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Abstract 

Background Deciphering variants of uncertain significance (VUS) represents a major diagnostic challenge, par-
tially due to the lack of easy-to-use and versatile cellular readouts that aid the interpretation of pathogenicity 
and pathophysiology. To address this challenge, we propose a high-throughput screening of cellular functionality 
through an imaging flow cytometry (IFC)-based platform.

Methods Six assays to evaluate autophagic-, lysosomal-, Golgi- health, mitochondrial function, ER stress, and NF-κβ 
activity were developed in fibroblasts. Assay sensitivity was verified with compounds (N = 5) and positive control 
patients (N = 6). Eight healthy controls and 20 individuals with VUS were screened.

Results All molecular compounds and positive controls showed significant changes on their cognate assays, 
confirming assay sensitivity. Simultaneous screening of positive control patients on all six assays revealed distinct 
phenotypic profiles. In addition, individuals with VUS(es) in well-known disease genes showed distinct – but similar—
phenotypic profiles compared to patients with pathogenic variants in the same gene.. For all individuals with VUSes 
in Genes of Uncertain Significance (GUS), we found one or more of six assays were significantly altered. Broadening 
the screening to an untargeted approach led to the identification of two clusters that allowed for the recognition 
of altered cell cycle dynamics and DNA damage repair defects. Experimental follow-up of the ‘DNA damage repair 
defect cluster’ led to the discovery of highly specific defects in top2cc release from double-strand DNA breaks in one 
of these individuals, harboring a VUS in the RAD54L2 gene.
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Conclusions Our high-throughput IFC-based platform simplifies the process of identifying VUS pathogenicity 
through six assays and allows for the recognition of useful pathophysiological markers that structure follow-up experi-
ments, thereby representing a novel valuable tool for precise functional diagnostics in genomics.

Keywords Imaging flow cytometry, Variant of uncertain significance, Precision genomic diagnostics, DNA damage 
repair defect, Genetic diseases, Metabolic disorders, High-throughput screening, Functional genomics

Background
The “genetics first” era has revolutionized the diagnos-
tics of genetic disease. In its slipstream, genetic screen-
ing has offered hints for yet uncharacterized disease 
entities: Variants of uncertain significance (VUS). For 
these variants, a connection to human disease has yet 
to be established. Elucidating the significance of a VUS 
is painstakingly complex, as it requires in silico, in vitro, 
in vivo, and expert human analyses. It may take years to 
study the functional impact of a genetic variant on RNA 
levels, protein levels, and cellular pathways, and at sig-
nificant costs, whereas the outcome of this endeavor is 
uncertain [1]. As a consequence, many VUS cases are left 
unexplored and unsolved. For patients, the absence of a 
diagnosis hampers prognosis prediction, family coun-
seling, and treatment allocation, resulting in significant 
morbidity and mortality [2].

A key aspect of elucidating VUS pathology is deter-
mining the impact of the variant on cellular function. 
Beyond the effects of a VUS on RNA- or protein stabil-
ity, it is imperative to assess which intracellular pathways 
are affected by the variant. However, it can be highly 
challenging to decide which of the numerous poten-
tially affected cellular pathways should be studied first, 
and which assays should be prioritized. Nonetheless, 
pathway-based functional insights are crucial to unravel 
disease pathophysiology in relation to the clinical phe-
notype and to develop effective therapeutic strategies. 
We hypothesized that screening for morphological and 
functional cellular changes could reduce the time that 
is needed to design effective functional assays that help 
delineate the main factor(s) at play. By narrowing down 
the cellular pathways that could be studied, a functional 
cellular screening could provide a starting point to allow 
a more targeted set-up of subsequent experimental fol-
low-up assays.

Microscopy has become increasingly popular to screen 
for cellular dysfunction in human diseases [3]. The larg-
est benefit of microscopic screening is the fact that prior 
knowledge about underlying pathophysiology is not 
required, circumventing the need for expert-craft cellular 
assays [4, 5]. However, this approach has not been tested 
for individuals with VUS on a larger scale, and addition-
ally, untargeted microscopic screening comes with its 
own set of challenges, especially in regard to extracting 

relevant phenotypic profiles. Imaging flow cytometry 
(IFC) combines flow cytometry with microscopy, and its 
high-throughput potential combined with a simple analy-
sis tool allows rapid extraction of relevant features and 
morphological profiles, without the need for deep learn-
ing models or computational scripts. These aspects make 
IFC highly suitable for untargeted screening for individu-
als with VUS.

Here, we developed a novel screening platform to iden-
tify functional cellular aberrancies in individuals with 
VUS using imaging flow cytometry (IFC). We developed 
six assays to quantify morphology and function of six 
important cellular organelles and pathways (autophagy – 
Golgi – lysosomes – mitochondria – endoplasmic reticu-
lum – NF-κβ). We confirmed all molecular compounds 
and positive control patients showed significant changes 
on cognate assays. Next, we screened 20 patients with 
VUS(es) in well-known disease genes (N = 7) and VUS in 
GUSes (genes of uncertain significance) (N = 13). For all 
individuals with VUS, we found significant changes on 
one or more IFC assays, which were validated using addi-
tional functional assays, thereby unveiling the IFC-based 
platform as a valuable tool for the detection of relevant 
pathophysiological mechanisms for individuals with 
VUS.

Methods
Ethics, consent and permission
All patients without diagnosis despite an extensive diag-
nostic workup, including whole exome sequencing seen 
at the outpatient clinic of the Department of Metabolic 
Diseases of the Wilhelmina Children’s Hospital in Utre-
cht, were eligible for inclusion in this study. The Wil-
helmina Children’s Hospital is a tertiary center and 
provides specialized care for pediatric patients. For the 
7 patients with VUS in well-known disease genes, we 
included all patients for which we could identify a posi-
tive control (N = 7) counterpart in our biobank. For the 
cohort of VUS, 49 patients were eligible for inclusion. 
Since we only wanted to include patients that had fibro-
blasts obtained prior to this study for diagnostic pur-
poses, 30 patients were excluded, since no material was 
stored for these patients. Of the 19 patients that were 
left, 2 were excluded since they were diagnosed within 
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the study period. Four patients were excluded since in-
depth functional testing was performed for their spe-
cific VUS in other hospitals. All patients consented to 
use their residual material collected for diagnostic pur-
poses in the Wilhelmina Children’s Hospital metabolic 
biobank (TCBio 19–489/B and 22–284 (ImaVUS) https:// 
tcbio. umcut recht. nl). Six healthy controls were included 
through the same biobank. Fibroblasts of a patient with 
pathogenic ERCC1variants was provided by the Genome 
Damage and Stability Centre Research Tissue Bank 
(GDSC-RTB), University of Sussex [6]. Fibroblasts of a 
patient with pathogenic TDP2 variants were provided by 
Dr. Zagnoli-Vieira [7]. The GDSC-RTB is approved by the 
Wales REC 3 to release human cell lines for research (19/
WA/0091). All procedures performed in studies involving 
human participants were in accordance with the ethical 
standards of the institutional and/or national research 
committee(s) and with the Helsinki Declaration (as 
revised in 2013).

Whole exome sequencing
Genomic DNA was isolated from blood samples. The 
variants of the individuals were identified through trio 
Whole Exome Sequencing. Exomes were enriched using 
Agilent SureSelect XT Human All Exon kit V5 and 
sequenced on a HiSeq sequencing system (Illumina). 
Reads were aligned to hg19 using Burrows–Wheeler 
Aligner. Variants were called using Genome Analysis 
Toolkit Variant Caller and annotated, filtered. The mini-
mal coverage of the full target was > 15 × 99% [8–11].

The sequencing data was processed with an in-house 
developed pipeline based on the Genome Analysis 
Toolkit (GATK v3.8–1-0-gf15c1c3ef ) best practices 
guidelines [12, 13]. The read pairs were mapped with 
BWA-MEM v0.7.5a, marking duplicates and merging 
lanes using Sambamba v0.6.5 and realigning indels using 
GATK IndelRealigner [14, 15]. Next, the GATK Haplo-
typecaller was used to call single-nucleotide polymor-
phisms and indels, creating variant call formatted files.

