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Abstract 

Background Profiling circulating cell-free DNA (cfDNA) has become a fundamental practice in cancer medicine, 
but the effectiveness of cfDNA at elucidating tumor-derived molecular features has not been systematically com-
pared to standard single-lesion tumor biopsies in prospective cohorts of patients. The use of plasma instead of tissue 
to guide therapy is particularly attractive for patients with small cell lung cancer (SCLC), due to the aggressive clinical 
course of this cancer, which makes obtaining tumor biopsies exceedingly challenging.

Methods In this study, we analyzed a prospective cohort of 49 plasma samples obtained before, during, 
and after treatment from 20 patients with recurrent SCLC. We conducted cfDNA low-pass whole genome sequencing 
(0.1X coverage), comparing it with time-point matched tumor characterized using whole-exome (130X) and tran-
scriptome sequencing.

Results A direct comparison of cfDNA and tumor biopsy revealed that cfDNA not only mirrors the mutation 
and copy number landscape of the corresponding tumor but also identifies clinically relevant resistance mechanisms 
and cancer driver alterations not detected in matched tumor biopsies. Longitudinal cfDNA analysis reliably tracks 
tumor response, progression, and clonal evolution. Sequencing coverage of plasma DNA fragments around transcrip-
tion start sites showed distinct treatment-related changes and captured the expression of key transcription factors 
such as NEUROD1 and REST in the corresponding SCLC tumors. This allowed for the prediction of SCLC neuroendo-
crine phenotypes and treatment responses.

Conclusions cfDNA captures a comprehensive view of tumor heterogeneity and evolution. These findings have 
significant implications for the non-invasive stratification of SCLC, a disease currently treated as a single entity.
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Background
Circulating free DNA (cfDNA) profiling is now a fun-
damental practice in cancer medicine, but several key 
questions remain. A basic question is whether the muta-
tional profile established through cfDNA testing reliably 
reproduces the mutational profile derived from a tumor 
biopsy. Early studies, based on small numbers of patient 
samples, suggested low concordance between DNA 
alterations detected in tumor and plasma samples from 
the same patient [1, 2]. Subsequent studies, mostly case 
reports or small cohorts querying single genes, or a panel 
of genes, suggested high concordance between cfDNA 
and tumor genomic alterations [3–7]. A study used 
high-depth whole genome sequencing (WGS, median 
read depth 187X) to find concordant clonally expanded 
cancer driver alterations in both cfDNA and metastatic 
tumor, but cfDNA additionally harbored the genomes of 
multiple tumor subclones [8]. However, samples in this 
study were pre-selected based on high cfDNA fraction 
using targeted sequencing approaches and deep WGS of 
cfDNA is clinically not feasible at present. A second ques-
tion is whether cfDNA testing can be applied to settings 
where tumor mutations are not known a priori. Next-
generation sequencing-based assays afford the opportu-
nity to broadly examine cfDNA, but most studies identify 
mutations in the tumor and then determine whether the 
same mutation is detectable in the plasma [9] or per-
form targeted sequencing of recurrently mutated cancer 
genes in cfDNA [10]. Although these approaches have 
substantially advanced cfDNA as a diagnostic tool, they 
have limited utility when tumor mutations are not known 
a priori, for example due to difficulties in getting tumor 
biopsies, and in tumors driven by dysregulated transcrip-
tional programs.

Small cell lung cancer (SCLC) represents a paradigm 
to study cfDNA. SCLC represents about 15% of all lung 
cancers and is marked by an exceptionally high pro-
liferative rate, strong predilection for early metastasis 
and poor prognosis [11]. Obtaining SCLC tumors for 
molecular testing is exceedingly difficult as few patients 
undergo surgery and the cancer is usually extensively dis-
seminated by the time it is diagnosed [12]. At relapse, 
rapid disease progression generally precludes biopsies. 
As a result, SCLC is not included in large-scale sequenc-
ing initiatives such as the Cancer Genome Atlas (TCGA) 
[13]. Detection of cfDNA is well validated in patients with 
SCLC. Prior studies have found that cfDNA can track the 
disease course and identify recurrent gene alterations in 
TP53 and RB1, although targetable recurrent genomic 
alterations have not been identified [14–22]. Moreo-
ver, these studies are limited by lack of corresponding 
tumor samples, and the approaches used do not inter-
rogate the transcription programs which underlie SCLC 

