediatr Intensive Crit Care Soc. 2019;20(11):1007–20. https:// 
doi. org/ 10. 1097/ PCC. 00000 00000 002056.

 25. Bamshad MJ, Nickerson DA, Chong JX. Mendelian gene discovery: fast and 
furious with no end in sight. Am J Hum Genet. 2019;105(3):448–55. https:// 
doi. org/ 10. 1016/j. ajhg. 2019. 07. 011.

 26. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.
org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of 
human genes and genetic disorders. Nucleic Acids Res. 2015;43(Database 
issue):D789–98. https:// doi. org/ 10. 1093/ nar/ gku12 05.

https://github.com/Yandell-Lab/MPSE
https://github.com/Yandell-Lab/MPSE
https://doi.org/10.1056/NEJMp1710370
https://doi.org/10.1038/s41525-018-0049-4
https://doi.org/10.1038/s41525-018-0045-8
https://doi.org/10.1038/s41525-018-0045-8
https://doi.org/10.1007/s00134-019-05552-x
https://doi.org/10.1016/j.ajhg.2019.08.009
https://doi.org/10.1016/j.ajhg.2021.05.008
https://doi.org/10.1186/s13073-015-0199-2
https://doi.org/10.1016/j.ajhg.2014.03.010
https://doi.org/10.3390/genes11040460
https://doi.org/10.3390/genes11040460
https://doi.org/10.1126/scitranslmed.aau9113
https://doi.org/10.1126/scitranslmed.aau9113
https://doi.org/10.1016/j.ajhg.2015.05.020
https://doi.org/10.1126/scitranslmed.aat6177
https://doi.org/10.1038/s41525-020-00140-1
https://doi.org/10.1038/s41525-020-00140-1
https://doi.org/10.1186/s13073-021-00965-0
https://doi.org/10.1186/s13073-021-00965-0
https://github.com/Yandell-Lab/MPSE
https://doi.org/10.1016/j.ajhg.2020.10.003
https://doi.org/10.1038/s41525-021-00192-x
https://doi.org/10.1038/s41525-021-00192-x
https://doi.org/10.1002/mgg3.1888
https://www.clinithink.com
https://www.clinithink.com
https://link.springer.com/book/10.1007/978-0-387-21606-5
https://link.springer.com/book/10.1007/978-0-387-21606-5
https://doi.org/10.1038/s41436-018-0381-1
https://doi.org/10.1038/s41436-018-0381-1
https://doi.org/10.1097/PCC.0000000000002056
https://doi.org/10.1097/PCC.0000000000002056
https://doi.org/10.1016/j.ajhg.2019.07.011
https://doi.org/10.1016/j.ajhg.2019.07.011
https://doi.org/10.1093/nar/gku1205


Page 9 of 9Peterson et al. Genome Medicine           (2023) 15:18  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 27. Liu P, Meng L, Normand EA, et al. Reanalysis of clinical exome sequencing 
data. N Engl J Med. 2019;380(25):2478–80. https:// doi. org/ 10. 1056/ NEJMc 
18120 33.

 28. Wenger AM, Guturu H, Bernstein JA, Bejerano G. Systematic reanalysis of 
clinical exome data yields additional diagnoses: implications for providers. 
Genet Med Off J Am Coll Med Genet. 2017;19(2):209–14. https:// doi. org/ 10. 
1038/ gim. 2016. 88.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1056/NEJMc1812033
https://doi.org/10.1056/NEJMc1812033
https://doi.org/10.1038/gim.2016.88
https://doi.org/10.1038/gim.2016.88

	Automated prioritization of sick newborns for whole genome sequencing using clinical natural language processing and machine learning
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Datasets
	Phenotype descriptions
	MPSE
	Cross validation

	Results and discussion
	Automated generation of HPO terms
	Prioritizing patients
	Cardinal phenotype terms
	MPSE diagnostic rates
	Impact of note types
	Impact of patient populations

	Conclusions
	Anchor 21
	Acknowledgements
	References