Variants were annotated, filtered, and prioritized using 
the Alissa Interpret Clinical Informatics Platform (Plat-
form dataset version 17, Agilent) following a validated 
filtering tree routinely used in our genome diagnos-
tics center. Tree filtering criteria were that the variant 
be exonic or intronic within 20 base pairs of the exon 
boundary and a maximum allele frequency of 0.5% in the 
GnomAD database (version 3), consisting of > 140,000 
healthy controls [8]. At least one functional effect predic-
tor should predict the variant to be “likely pathogenic” 
(PolyPhen2 HumDiv and HumVar prediction, SIFT 
score < 0.05) and at least one of the conservation scores 
should predict high conservation, namely Grantham 
score > 100, GERP + + > 2, or PhyloP > 2.5 [16–20]. All 

laboratory processes were performed in our ISO15189 
accredited diagnostic laboratory [21, 22]. Manual review 
involved the following stringent criteria: variants were 
excluded in case of synonymous variants, intronic vari-
ants with no predicted effect on splicing according to 
the Splice Prediction Module in Alamut Visual (Version 
2.14), the variant being present in < 10 reads and in case 
of a single variant being present in a heterozygous state in 
a known autosomal recessive disease gene [23]. Variants 
were assessed based on their GnomAD allele frequency, 
with the cut-off determined by the frequency of the dis-
ease in the  associated population, i.e., the specific allele 
frequency could maximally explain 10% of all disease 
cases [8].

Fibroblast cultures
Fibroblasts had been obtained previously for diagnostic 
purposes, using forearm punch biopsies. Cells were cul-
tured in fibroblast culture medium (HAM F12 with 10% 
fetal bovine serum, penicillin (100 UI/ml) and strepto-
mycin (100  μg/ml)), in a humidified incubator at 37  °C 
and 5%  CO2. Medium was changed every 3–4 days. Cells 
were split at 80% confluency.

Clonogenic survival assays and stainings to detect γH2AX 
foci
For clonogenic assays, fibroblasts of healthy controls, 
patients with pathogenic TDP2 variants, and the indi-
vidual with RAD54L2 VUS were plated and treated 24 h 
later, and then stained and counted 14–21  days later, 
when visible colonies had formed. All clonogenics were 
carried  out in 10-cm dishes containing a feeder layer 
of 5 × 10^4 fibroblasts irradiated with 35  Gy. Cells were 
treated with Etoposide (VP-16, Cayman Chemicals) for 
the indicated timeframes or irradiated with indicated 
doses using CellRAD (Faxitron). For imaging purposes, 
cells were plated in 24-well imaging plates, treated with 
Etoposide (30 μM, 30 min), washed, and released for the 
indicated period of time. After treatment, cells were fixed 
in 4% paraformaldehyde for 10  min, permeabilized in 
phosphate-buffered saline (PBS)–0.2% Tween for 10 min, 
and blocked in PBS–5% bovine serum albumin (BSA) 
for at least 30 min. After 1 h of incubation at room tem-
perature with primary antibodies (γH2AX, Cell Signal-
ing Technology, and cyclin A, BD Biosciences), cells were 
washed in PBS–0.2% Tween three times and incubated 
with secondary antibodies for 45 min. After three more 
washes in PBS–0.2% Tween, nuclei were stained with 
4′,6-diamidino-2-phenylindole for 10  min. Images were 
acquired and analyzed using the Opera Phenix micro-
scope. All quantifications were done in cyclin A-negative 
cells representing G1 population.

https://tcbio.umcutrecht.nl
https://tcbio.umcutrecht.nl
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Positive controls—molecular compounds
To validate the specificity of the assays and features used 
for this project, molecular compounds were used as posi-
tive controls. Healthy control fibroblast lines were incu-
bated with 25  ng/ml ethidiumbromide (Sigma Aldrich) 
for 7 days to deplete mitochondrial mass and FCCP (Tar-
getMol) for 5 min to abolish membrane potential (3 µM). 
Bafalomycin (Sigma Aldrich) was added at 0.2  µM for 
8  h to stimulate autophagosome accumulation. For ER 
stress, cells were incubated with Brefeldin A (Bio Legend) 
for 16 h at a concentration of 10 µg/ml. To induce NF-κβ 
translocation, cells were stimulated with TNF-a for 
30 min at a concentration of 20 ng/ml. To induce Golgi 
fragmentation, cells were incubated with Nocodazole 
(Sigma Aldrich) for 16 h at a concentration of 0.3 µM.

Imaging flow cytometry assays in fixed cells
For IFC analysis, cells were collected using Accutase 
(Stempro) and fixed immediately with fix/perm buffer 
(BD Biosciences). For the autophagy assay, cells were 
harvested, incubated in 0.5% saponin in PBS0 for 30 min, 
spun down, and fixed with 4% formaldehyde. For the 
NF-κβ assay, 4% formaldehyde was used instead of fix/
perm buffer. Cells were stained using LAMP1 (Abcam), 
LC3B (MBL International), ATF6 (Novus Biologicals), 
GM130 (Abcam), p65 (Cell Signaling Technology), and 
DRAQ5 (Biolegend) in perm/wash buffer (BD Bio-
sciences). For the NF-κβ assay, PBS0 with 1% FBS and 
0.1% triton-X-100 was used instead of perm/wash buffer. 
For IFC analysis, cells were resuspended in 20 µL of 1% 
FBS in PBS0 at a concentration of approximately 5000 
cells/µL. The laser power of the 488 and 642 laser were 
adjusted to avoid saturation (pixel intensity < 1500) and 
consistent voltages were maintained throughout experi-
ments. Cells were acquired using the × 60 magnification 
and low speed fluidics using the MKII Imagestream with 
Inspire (Version 201.1.0.765, Cytek Biosciences). Cells 
with a raw nuclear pixel intensity (the sum of pixel inten-
sity within the mask) > 1 ×  105 pixels were processed for 
downstream analyses.

Imaging flow cytometry assay in living cells (mitochondrial 
assay)
Cells were plated in 6-well plates to reach 70–80% con-
fluency at the day of the assay. At the day of the assay, 
cells were incubated with the following antibodies 
TMRM (30  nM, Sigma Aldrich), NAO (50  nM, Enzo 
Life Sciences) and DRAQ5 (Biolegend) at 37° in HBSS 
for 40 min. FCCP (3 µM, TargetMol) was added the last 
5  min of incubation [24]. After incubation, cells were 
washed once with PBS0 and incubated with TrypLE 
(Gibco) for 2 min. Cells were harvested using 1 mL 10% 
dialyzed FBS (Gibco) in PBS0, spun down, resuspended 

in small volumes (< 30  µl) and immediately visual-
ized using IFC. Since lipophilic cations like TMRM are 
extruded by multidrug resistance (MDR) transporters 
[25], TMRM fluorescence is not stable for prolonged 
periods [26]. Therefore, we included 4 samples per exper-
iment (one healthy control and one patient, two samples 
per donor (with and without FCCP) and measured each 
sample for 2 min. This setup allowed us to perform each 
IFC experiment within 30  min after the initial staining 
procedure.

The laser power of the 488 and 642 laser were adjusted 
to avoid saturation (Raw median pixel intensity < 1500) 
and consistent voltages were maintained throughout 
experiments. Compensation files were created using sin-
gle staining for all channels. Compensation settings were 
calculated using IDEAS software (Version 6.2, Cytek Bio-
sciences). Cells were acquired using the × 60 magnifica-
tion and low speed fluidics using the MKII Imagestream 
with Inspire (Version 201.1.0.765, Cytek Biosciences). 
Cells with a raw nuclear pixel intensity (the sum of pix-
els within the mask) > 1 ×  105 pixels were processed for 
downstream analyses.

IFC data analysis—IDEAS
Data was analyzed using IDEAS software (Version 6.2, 
Cytek Biosciences). Gating strategy and masks used for 
each experiment can be found in Additional File 1: Figure 
S1. For each donor, > 200 cells were analyzed. For mito-
chondrial mass and membrane potential, median pixel 
intensity of the NAO and the TMRM staining, respec-
tively, were extracted for each donor. Each patient was 
compared to one healthy control counterpart analyzed in 
the same experiment. For all other assays, patients were 
compared with at least three healthy controls. To quan-
tify Golgi functionality, the percentage of cells with intact 
Golgi system was calculated. To quantify autophagy, the 
mean spot count was extracted. To quantify NF-κβ activ-
ity and ER stress, the percentage of cells with translo-
cated p65/AF6 were compared between donors.