heterogeneity. Indeed, aberrations in transcription regu-
lators are the primary genetic cause of SCLC [23, 24]. Cell 
cycle regulators, transcription factors (TFs) and chroma-
tin modifiers including RB1 and TP53, members of MYC 
family, SOX2, MLL1/2, CREBBP-EP300, RBL2, and TP73 
are frequently altered in SCLC, causing aberrant expres-
sion of a broad range of genes related to neuronal and 
neuroendocrine differentiation and proliferation [25–28]. 
Importantly, SCLC transcriptional subtypes defined by 
differential expression of key transcription regulators 
[29] have therapeutic implications [30–33], but are not 
associated with specific mutational patterns.

Here we perform longitudinal profiling of cfDNA and 
time-point matched tumor from a molecularly defined 
prospective cohort of patients with relapsed SCLC, ask-
ing whether cfDNA reliably reproduces the genome-
wide copy number aberrations and exome-wide tumor 
mutational profile, and going beyond mutations, whether 
cfDNA can be used to infer the expression of genes in the 
corresponding tumors (Fig. 1).

Methods
Patients
Patients with metastatic biopsy-proven SCLC enrolled 
on an interventional clinical trial (ClinicalTrials.gov iden-
tifier NCT02484404, n = 20) were included in this analy-
sis [34]. All patients provided written informed consent. 
Clinicopathologic data were abstracted from the medical 
records. The National Cancer Institute (NCI) Labora-
tory of Pathology confirmed the diagnoses of SCLC. All 
patients had received platinum-based chemotherapy for 
SCLC before enrolment. All patients were treated with 
durvalumab 1500 mg intravenously and olaparib 300 mg 
twice daily until disease progression or unacceptable tox-
icity. Through a tumor-liquid biopsy program, all patients 
underwent systematic tumor and plasma sampling before 
starting treatment, early during (2 to 4 weeks) treatment, 
and at the time of disease progression (median [range]: 
8.1 weeks [4.1–47.7]). A matched tumor biopsy was 
obtained before starting treatment, during treatment, 
at disease progression, and while on subsequent thera-
pies. Forty-nine plasma samples were available, includ-
ing 20 obtained pre-treatment, 17 on treatment, and 12 
at disease progression. Twenty-nine tumor samples were 
available, 18 obtained pre-treatment, 6 on treatment, 2 
at progression, and 3 at a subsequent timepoint. Plasma 
and tumors were time-point matched in 26 cases; in most 
cases, the plasma samples were obtained on the day of 
the biopsy, or within a 30-day window. Most of the 23 
plasma samples without timepoint matched tumor were 
obtained on-treatment or at disease progression (Addi-
tional file 1:Fig. S1). Tumor response was assessed using 
Response Evaluation Criteria in Solid Tumors (RECIST) 
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v 1.1. Patient survival was followed up every 6 months by 
phone until death or date of cutoff. Results of clinical and 
exploratory studies including tumor infiltrating lympho-
cytes were previously reported [31, 34].

cfDNA, tumor, and germline sequencing
The DSP Circulating DNA kit from Qiagen (catalog 
number: 937555) was utilized to extract cfDNA from 
aliquots of 6.3 mL plasma which were eluted into 40–80 
µL of re-suspension buffer using the Qiagen Circulating 
DNA kit on the QIAsymphony liquid handling system. 
Library preparation utilized the Kapa Hyper Prep kit 
with custom adapters (IDT and Broad Institute). Sam-
ples were sequenced to meet a goal of 0.1 × mean cov-
erage and Illumina NextSeq500 instruments were used 
for all of cfDNA sequencing with 150 bp and paired-end 
sequencing. Library construction was performed as pre-
viously described [35]. Hybridization and capture were 
performed using the relevant components of Illumina’s 
Nextera Exome Kit and following the manufacturer’s sug-
gested protocol. For tumor sequencing, formalin-fixed, 