IFC data analysis in R
To create Fig.  1, raw feature values for single cells were 
extracted from IDEAS as excel files, and analyzed using 
R (Version 4.2.3) and R-studio (Version 2022.12.0.353). 
Before extraction of raw data, compensation was applied, 
and out of focus cells and doublets were removed using 
IDEAS. The boxplot in Fig. 1 shows the non-normalized 
feature values per cell per condition. For Figs.  2 and 3, 
similarity was calculated using Manhattan distance, and 
clustering was performed using average linkage cluster-
ing. Clustering performance was determined using the 
Elbow Method, by plotting the total intra-cluster varia-
tion (WSS) for each additional cluster. We configured 



Page 5 of 21Muffels et al. Genome Medicine           (2025) 17:12  

Fig. 1 Validation of assays using molecular compounds. A Representative IFC images of the mitochondrial staining (NAO and TMRM). 
The top two images show NAO/TMRM staining before and after FCCP treatment. The boxplot shows the intensity in pixels of the TMRM 
staining within the Object mask, which was used to quantify membrane potential. The bottom two images show the NAO/TMRM staining 
before and after ethidium bromide treatment. The boxplot shows the intensity in pixels of the NAO staining for both conditions, which was used 
to quantify mitochondrial mass. B Representative IFC images of the autophagy staining (LC3). When autophagy is induced with bafilomycin, 
the autophagosomes become visible. The boxplot shows the number of autophagosomes per cell (Spot Count) using the Spot mask (Bright, 10, 
0, 2). C Representative IFC images of a cell with a healthy and intact Golgi and a cell with fragmented Golgi after the addition of nocodazole. The 
boxplot shows the area of the Golgi staining after applying a 70% intensity threshold. During nocodazole treatment, the surface area of the Golgi 
system becomes larger, indicating that the Golgi system is fragmented. To quantify fragmentation, both surface area as well as minor axis 
intensity were used (Additional FIle 1: Figure S3). D Representative IFC images of the ATF6 staining. When ER stress is triggered, ATF6 translocates 
to the nucleus. The boxplot shows the similarity score between the nuclear staining and the ATF6 staining, which was used as a measure to quantify 
ER stress. E Representative IFC images of the NF-κβ staining (p65). Upon NF-κβ activation, p65 translocates to the nucleus. The boxplot shows 
the similarity between the nuclear staining and the p65 staining, which was used as a measure to quantify NF-κβ translocation. All boxplots 
represent one single experiment, and one treated and one untreated condition. The length and concentration of drug treatment are described 
in the “ Methods” section. The boxplot upper and lower hinge reflect the 25 and 75% percentiles and the black line reflects the median. The upper 
and lower whisker extend to 1.5 * IQR. Data beyond the end of the whiskers are plotted as large black circles. All statistics were calculated using 
nonlinear mixed effect models. p < 0.05*, p < 0.01**, p < 0.001***, p < 0.0001****. F Boxplots showing the natural variation of assays in healthy controls 
and the percentage values of the healthy controls treated with the molecular compounds from Fig. 1A–E. For the healthy control range, the median 
value of the designated feature for each assay was compared to the mean all other healthy controls taken along in the same run and converted 
to percentages. For the compounds, the median value of the feature for the compound-treated healthy control was divided by the median value 
for the untreated control and converted to percentages. The compound treated-control values are indicated as colored dots. The boxplot upper 
and lower hinge reflect the 25 and 75% percentiles and the black line reflects the median. The upper and lower whisker extend to 1.5 * IQR
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UMAP with specific parameters, setting the number of 
neighbors to 8 and the minimum distance to 0.01, which 
were determined through exploratory analysis. To create 
Fig. 4, raw feature values were extracted as.txt files. The 
mean value for each patient for each feature was divided 
by the mean value of all three healthy controls analyzed 
within the same experiment. The healthy control feature 
values were divided by the means of all other healthy 

controls analyzed within the same experiment. Columns 
containing significantly large foldchange values (< 0.15 
or > 6) were removed. This data can be found at https:// 
doi. org/ 10. 6084/ m9. figsh are. 28082 345. v1. [27].

Before UMAP and clustering, the entire data frame 
was scaled and centered. For clustering analyses using 
1800 features, similarity was calculated using Euclid-
ean distance, and clustering was performed using 
Ward’s method. We configured UMAP with specific 

Fig. 2 Validation of assays in positive control patients. A Heatmap showing the values for each assay for the positive control patients compared 
to healthy controls (N = 3) taken along in the same experiment. Each experiment was performed once. The primary abnormalities (expected 
deviations from normal values in the main phenotype of interest) for the positive control patients are colored using a color gradient (0–200%). 
B Showing the same graph as in Fig. 1F, where the healthy control reference range for all six assays is indicated in blue. The red dots refer 
to the positive control values and reflect the same values as observed in A. C Showing a similar heatmap as in A, but here all features are 
color-coded, based on the degree of abnormality outside of the healthy control range to the same scale as in Fig. 2A. C UMAP plots (Manhattan 
distance, neighbors = 8, minimal distance = 0.01) showing the clustering performance when combining all six assays (left), or when only the primary 
assay aberrancies were used (right). Clustering was performed using Manhattan Distance followed by average linkage clustering. Input for the plots 
were the percentage values as shown in Fig. 2C. For the UMAP plot and clustering based on the primary aberrancies only, secondary aberrancies 
were set to 100%

https://doi.org/10.6084/m9.figshare.28082345.v1
https://doi.org/10.6084/m9.figshare.28082345.v1
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parameters, setting the number of neighbors to 4 and 
the minimum distance to 0.01, which were determined 
through exploratory analysis.

“Cluster characteristics” were determined by extract-
ing features with a foldchange < 0.5 and > 1.5 in individ-
uals included in the cluster. Highly correlating features 
were removed from the graph (Pearson correlation 
coefficient > 0.9) to enhance graph readability.

Functional assays for individuals with VUS in well‑known 
disease genes
To validate the specificity of the IFC assays for individu-
als with CLN3 VUS, TAZ VUS, DLP1 VUS, ACAD9 VUS, 
and EPG5 VUS, diagnostic assays were used. To assess 
pathogenicity of CLN3 variants, lymphocytes with vacu-
oles and the number of vacuoles per lymphocytes were 
assessed as described previously. Data was acquired 
using FACSCanto II and analyzed using FACS Diva Ver-
sion 6.13 (BD Biosciences) or FlowJo version 7.6.5 soft-
ware [28].

Quantification of MLCL/CL levels in individuals with 
TAZ variants was performed in dried blood spots using 
UHPLC‐mass spectrometry [29].

For individuals with DLP1  variants, peroxisomes 
were examined with the use of immunofluorescence 
microscopy with antiserum against peroxisomal catalase 
[30]. To examine mitochondria, fibroblasts were cul-
tured on coverslips, incubated for 30  min with 50  nM 
of MitoTracker Green FM dye (Molecular Probes) and 
examined with the use of fluorescence microscopy at 
488  nm [31]. Autophagy defects were assessed in indi-
viduals with EPG5variants using western blot probed 
against LC3-I, LC3-II, and p62 [32].

Data analysis and statistics
To calculate statistics in Fig.  1, nonlinear mixed effect 
models were used. Statistical analyses were performed 

using Prism (Version 9.3.0, GraphPad Software). Sta-
tistics were only calculated if the number of patients 
exceeded three. If not shown, statistics were not assessed. 
R and R-studio were used to calculate statistics [33]. 
The following R packages were used for analysis: umap 
(0.2.10.0) [34], dplyr (1.1.3) [35], ggplot2 (3.4.3) [36], 
ggfortify (0.4.16) [37], ggforce (0.4.1) [38], cluster (2.1.4) 
[39, 40], factoextra (1.0.7) [40], miscTools (0.6–28) [41], 
caret (6.0–94) [42].

Results
Assay selection
For this study, we included six essential cellular pathways 
that could be morphologically assessed, and for which a 
reliable marker was available. Selection criteria can be 
found in Additional File 1: Table S1. Out of 10 pathways 
eligible for inclusion in this study, we included six assays 
that quantified morphology and function of mitochon-
dria, autophagosomes, lysosomes, Golgi, ER stress, and 
NF-κβ translocation (Table 1). All assays were set up in 
primary dermal fibroblasts since these could easily be 
obtained from patients and their large cytoplasm allowed 
proper visualization of organelles.

Assay and feature validation
After optimizing antibody concentrations and assay con-
ditions, we set out to evaluate whether the six assays were 
able to detect significant cellular changes in the selected 
pathways. As positive controls, we used a set of molec-
ular compounds known to affect the specific pathways 
(Fig. 1A–F, Table 1). For quantification, we used features 
and masks derived from literature [50, 52, 54, 56–58]. 
For the LAMP1 assay, a novel feature and mask were 
designed based on the two positive control patient fibro-
blasts. For each assay and feature, we found significant 
differences between healthy control fibroblasts with and 
without molecular compounds (Fig.  1A–F, Additional 

Fig. 3 Imaging flow cytometry (IFC) results of individuals with VUS in well-known disease genes. A UMAP plot (Manhattan distance, neighbors = 8, 
minimal distance = 0.01) showing the healthy controls (HC), individuals with VUS(es), and positive control counterparts matching the individuals 
with VUS in well-known disease genes. Normalized percentage values as shown in Table 2 were first scaled and used as input for UMAP. Most 
individuals with VUS clustered together with their positive control counterparts on UMAP, suggesting similar underlying mechanisms of disease. 
Only the individual with EPG5 VUS clustered with healthy controls. B Bar graph showing aberrancies for two patients with pathogenic variants 
in CLN3 and individuals with CLN3 VUSes (CLN3 VUS). C Bar graph showing the Z-scores of the individual with ACAD9 VUS and its positive control 
counterpart (one patient with pathogenic ACAD9 variants) for Golgi, NF-κβ, and mitochondrial assays. D Bar graph showing aberrancies for one 
patient with a pathogenic variant in TAZ and one individual with TAZ VUS (TAZ VUS) for Golgi and mitochondrial assays. E Bar graph showing 
the Z-scores of the individuals with DLP1 VUS and their positive control counterpart (one patient with a pathogenic DLP1 variant) for the NF-κβ 
and the mitochondrial assay. F Bar graph showing the Z-scores for the individual with EPG5 VUS and two patients harboring pathogenic EPG5 
variants for the autophagy assay (LC3—Spot Count) and LAMP1 assay (LAMP1—Internalization). For all bar charts, the raw values for each 
experiment were converted to Z-scores. The mean of all single cell Z-scores was calculated for each individual. The bars represent the mean 
and the error bars represent the range for healthy controls, individuals with VUS or patients with pathogenic variants. Each dot represents the mean 
Z-score per donor. Each experiment was performed once, and at least three healthy controls were included for each experiment, except for the 
mitochondrial experiment, where only one healthy control was included

(See figure on next page.)
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File 1: Table S2), indicating specificity of assays and fea-
tures. In the absence of a molecular compound known to 
induce lysosomal accumulation, validation of the LAMP1 
assay was based on two positive control patients alone.

Establishing a healthy reference range and assessing 
the effect of passage number and confluence on IFC assays
To assess interindividual variation and to set reference 
values as a benchmark, we included eight healthy control 
fibroblast lines (Fig. 1F, Fig. 2B). We observed that certain 

Fig. 3 (See legend on previous page.)
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assays, including ER-stress, NF-κβ translocation, and 
mitochondrial mass, exhibited high variability among 
healthy controls. We hypothesized that some cellular 
phenotypes, like Golgi morphology and lysosomal size, 
are more tightly regulated since larger fluctuations could 
trigger cell death. In contrast, features such as ER stress 
and NF-κβ translocation may show greater variability due 
to shifts in activation thresholds, which can be influenced 
by previous cellular stressors [59–61]. For all assays, we 
found that variation in confluence—when kept within the 
advised confluence range (30–80%)—did not significantly 
affect assay results (p > 0.05) (Additional File 1: Figure 
S2). Passage number differences larger than five passages 
between donors were found to significantly affect Golgi 
fragmentation and mitochondrial function (Additional 
File 1: Figure S3) (IQR < 25% or IQR > 75%). Therefore, for 
these two assays, we kept patient fibroblasts and healthy 
control fibroblasts at similar passage numbers (< 5).

Cellular phenotypes are consistent among positive 
controls
Next, we verified assay sensitivity through the inclusion 
of positive control patients. These individuals were cho-
sen based on literature indicating that their respective 
diseases could trigger discernible alterations in one of the 
six assays (Table  1). We found all positive patient con-
trols showed significant changes on the assays for which 

they were selected, indicating assay sensitivity (Fig.  2A, 
Fig.  2B, Additional File 1: Table  S2). Additionally, the 
similar changes observed in two siblings with pathogenic 
CLN3 variants, both showing enlargement of the lysoso-
mal compartment, and in fibroblasts derived from sib-
lings with pathogenic EPG5 variants, showing increased 
autophagy, indicates that assays are consistent among 
patients with the same disorder (Fig. 2A).

We suspected that aberrancies in positive patient 
controls extended beyond the cellular pathway for 
which they were primarily selected. For example, it 
is well-known that mitochondrial disease patients 
exhibit increased autophagy due to a pseudo-starvation 
response [62]. Indeed, we found that mitochondrial 
disease patients showed increased autophagy (Fig. 2C). 
Moreover, patients with pathogenic variants in EPG5 
showed decreased numbers of lysosomes (Fig.  2C), 
corresponding with the pathophysiological mecha-
nisms of pathogenic EPG5 variants that show impaired 
autophagosome-lysosome transition [49]. Addition-
ally, we found that patients with EPG5 and CLN3 
pathogenic variants both showed increased ER stress 
(Fig. 2C). Putatively, autophagic and lysosomal protein 
degradation is impaired in these patients, triggering ER 
stress [63].

Based on these results, we suspected that the com-
bination of primary and secondary aberrancies would 
lead to more specific disease profiles. To evaluate the 

(See figure on next page.)
Fig. 4 Imaging flow cytometry results for individuals with VUS in GUS. A UMAP showing clustering based on six assays for healthy controls (HC), 
positive control patients, and 13 individuals with VUS in GUS. Normalized percentage values as shown in Table 3 were scaled and used as input 
for UMAP. B Bar graph showing the Z-scores of individuals 106 and 211 and patient with pathogenic ERCC1 variants, for the Golgi, LAMP1, 
and mitochondrial assay. For the bar charts, the raw values for each experiment were converted to Z-scores. The mean of all single cell Z-scores 
was calculated for each individual. The bars represent the mean and the error bars represent the range for healthy controls, individuals with VUS 
or patients with pathogenic variants. Each dot represents the mean Z-score per donor. Each experiment was performed once, and at least three 
healthy controls were included for each experiment, except for the mitochondrial experiment, where only one healthy control was included. 
C UMAP of the healthy controls (HC), positive control patients, and the individuals with VUS in GUS. To create the plot, all 1800 features were 
used, including those quantifying nuclear and brightfield intensity and morphology. Each patient was normalized against three healthy controls 
taken along in the same experiment. The circles were drawn using the ggforce package. D Showing the cluster characteristics of the cluster 
with the individuals with LIMK1 genetic variants (093 and 140). The dot plot on the left shows the features with foldchange < 0.5 and > 1.5 
in both individuals compared to healthy controls. The median foldchange values for the two individuals is shown. Highly correlating features 
were removed from the graph (Pearson correlation coefficient > 0.9) to enhance graph readability. The increased nuclear intensity observed 
in both individuals with LIMK1 genetic variants suggests increased numbers of cells in S/M phase. The histogram plot shows the distribution 
of nuclear intensity for single cells. For this plot, healthy controls (N = 3) were merged, and individuals with LIMK1 VUS were merged (N = 2). 
The purple square indicates the gating that was used to determine the percentage of cells that were in the S/M phase. The bar chart shows 
the percentage of cells in S/M phase for each patient. Each dot represents the percentage of cell in S/M phase per donor. On the right, two 
representative examples of the autophagy staining are shown. For the images, the intensity threshold was set at 50%. E Showing the cluster 
characteristics of the cluster of the patient with pathogenic ERCC1 variants and individuals 106, 211, and 216. The dot plot on the left shows 
the features with foldchange < 0.5 and > 1.5 in both individuals compared to healthy controls. The median foldchange values for the individuals 
is shown. Features with Pearson correlation coefficient > 0.9 were removed to enhance graph readability. The histogram plot shows the distribution 
of the Contrast feature for healthy controls (N = 3) and individuals 106, 211, and 216. On the right, representative examples of IFC images of healthy 
control fibroblasts and individual 106 and 211 are shown. The histogram plot on the far right shows the distribution of the H Energy Std_5 
of the autophagy staining for healthy controls (N = 3) and individuals 106 and 211. On the right, representative examples of IFC images of healthy 
control fibroblasts and individuals 106 and 211 are shown
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added benefit of using multiple assays, we assessed the 
performance of clustering algorithms when it comes to 
separating diseases from each other and from healthy 
controls. Indeed, we found that combining the six 
assays yielded specific clusters that corresponded with 