paraffin-embedded (FFPE) tumor tissue samples were 
prepared for whole exome sequencing (WES) and RNA 
sequencing. One hundred nanograms of DNA was shared 
to approximately 200 bp by sonication (Covaris, Woburn, 
MA). Exome enrichment was performed using SureSe-
lect Clinical Research Exome Kits version 1 according 
to the manufacturer’s instructions (Agilent, Santa Clara, 
CA). Paired-end sequencing (2 × 75 bp) was performed 
on an Illumina NextSeq 500 instrument. The sequences 
were compared to the human reference genome hg19 
using internally developed somatic bioinformatic pipe-
line. In brief, raw sequencing data in FASTQ format were 
aligned against the reference human genome (hg19). 
RNA was extracted from FFPE tumor cores using RNeasy 
FFPE kits according to the manufacturer’s protocol (Qia-
gen, Germantown, MD). For germline DNA sequenc-
ing, the patient’s whole exome of peripheral blood 
mononuclear cells was sequenced and genotyped with 
the HumanOmni2.5-8v1 array (Illumina) by Personal 
Genome Diagnostics. Briefly, 3 μg of genomic DNA per 
patient sample was sequenced using the Illumina HiSeq 

Fig. 1 Study schema. Abbreviations: cfDNA: circulating free DNA; SNV; single-nucleotide variant; indels: insertions and deletions; TF: transcription 
factor
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2000 (Illumina), generating 200 bp (2 × 100 bp reads) per 
fragment in the final library as described previously [32].

Variant calling, transcriptome expression, and mutational 
signature analysis
The Genome Analysis Toolkit (GATK) MuTect2 [36] and 
Strelka2 [37] were used for somatic SNV and small indel 
calling, respectively. ANNOVAR was used to function-
ally annotate genetic variants. The Sequenza software 
[38] was used to determine total and allele-specific DNA 
copy number from WES. RNA sequencing libraries were 
generated using TruSeq RNA Access Library Prep Kits 
(TruSeq RNA Exome kits; Illumina) and sequenced on 
NextSeq500 sequencers using 75-bp paired-end sequenc-
ing method (Illumina, San Diego, CA). Each sample 
was processed through an RNA sequencing data analy-
sis pipeline where reads were mapped to the ENSEMBL 
human genome GRCh37 build 71 using TopHat2 [39]. 
Read counts for each gene between samples were trans-
formed to Trimmed Mean of M-values-normalized 
Fragments per kilobase per million mapped reads 
(TMM-FPKM). Mutational signatures of COSMIC ver-
sion 3.2 [40] were identified using the deconstructSigs 
[41] package (version 1.8.0), applying the same pipeline 
for both tissue and cfDNA samples. Mutations in maf 
format were processed using the maftools [42] package 
in R, which was used for statistical analysis, simple data 
extraction and preparing the mutation waterfall plots.

Somatic copy number alterations (SCNAs)
Somatic copy number calls were identified using CNVkit 
[43] (version 0.9.9) with default parameters. Tumor purity 
and ploidy were estimated by sclust [44] and sequenza 
[38]. The sclust purity values were used for adjusted copy 
number variation (CNV) calls using the CNVkit tool. 
Whole genome copy number representation was visual-
ized using R (version 4.0.4) with the rtracklayer [45] (ver-
sion 1.48.0), ComplexHeatmap [46] (version 2.4.3), and 
ggplot2 (version 3.3.3) packages. The copy number heat-
map summarizes the genome segmented into 1-Mb-sized 
regions, where the average CNV log2 ratio was calculated 
for each using the CNVkit.cns files.

Homologous recombination repair deficiency (HRD) score
Loss of heterozygosity (LOH), telomeric allelic imbalance 
(TAI), and large-scale state transition (LST) scores were 
calculated as described by Telli et al. [47]. ScarHRD was 
used to generate allelic imbalance profiles [48].

Phylogenetic tumor evolution
Phylogenetic trees were inferred using PyClone [49] (ver-
sion 0.13.1) using shared variants among samples for 
each patient, adjusted by tumor purities calculated by 

sclust. Phylogenetic trees were prepared using the Clo-
nEvol [50] (version 0.99.11) package in R (version 4.0.3). 
Three cfDNA and two tumor WES samples had to be 
removed to complete the ClonEvol analysis.