the specific diseases in the positive patient control 
cohort (Fig. 2D, Additional File 1: Table S3). In contrast, 
clustering based on primary assay results alone did not 
allow separation of positive controls from healthy con-
trols. Additionally, it mistakenly clustered the patient 

Fig. 4 (See legend on previous page.)
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harboring TRAPPC2L pathogenic variants with mito-
chondrial disease patients.

IFC screening of individuals with VUS(es) in well‑known 
disease genes
First, we assessed the potential of IFC assays for seven 
individuals with genetic variants classified as VUS(es) in 
well-known disease genes (VUS in gene) (Additional File 
1: Table S2). For each fibroblast line of an individual with 
VUS (white rows in Table 2), fibroblasts of a patient with 
a pathogenic variant in the same gene (positive control 
counterpart) were included for comparison (green rows 
in Table 2).

When using all six assays, we found that 6/7 individu-
als showed highly similar IFC profiles and clustered 
together with their positive control counterpart (Fig. 3A). 
The two individuals with CLN3 VUSes clustered towards 

pathogenic CLN3 variants, all of whom showed increased 
lysosomal size (Fig.  3B). The individual with ACAD9 
VUS and its positive control counterpart both showed 
increased Golgi fragmentation, increased ER stress and 
decreased autophagy, and clustered together (Fig.  3C). 
The individual with a VUS in TAZ clustered with the 
patient harboring a pathogenic variant in TAZ, based on 
mitochondrial dysfunction and decreased NF-κβ trans-
location (Fig.  3D). Two individuals with DLP1 VUSes 
clustered with the patient with a pathogenic DLP1 vari-
ant, based on mitochondrial dysfunction and increased 
NF-κβ translocation (Fig.  3E). TAZ and DLP1 dysfunc-
tion were expected to predominantly result in mitochon-
drial dysfunction [31, 64]. While both cohorts indeed 
presented with mitochondrial dysfunction, differences 
in NF-κβ activation helped separate the individuals 
with DLP1 variants from individuals with TAZ variants 

Table 1 Overview of the six IFC assays quantifying six different aspects of cellular health. All assays were validated using compounds 
known to cause specific changes in the targeted pathway, serving as positive controls. Next, all assays were validated using patient 
cells, with diseases known to cause specific changes in the pathway of interest (positive patient control)

Primary assay Marker Molecular compound Positive patient control

Mitochondrial mass NAO Valproic acid [43] Polymerase-y (POLG) pathogenic variants [44]

Membrane potential TMRM FCCP [45] Mitochondrial disease patients with mt-TL1 
or NDUSF4 pathogenic variants [46, 47]

Autophagy LC-3 Bafilomycin and starvation [48] EPG5 pathogenic variants [49]

Lysosomal accumulation LAMP-1 NA CLN3 pathogenic variants [28]

ER stress ATF6 Brefeldin A [50] PMM2 pathogenic variants [51]

Golgi fragmentation GM130 Nocodazole [52] TRAPPC2L pathogenic variants [53]

NF-κβ translocation p65 TNF-α [54] NFKB1 pathogenic variants [55]

Table 2 Showing the IFC assays results in individuals with VUS in known disease genes and positive control patients. The population 
means in individuals were compared to healthy controls and shown here as percentages. In bold, the percentages that fell outside of 
the healthy control reference range are shown

Patient ID Gene Golgi ER stress Autophagy Lysosomes Membrane 
potential

Mitochondrial 
mass

NFκβ‑ 
translocation

33 CLN3 94% 136% 103% 175% 74% 87% 166%
34 CLN3 101% 119% 120% 217% 77% 70% 103%

31 CLN3VUS 106% 147% 111% 213% 84% 88% 234%
35 CLN3VUS 103% 108% 87% 167% 127% 122% 106%

07 EPG5 90% 125% 201% 27% 92% 101% 159%

08 EPG5 102% 121% 232% 54% 95% 90% 113%

250 EPG5VUS 97% 135% 152% 83% 85% 89% 98%

252 DLP1 99% 111% 99% 78% 79% 76% 140%

249 DLP1VUS 106% 114% 106% 97% 60% 62% 139%

253 DLP1VUS 89% 132% 94% 108% 90% 72% 146%

251 TAZ 116% 102% 116% 79% 87% 62% 58%
240 TAZVUS 122% 160% 124% 112% 82% 67% 52%
261 ACAD9 51% 182% 77% 99% 103% 86% 65%
111 ACAD9VUS 39% 158% 46% 101% 116% 84% 57%
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(Fig.  3D/E). The individual with EPG5 VUS clustered 
with healthy controls instead of pathogenic EPG5 vari-
ants, probably due to the mildly increased autophagy 
compared to patients with pathogenic EPG5 variants 
(Fig. 3F).

Thus, IFC-based screening revealed highly specific 
phenotypic profiles for individuals with VUS that allowed 
clustering with their positive control counterpart, indica-
tive of pathogenicity. Only the individual with EPG5 VUS 
showed similar—but much milder—aberrancies and was 
clustered with healthy controls.

In order to verify the performance of IFC-assay 
based clustering, we validated whether the VUS(es) 
were truly pathogenic using well-established diagnos-
tic assays. With the inclusion of these well-established 
functional results (PS3), all VUS(es) could be classi-
fied as pathogenic or likely pathogenic according to the 
ACMG guidelines, except for the DLP1 and EPG5 VUS, 
that remained classified as VUS (Additional File 1: 
Table S4). Individuals with CLN3 VUS harboring a large 
1-kb deletion in CLN3 showed an increased number of 
vacuoles per lymphocyte and increased percentage of 
lymphocytes with vacuoles. Increased vacuolization in 
lymphocytes in a school-aged child with retinal dys-
trophy is pathognomic for Batten disease indicating 
pathogenicity (Additional File 1: Figure S4) [65–67] 
The TAZ variant was classified as pathogenic due to 
its severely increased MLCL/CL ratio, which has high 
sensitivity and specificity to detect Barth Syndrome 
(Additional File 1: Figure S4) [29]. For the ACAD9 VUS, 

functional studies showed that the missense variant in 
this patient caused mildly decreased ACAD9 activity 
(70% residual activity compared to WT-ACAD9) [68]. 
Individuals 249 and 253, both harboring heterozygous 
missense DLP1  variants, showed mild mitochondrial 
fission and peroxisomal aberrancies upon microscopy, 
characteristic of either MFF or DLP1 dysfunction [69–
72]. Individual 253 lacked the peroxisomal aberran-
cies typically seen, suggesting that the variants in this 
patients might have a milder impact on overall protein 
function. Concurrently, IFC-screening revealed milder 
aberrancies for individual 253. The DLP1 variant of 
individual 249 was considered likely pathogenic based 
on ACMG guidelines (Additional File 1: Table S4). Due 
to the absence of typical peroxisomal aberrancies in 
individual 253, this DLP1 variant remained classified as 
VUS (Additional File 1: Table S4).

Individual 250 harbored a homozygous missense EPG5 
variant. Western blot probed against p62/LC3 revealed 
only mildly increased autophagy for this individual (data 
not shown). Based on these results and ACMG guide-
lines, the variant was classified as VUS (Additional File 
1: Table S4).