TF‑binding site analysis
Regions with differential cfDNA occupancy were called 
with NucTools [51] similarly to our previous works 
[52–54] as detailed below. cfDNA occupancy was aver-
aged within each 10-kb genomic window and normalized 
by the sequencing depth of that sample, taking into this 
analysis only DNA fragments with sizes 120–180 bp to 
account for the nucleosome protection. We determined 
regions which have stable nucleosome occupancy in a 
given condition (pre-treatment, post-treatment, progres-
sion) based on the criterion that the relative deviation 
of the normalized cfDNA occupancies of all individual 
samples with this condition determined on step 1 is < 0.5 
[51]. For genomic regions which have stable nucleosome 
occupancy both in pre-treatment and in post-treatment 
conditions, we performed pairwise comparisons of the 
averaged normalized occupancies. We defined as “gained-
nucleosome regions” regions the genomic regions where 
averaged normalized occupancy increased post-treat-
ment versus pre-treatment (requiring the relative change 
of the average normalized occupancy > 0.4). Similarly, we 
defined regions where averaged normalized occupancy 
decreased post-treatment versus pre-treatment as “lost-
nucleosome regions” (again, requiring the relative change 
of the average normalized occupancy > 0.4). This resulted 
in 267 and 342 regions where cfDNA occupancy corre-
spondingly decreased or increased post-treatment.

These regions were then analyzed with MEME-ChIP 
[55] to determine transcription factors (TFs) which show 
enrichment of binding sites associated with differential 
nucleosome occupancy. The locations of binding sites of 
these TFs inside regions with differential cfDNA occu-
pancy were then determined with RSAT [56]. Aggregate 
profiles of cfDNA occupancy around these binding sites 
were calculated with HOMER [57]. Analysis of bind-
ing sites of TFs experimentally profiled by chromatin 
immunoprecipitation sequencing (ChIP-seq) was done 
by finding motifs of the corresponding transcription fac-
tors inside ChIP-seq peaks with the help of gimme [58]. 
ChIP-seq data for CTCF binding in A549 SCLC cell 
line was obtained from GEO accession GSE175135 [59]; 
CTCF binding in healthy lung cells from GSE175135 
[59]. REST ChIP-seq dataset in A549 cells was obtained 
from GSM1010749 [60]. ASCL1 ChIP-seq in SCLC 
cell line DMS-53 without treatment was obtained from 
GSE179072 [61]. Inference of TF activity from cfDNA 
was also performed using the TranscriptionFactorProfil-
ing tool [62] with default settings based on the top 50% 
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NEUROD1 binding sites defined in the Gene Transcrip-
tion Regulation Database (GTRD) [63]. To quantify the 
activity of TFs, we used the calculated sequencing depth 
value at the center of the transcription factor binding site 
(TFBS).

Graph generation, statistical analysis, and code availability
All figures were generated using Origin Pro 2021 and 
2024 (originlab.com), GraphPad PRISM software ver-
sion 8.1.2 (GraphPad Software), R version 1.2.135 (R 
Foundation for Statistical Computing), and STATA soft-
ware version 16.0 (Stata-Corp). All statistical tests were 
two-sided. P value < 0.05 was considered as statistically 
significant.

Results
SCLC patients have higher plasma cfDNA compared 
to patients with other solid tumors
cfDNA was extracted from the plasma collected at 
the pre-specified timepoints. The yield of cfDNA in 
our cohort was markedly higher than non-small cell 

lung cancer and breast cancer [64, 65]. We performed 
sparse WGS (~ 0.1 × coverage) and used a previously 
validated analytical approach [64] to estimate tumor 
fraction based on somatic copy number alterations 
(SCNAs) in cfDNA while accounting for subclonality 
and tumor ploidy. Using this approach, cfDNA tumor 
fraction spanned a broad range (median [interquartile 
range] cfDNA tumor fraction: 37.0% [11.0–49.0%]). 
However, all samples had detectable tumor DNA, 
and a high proportion of samples yielded tumor fac-
tion of > 10% (37/49, 75.5%). Most samples with lower 
cfDNA tumor fraction (< 10%) were collected after 
treatment from patients who achieved complete or 
partial responses (n = 7), or from a patient whose 
tumor was found to have a component of atypical car-
cinoid (n = 2). In comparison, a cohort of castration-
resistant prostate cancer patients examined using a 
similar approach showed much lower tumor fraction 
(13.0% [4.0%−38.0%]) [66], and only 42% of patients 
with metastatic triple-negative breast cancer had 
tumor fraction of > 10% [67] (Fig. 2A).

Fig. 2 Mutation profiles are highly concordant between cfDNA and tumor. A cfDNA tumor fraction in healthy donors and patients with CRPC, 
MBC, and SCLC. ****: P < 0.0001 by Kruskal–Wallis test followed by Dunn’s multiple comparison test. B TMB between cfDNA and tumor samples. 
ns: P > 0.05 by Mann–Whitney U test. C, D Distributions of SNVs in cfDNA (C) and tumor (D). E Clinical characteristics, TMB, SNVs, and SCNAs 
in cfDNA and tumor. Abbreviations: cfDNA: circulating cell-free DNA; CRPC: castration resistant prostate cancer; MBC: metastatic breast cancer; 
TMB: tumor mutational burden; ns: not significant; SNV: single nucleotide variant; CNV: copy number variant; TIL: tumor infiltrating lymphocytes; 
CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease; NA: not assessed; SCNA: somatic copy number alteration; 
SCLC: small cell lung cancer; Ins: insertion; Del: deletion. The genes in the heatmap are recurrently altered genes in SCLC [23, 68]. Platinum-sensitive 
is defined as disease progression ≥ 90 days after first-line platinum–based chemotherapy, and platinum-resistant as disease progression < 90 days 
or during first-line chemotherapy. TIL was evaluated by immunohistochemistry staining [34]
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Mutation and copy number profiles are highly concordant 
between cfDNA and tumor
The observation that nearly every patient with SCLC had 
detectable cfDNA prompted us to examine how well the 
plasma cfDNA captured the tumor genomic features, a 
question particularly relevant in SCLCs which are dif-
ficult to biopsy. We performed WES of tissue samples 
with > 10% tumor fraction (average depth of 131X). 
Tumor fraction estimates from WES and the initial 
low-pass WGS were highly correlated with each other 
(Spearman’s r = 0.80, P < 0.0001; Additional file  1:Fig. 
S2). WES identified a total of 40,354 (median: 1229 per 
sample) somatic single-nucleotide variants (SNVs) and 
20,430 (median: 513 per sample) insertion or deletion 
(indels) among the 37 cfDNA samples with tumor faction 
of > 10%. This amounted to an average mutation rate of 
11.85 mutations per megabase (range: 1.36–21.3) which 
was similar to that of tumors (Fig.  2B). The mutation 
burden of the cohort was higher than other cancer types 
(Additional file 1:Fig. S3A). G > T transversions were the 
most common mutations in both cfDNA and tumors, 
reflecting the mutagenic impact of tobacco smoking in 
SCLC tumorigenesis [69] (Fig.  2C, D, Additional file  1: 
Fig. S3B). Mutations and SCNAs were highly concordant 
between cfDNA and tumors (Fig.  2E, Additional file  1: 
Fig. S3C). Mutations and/or copy loss of TP53 and RB1 
were found in majority of plasma and tumor (55 of 61 
[90.2%] and 51 of 61, [83.6%], respectively), consistent 
with the frequent inactivation of these genes in SCLC 
[23]. Recurrent mutations and SCNAs of Myc paral-
ogues (MYC, MYCL, MYCN), Notch genes (NOTCH1, 
NOTCH2), cell cycle regulators (ATM, ATRX, CDH8, 
CDKN2A), and chromatin modifiers (ARID1A, KMT2B, 
KMT2C, KMT2D, EP300) were identified in both cfDNA 
and tumors. Yet, there were several genes important 
for SCLC tumorigenesis and metastasis [68] that were 
recurrently mutated in cfDNA, but not detected in the 
corresponding tumor samples, such TP53 and KMT2B 
(CL0147) and NF1 (CL0191) (Fig. 2E).