Thus, IFC assays correctly clustered individuals with 
CLN3, TAZ, DLP1, and ACAD9 VUS with their positive 
control counterparts, based on diagnostic assay results 
and ACMG guidelines. The uncertain pathogenicity of 
the EPG5 variants was reflected in IFC assays, indicating 
the variant might result in a very mild cellular phenotype 
or is not pathogenic.

Table 3 Showing the individuals without VUS in well-known disease genes. The population means in these individuals were 
compared to healthy controls and shown as percentages. For each of the six assays, the features as shown in Table 1 were used for 
quantification. Percentage values highlighted in bold indicate the values are outside the reference range measured in healthy controls

Patient ID Gene Golgi ER stress Autophagy Llysosomes Membrane 
potential

Mitochondrial 
mass

NFκβ‑ 
translocation

143 CSDE1VUS 32% 72% 112% 62% 47% 79% 149%

140 LIMK1VUS 112% 173% 90% 153% 138% 66% 160%

093 LIMK1VUS 98% 145% 95% 158% 98% 119% 111%

225 ZNF806VUS 63% 186% 81% 135% 68% 48% 167%
227 PDE3BVUS 112% 141% 154% 130% 119% 95% 167%
228 MMS19VUS 112% 142% 99% 106% 96% 146% 201%
034 NA 99% 113% 126% 146% 63% 153% 183%
211 DLGAP2VUS, TNKSVUS, 

BLMVUS
118% 107% 88% 75% 73% 48% 109%

106 RAD54L2VUS 105% 111% 90% 106% 81% 77% 69%

226 PDE4DIPVUS 90% 33% 124% 152% 127% 97% 66%

216 NA 114% 152% 111% 104% 124% 99% 79%

202 MEIOCVUS 132% 78% 95% 81% 101% 101% 97%

217 EIF4ENIF1VUS 109% 82% 106% 68% 100% 66% 111%
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IFC assays for individuals without VUSes in well‑known 
disease genes
Next, we assessed the potential of our platform for indi-
viduals that did not harbor VUSes in well-known dis-
ease genes. Many of these genes had not been linked to 
monogenic diseases, and their functions were sometimes 
unknown. These genes are referred to as genes of uncer-
tain significance (GUS) (Additional File 1: Table S5). We 
found all individuals in this group showed aberrancies 
on at least one of the six assays (Table 3). To allow better 
understanding of the IFC aberrancies found, we assessed 
whether fibroblasts of these individuals behaved analo-
gously to any of the positive control patient fibroblasts 
used in this study. As expected, we did not identify rel-
evant cluster formation (Fig.  4A). However, we did find 
seven individuals with VUS showing a unique combina-
tion of IFC aberrancies, leading to them being clustered 
individually. In contrast, the remaining four individuals 
with VUS showed only very mild differences and clus-
tered with healthy controls (Fig. 4A).

To increase the possibility of relevant cluster forma-
tion, we introduced a novel patient control with a DNA 
damage repair defect, assumed to have a similar phe-
notype as one of the individuals harboring a VUS in a 
gene associated with DNA damage repair (106, VUS in 
RAD54L2). [73] To this aim, we included fibroblasts of a 
patient with a pathogenic variant in ERCC1, c.693C > G 
[6]. We found that individual 106, but also individual 
211, clustered with the patient with pathogenic ERCC1 
variants, based on decreased mitochondrial function and 
decreased Golgi fragmentation (Fig. 4B). These similari-
ties suggest that the VUSes identified in individuals 106 
and 211 might lead to defective DNA damage repair.

The six selected features may offer only a limited rep-
resentation of all quantifiable changes that can occur in 
individuals with VUS. For example, alterations in the dis-
tribution, size, or shape of organelles may occur. Conse-
quently, alongside a targeted analysis based on six assays, 
we employed an broadened, untargeted approach, that 
allowed quantification of many aspects of each of the six 
cellular pathways. To this aim, we extracted all built-in 
IDEAS features derived from all six assays (~ 300 features 
per assay, 1800 features in total), including those quanti-
fying nuclear and brightfield images. To minimize batch 
effects, we normalized each individual to the healthy con-
trols taken along in the same experiment (Additional File 
1: Figure S5). Using all 1800 features, we identified three 
clusters of individuals with VUS that clustered away from 
healthy controls (Fig. 4C).

The first cluster consisted of two individuals (093 and 
140) both harboring VUSes in LIMK. We found that their 
clustering was mostly the result of altered nuclear mor-
phology and intensity (Fig.  4D). Most notably, nuclear 

intensity (DRAQ5 intensity) was increased in these indi-
viduals, suggesting increased DNA content, and thus an 
increased number of dividing cells (S/M phase). After 
quantification of the number of cells in G1/S/M phase 
using DRAQ5 nuclear intensity (2N/4N peaks), we 
found that the individuals with LIMK1 genetic variants 
had increased percentages of dividing cells (S/M phase) 
(Fig.  4D). Another characteristic of the cluster became 
visible when LC3 (autophagy staining) intensity thresh-
old was set at 50%, revealing a lower total area of the 
autophagy staining.

The second cluster identified was similar as one of the 
clusters identified when using all six assays. Again, we 
found the cluster included the patient with pathogenic 
ERCC1 variants and individuals 106 and 211. Addition-
ally, individual 216 was added to this cluster (Fig.  4E). 
The cluster was characterized by enhanced contrast of 
the mitochondrial staining (NAO) and altered texture of 
autophagosomes and the Golgi system (Fig. 4E). Texture 
was quantified using Haralick (H) features [74], using 
different pixel sizes. Notably, one of the finer texture 
attributes (pixel size 1, H Variance Standard Deviation) 
showed significant alterations in the autophagy assay. 
Moreover, there were notable changes for the larger tex-
ture attributes of the Golgi assay (pixel size 19, H Energy 
Mean), corresponding to the observed disarray and 
irregular borders of the Golgi system, which were evident 
upon visual inspection (Fig. 4E). These irregular borders 
could have potentially affected the quantification of Golgi 
area and diameter, particularly following the application 
of a 70% threshold, which might explain the diminished 
Golgi fragmentation that characterized this cluster when 
looking at six features only.

To study whether the second cluster indeed corre-
lated with DNA damage repair diseases, we performed 
follow-up experiments. For individual 106, that har-
bored a VUS in RAD54L2 (NM_015106.2: c.389A > G, 
p.Gln130Arg), and clustered with the patient with patho-
genic ERCC1 variants, we assessed DNA damage repair 
capacity. We focused on DNA damage repair capacity 
after X-ray irradiation but also after etoposide treat-
ment, a chemotherapeutic agent that stabilizes DNA 
topoisomerase II cleavage complexes (TOP2ccs), as 
RAD54L2 is involved in TOP2cc resolution [73, 75]. As 
such, RAD54L2 knockout cell lines show increased sen-
sitivity to Etoposide treatment [73]. For comparison, 
we included patient fibroblasts of a patient with patho-
genic TDP2  variants, since TDP2 is similarly involved 
in TOP2cc resolution and similarly shows increased 
sensitivity to etoposide [7]. While survival after X-ray 
irradiation was not appreciably affected, we observed 
decreased survival of fibroblasts from the individual with 
RAD54L2 VUS upon etoposide treatment compared to 
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healthy control cells (Fig. 5A, B). In addition, compared 
to control cells, we observed increased yH2AX foci in 
patient-derived fibroblasts of individual 106 immedi-
ately after etoposide treatment (0  h), which normal-
ized after 4 and 8  h (Fig.  5C). Additionally, we did not 
observe any changes in yH2AX foci levels in individual 
106 upon treatment with ionizing radiations, in agree-
ment to the survival data (Fig.  5D). To better interpret 
the pathogenicity of the RAD54L2 variant, we studied 
RAD54L2 and the specific region the variant was located 
in more in depth. RAD54L2 has low tolerance against 
loss-of-function (pLI = 1) [76]. While structural informa-
tion about the N-terminus of RAD54L2 is lacking, we 
found that this region is highly conserved amongst 100 
different species (Fig.  5E). The VUS is considered dis-
ease causing by MutationTaster [77] and has a CADD 
score of 25.6 (Additional File 1: Table  S5). As such, we 
propose that the RAD54L2 VUS could be considered 
likely pathogenic (ACMG: PS2, PM2, PP3). The inclu-
sion of additional patients with RAD54L2 variants could 
help reliably assess the genotype–phenotype correlation 
between RAD54L2 and the clinical phenotype observed.

The third cluster we observed consisted of individuals 
225, 143, 217, and one healthy control. The cluster was 
characterized by slightly decreased mitochondrial mass 

values (data not shown). Due to the presence of a healthy 
control in the cluster, we decided not to study this cluster 
in depth.

In conclusion, we found that integrating all available 
IFC features (N = 1800) yielded two interesting clusters 
with distinct morphological aberrancies. In the individu-
als harboring LIMK1 variants, we found increased mito-
sis and less bright autophagosomes. For individuals 211, 
106, and 216, we found significant overlap with a patient 
harboring pathogenic ERCC1 variants, characterized by 
altered Golgi- and mitochondrial morphology, which 
could be related to underlying DNA Damage Repair 
defects. Indeed, we found that one individual in this 
cluster harboring a VUS in RAD54L2 showed decreased 
survival and increased yH2AX foci after treatment with 
the chemotherapeutic agent etoposide, correlating with 
increased TOP2-mediated DNA damage [73].

Discussion
We present a novel imaging flow cytometry (IFC)-based 
platform to assess the clinical significance of variants of 
uncertain significance (VUS) by analyzing six key cel-
lular processes. Significant assay sensitivity was con-
firmed with both compounds and positive controls, 
while combining these assays improved clustering. IFC 

Fig. 5 Assessing pathogenicity of fibroblasts derived from individual 106 with RAD54L2 VUS. A,B Clonogenic survival assay of patient fibroblasts 
upon treatment with the indicated doses of etoposide (A) or X-ray irradiation (B). C Number of γH2AX foci in G1 cells (cyclin A negative) untreated 
or treated with 30 μM etoposide (ETP) for 30 min, washed, and left to recover for 4 or 8 h. n = 3 independent experiments. Bars represent 
means ± SEM. D Number of γH2AX foci in G1 cells (cyclin A negative) untreated or irradiated with 2 Gy X-rays and left to recover for 30 min, 4 or 8 h. 
n = 4 independent experiments. Bars represent means ± SEM. Statistics were calculated using 2-way ANOVA and Turkey’s multiple compairsons 
test. E Showing conservation of RAD54L2 amongst species. RAD54L2 homologs were identified in about 1000 different species and pairwise 
aligned to the human sequence. As a measure for conservation, the number of sequences with the most frequently found amino acid (upper 
panel) and the number of sequences contacting a gap (middle panel) are determined per sequence position. The detailed frequencies are shown 
for the region containing Q130 (lower panel)
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identified similar phenotypic abnormalities in VUS 
cases within known disease genes, aligning with diag-
nostic expectations (Fig.  6). Additionally, in genes of 
uncertain significance, we observed significant changes 
across assays, allowing for the conceptualization of struc-
tured follow-up experiments. Two key clusters revealed 
specific mechanisms, such as mitosis and DNA repair 
defects (Fig.  6). Thus, IFC-based screening offers high-
throughput cellular phenotyping to support VUS-related 
disease diagnosis.

We found IFC aberrancies for all 13 individuals with 
VUS in GUS, all of which could serve as a basis to struc-
ture subsequent experiments. However, the inclusion of 
a relevant positive control (DNA damage repair defect) 
to complement individuals with VUS in genes associated 
with DNA damage repair, provided a clearer picture of 
the potential pathophysiology at stake. Both the mito-
chondrial dysfunction and the altered Golgi morphol-
ogy, that characterized the cluster, have been observed 
in patients with DNA damage repair defects, including 
ERCC1  knockout models [78, 79]. Thus, the combina-
tion of mitochondrial dysfunction and altered Golgi 
morphology might be specific for DNA damage repair 

defects. One of the individuals in the cluster, individual 
106, harbored a de novo variant in RAD54L2, which 
interacts with TOP2 to alleviate DNA damage [73, 75]. 
Functional assays showed that fibroblasts from this indi-
vidual displayed increased γH2AX foci and decreased 
survival after treatment with etoposide, suggesting 
that individual 106 indeed exhibits a DNA damage repair 
defect. Additionally, these results suggest that the VUS 
in RAD54L2 could be causative of the patient’s clinical 
phenotype. Another individual included in the cluster, 
individual 211, harbored multiple VUSes in the DLGAP2, 
TNKS, and BLM genes. Of those, BLM is a well-known 
disease gene, with bi-allelic variants leading to Bloom 
syndrome, a well-known DNA damage repair defect 
(OMIM #210,900). While the patient was solely a car-
rier of a pathogenic BLM variant, carriers of BLM vari-
ants can also exhibit mild DNA damage repair defects 
[80]. Potentially, this explains its clustering with other 
DNA damage related diseases. However, TNKS also has 
a role in DNA damage repair, and could have contributed 
to the phenotype as well [81]. Nonetheless, the similar 
cellular phenotypes observed in individuals 106, 211, 
and the patient with pathogenic ERCC1 variants could 

Fig. 6 Overview of imaging flow cytometry results for individuals with VUS. Left panel: The pie chart indicates the number on individuals with VUS 
in well-known disease genes that were correctly clustered with its pathogenic counterpart based on diagnostic assay results, leading to the VUSes 
being classified as pathogenic or probably pathogenic based on ACMG guidelines. Only one individual was clustered with healthy controls (HC). 
Diagnostic assays were inconclusive and the variant remained classified as VUS. The colored planes indicate the significant changes that were 
identified with IFC (upper row) and the ACMG classification of VUSes (lower row). Right panel: Pie chart indicating the clusters identified with IFC 
assays for individuals with VUS in genes of uncertain significance (GUS). Three individuals clustered with the patient with pathogenic ERCC1 
variants presumably based on altered DNA damage response, two individuals clustered together based on striking mitosis defects and the rest 
of the individuals clustered with healthy controls based on 1800 features. The colored planes indicate the significant changes found with IFC



Page 16 of 21Muffels et al. Genome Medicine           (2025) 17:12 

reflect similar functional cellular changes in response to 
impeded DNA damage repair, providing a relevant basis 
for further functional exploration. Additionally, these 
results indicate that the inclusion of relevant positive 
controls increases the diagnostic yield of IFC assays.

To broaden the scope of the IFC-based assays, we 
included all 1800 predefined IDEAS software-included 
features instead of just six. This untargeted approach led 
to the identification of two novel clusters. The first clus-
ter consisted of two individuals harboring LIMK1  vari-
ants, showing increased intensity of the nuclear (DNA) 
staining, suggesting that there was an increased number 
of cells in SM phase. Concurrently, LIMK1 dysfunction 
has been associated with mitosis defects due to defective 
spindle positioning [82]. Therefore, the mitosis defects 
uncovered by IFC could indicate that the LIMK1 variants 
identified in both individuals cause similar underlying 
pathophysiological defects. The second cluster identi-
fied when using the 1800 features was highly similar to 
the cluster found when using six features only, consisting 
of individuals 106, 211 and the patient with pathogenic 
ERCC1 variants. Again, the cluster was characterized by 
altered Golgi and mitochondrial features, although the 
inclusion of 1800 features led to more precise quantifica-
tion of these aberrancies, showing enhanced contrast of 
the mitochondrial staining and disorganized Golgi integ-
rity. Additionally, expanding the scope to 1800 features 
led to the addition of individual 216 to the ‘DNA dam-
age cohort’, although the absence of candidate VUSes in 
this individual limited the interpretation of its relevance. 
The lack of clustering among healthy controls when using 
all 1800 features might indicate the presence of noisy and 
irrelevant features within the dataset. With the addition 
of more healthy- and positive controls, computational 
models could be employed to prioritize meaningful fea-
tures. Nonetheless, based on these results, we propose 
that studying all 1800 features has the potential of iden-
tifying more precise cellular phenotypes, which could be 
exploited to structure follow-up studies in a more tar-
geted fashion.

So far, a limited number of studies have explored 
the potential of microscopy to determine the signifi-
cance of VUS. Chao et  al., [83] quantified the cellular 
location of PTEN in Hela cells with different PTEN 
VUS to discern pathogenic variants from benign ones. 
Similarly, Ebrahim-Fakhari et al., [84] used microscopy 
to quantify ATG9A distribution, which helped to dis-
cern pathogenic ATG9A variants. While both studies 
seemed promising, their focus on a single gene limits 
a  broader  clinical applicability, since the heterogene-
ity of undiagnosed patient populations will require an 
untargeted approach. Fortunately, untargeted micro-
scopic approaches have also been explored for VUS 

elucidation, although not in pediatric patients. Caicedo 
et al., [85] found high accuracy when using microscopic 
screening to detect the pathogenicity of lung cancer 
variants using Cell Painting (RNA, ER, mitochondria, 
DNA and highly glycosylated proteins (AGPs) stain-
ing), while Ohya et al., [86] and Robhan et al., [5] found 
highly specific microscopic phenotypes after intro-
ducing various genetic deletions, that correlated with 
underlying pathophysiology. While these results are 
promising, high-throughput microscopy has not yet 
been used to study a large cohort of patients with VUS. 
A potential benefit of IFC over microscopy is the abil-
ity of newer IFC machines to perform cellular sorting 
after these assays. This makes IFC highly suitable for 
Multiplex Assay of Variant Effect (MAVE) studies, an 
approach that facilitates variant editing of single cells 
to study variant-induced cellular phenotypes in a high-
throughput fashion [87–89]. Instead of focusing on the 
patients at hand, creating common variants in a large 
number of monogenetic disease genes and assessing 
those at a single cell level with IFC could help build a 
‘positive control atlas’ for our assays, that can be used 
to cluster unknown variants.

For individuals with VUS in well-known disease genes, 
we found that IFC assays were able to detect relevant over-
lap with patients with pathogenic variants in the same 
gene, aiding the interpretation of underlying pathophysi-
ology, The differentiating power of IFC for these indi-
viduals was enhanced by combining the six assays, since 
certain diseases appeared similar when looking at single 
axes only. For example, patients with pathogenic DLP1 
or TAZ  variants primarily showed mitochondrial dys-
function, however, the increased versus decreased NF-κβ 
translocation made them cluster separately. These differ-
entiating features are in line with previous work, showing 
decreased NF-κβ activation in tafazzin knockout iPSCs, 
putatively as a consequence of altered mitochondrial 
ROS signaling [90]. In contrast, HEK293 cells express-
ing mutant DLP1 showed increased mitochondrial fusion 
and increased NF-κβ activity [91]. Thus, the integration 
of six assays provided enhanced discriminatory power, 
and revealed relevant underlying disease mechanisms for 
individuals with VUSes in well-known genes. To formally 
assess diagnostic accuracy of our IFC platform, additional 
patients need to be included as positive controls, to assess 
the inter-individual variability for the different assays. 
Additionally, the inclusion of patients with benign variants 
and patients with similar phenotypes could help determine 
the strength of our assays for determining pathogenicity. 
Lastly, it would be interesting to validate whether patients 
with milder phenotypes similarly display cellular pheno-
types outside the healthy reference range. That being said, 
most genetic diseases are rare, and including sufficient 
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numbers to allow accurate pathogenicity prediction will 
remain challenging. Potentially, the use of single cell results 
rather than bulk medians will help to gather sufficient 
numbers to train classification models, although this will 
require optimization of batch effects, normalization, and 
noise filtering steps. Regardless, we expect a combination 
of in silico prediction tools, functional cellular models and 
the interpretation by expert clinicians will remain essential 
for the final judgement of pathogenicity prediction. Addi-
tionally, most endeavors to elucidate VUS nowadays exist 
of multiple experiments, where IFC-based assays could 
serve as the first step to structure these experiments. It will 
remain challenging to accurately quantify the value of hav-
ing a valid starting point, despite its relevance in establish-
ing diagnosis.

IFC has the potential to streamline multiple aspects 
of the diagnostic workflow. Firstly, in cases where indi-
viduals have variants of uncertain significance (VUS) in 
well-known genes lacking diagnostic assays, IFC-based 
assays could assist in interpreting pathogenicity. Estab-
lishing a public IFC database could ultimately eliminate 
the need for including patients with similar pathogenic 
variants as positive controls. Additionally, even in cases 
where diagnostic assays are available, IFC could offer an 
alternative requiring fewer assays and resources, while 
simultaneously aiding in the recognition of unknown dis-
ease entities by serving as a positive control. Secondly, 
for individuals with VUS in GUS, IFC based assays can 
lead to a more targeted diagnostic workflow by provid-
ing researchers with a sense of direction. For example, 
the striking mitosis defects found in individuals with 
LIMK1  variants suggest that mitosis should be studied 
more in depth. Beyond its diagnostic applications, the 
high-throughput potential of IFC assays could be used to 
predict disease severity and therapeutic response. Previ-
ously, we found that LAMP1 accumulation assessed with 
IFC serves as a proxy for Batten disease severity [28]. The 
potential of the other IFC-based assays could be stud-
ied in a similar manner. Moreover, once a specific phe-
notypic profile for an individual with VUS is established 
and validated for diagnostic- and prognostic purposes, it 
can be used to screen for relevant therapies. The broad-
ness of the screening would simultaneously allow for 
uncovering unexpected off-target effects. The IFC pipe-
line could be extended to include other relevant primary 
cell types derived from organs where the disease mani-
fests. Our assays measure fundamental cellular processes 
that are likely involved in the pathophysiology of various 
cell types. In principle, any homogeneous cell type that 
can be suspended and fits within the 70-micron noz-
zle is suitable for these assays. A promising and patient-
friendly approach for studying metabolic diseases 
involves using Neural Progenitor Cells derived from 

nasal brush samples, offering a high-throughput method 
that captures disease-relevant tissue [92].

Here, we explored the potential of IFC-based cellu-
lar screening for individuals with a variety of VUSes in 
patient-derived fibroblasts. We provide evidence that IFC 
is able to delineate pathophysiological mechanisms in 
individuals with VUS(es) in well-known genes, based on 
similar cellular phenotypes compared to ‘true patients’, 
on assays of known relevance for underlying pathophysi-
ology. Even in the most challenging group of individuals 
with VUS that underwent IFC-based screening, we found 
significant changes for all subjects and distinct disease 
signatures that offer novel insights into underlying patho-
physiological mechanisms for 5 out of 13 patients. We 
anticipate that by broadening the spectrum of patients 
and diseases included in our study and implementing 
improved noise filtering steps and feature selection tools, 
the screening quality of IFC could be further enhanced. 
Given the versatility, simplicity, and high-throughput 
potential of our IFC-based screening platform, we believe 
its full capacity to elucidate pathophysiology and facili-
tate clinical applications in individuals with VUS and 
patients with genetic diseases is yet to be fully realized.

Conclusions
Here, we describe a novel imaging flow cytometry (IFC)-
based screening platform, aimed to delineate the clinical 
significance of variants of uncertain significance (VUS) 
by providing insights into six pivotal cellular processes. 
We found that both compounds as well as positive con-
trol patients showed significant changes on cognate 
assays, indicating assay sensitivity, and combining the six 
assays enhanced clustering performance. For all individu-
als with VUS(es) in well-known disease genes, IFC-based 
screening identified similar aberrancies compared to cor-
responding positive controls, that aligned with diagnos-
tic assay results, suggesting that IFC allows for accurate 
pathogenicity prediction. For individuals with VUS(es) 
in genes of uncertain significance, we found significant 
changes for each individual on one or more of six assays, 
which could be used to structure follow-up assays. Addi-
tionally, we found two relevant clusters that granted 
insights into highly specific pathophysiological mecha-
nisms, for example by uncovering mitosis defects or DNA 
damage repair defects. Experimental follow-up of one of 
the individuals in this cluster revealed decreased survival 
and increased γH2AX foci after chemotherapeutic treat-
ment, indicative of a DNA damage repair defect. Based 
on these results, we propose that IFC-based functional 
screening allows for high-throughput characterization 
of cellular phenotypes, which can contribute to disease 
elucidation and subsequent diagnosis for individuals with 
VUS.
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