Consistent with the known SCNA landscape of SCLCs 
[23, 68], deletions in chromosome 3p and 10q, and gains 
in 1p, 2p, 8q were recurrently observed in both cfDNA 
and tumors (Fig.  3A). SCNAs were highly concord-
ant between cfDNA and tumors in timepoint-matched 
samples (median [range] Spearman’s r = 0.81 [0.45–
0.94], P < 0.0001 in all pairs) (Fig.  3B and C), and sam-
ples from the same patients obtained at different time 
points (median [range] Spearman’s r = 0.79 [0.37–0.94], 
P < 0.0001 in all pairs, Fig.  3B and D), pointing to the 
limited evolution of SCNA with treatment. Finally, we 
assessed whether mutational signatures derived from 
genome-wide mutation and SCNA profiles might be 
comparable between plasma and tumor. These signatures 

hint at the causative origins of cancer, including infidel-
ity of the DNA replication machinery, mutagen expo-
sures, enzymatic modification of DNA, and defective 
DNA repair [40]. The distribution of mutational signa-
tures in the plasma and tumor were highly concordant, 
with enrichment of tobacco-related single base substitu-
tions (SBS) 4 and 5 dominant in both. The mutational sig-
nature profiles were also similar among cfDNA samples 
collected at different timepoints (Fig. 3E–G). HRD score 
estimated by tumor LOH, TAI and LST scores predicts 
efficacy of PARP inhibitors [47]. HRD scores evaluated 
by cfDNA and tumor samples were highly concordant 
between the tumor and plasma (Fig. 3H). Together, these 
observations show that plasma cfDNA recapitulates the 
tumor mutations and SCNAs, and genome-wide signa-
tures that incorporate these features. In addition, cfDNA 
may capture key genomic alterations missed in small 
tumor biopsies.

cfDNA tracks the clinical course and reveal mechanisms 
of treatment response and resistance
Given the detectable levels of cfDNA in a high proportion 
of SCLC patients, with the broad dynamic range between 
patients, we assessed whether the cfDNA profiling could 
predict tumor burden. We performed volumetric seg-
mentation, a three-dimensional assessment of computed 
tomography that may more accurately predict clinical 
outcomes than conventional evaluation by RECIST [70]. 
The cfDNA tumor fraction was significantly positively 
correlated with volumetric measurements evaluated by 
timepoint-matched computed tomography (Spearman’s 
r = 0.66 P < 0.0001, Fig. 4A).

Given previous studies reporting shortening of cfDNA 
fragments in cancer [71–73], we analyzed the distribu-
tion of DNA fragment lengths to predict tumor burden 
(Additional file 1:Fig.S4). We considered cases with avail-
able plasma at all the three time points (pre-treatment, 
post-treatment, and disease progression), excluded sam-
ples with low cfDNA fraction, and used predictive met-
rics based on peaks heights of the size distribution: DNA 
fragments protected by the chromatosome (sizes around 
165 bp), nucleosome core-particle (sizes around 150 bp), 
and TF binding (sizes around 50 bp) (Additional file 1:Fig.
S4A). We calculated the ratio of the heights of chromato-
some/nucleosome and chromatosome/TF peaks of the 
fragment size distribution. The ratio was shifted towards 
larger number of longer fragments after treatment, but 
this effect was not statistically significant over treatment 
time course for this patient cohort (Additional file 1:Fig. 
S4B and S4C).

Next, we assessed whether cfDNA profiles were asso-
ciated with clinical characteristics and prognosis. Using 
the median pre-treatment cfDNA tumor fraction within 
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the cohort, we divided the patients into low (n = 10) or 
high (n = 10) cfDNA tumor fraction groups. No signifi-
cant differences were found in age, sex, smoking status, 
stage at diagnosis, and platinum-sensitivity between the 
two groups (Additional file  1:Table  S1). However, pro-
gression-free survival (PFS) and overall survival (OS) 
durations were significantly longer in patients with low 
cfDNA tumor fraction than those with high cfDNA 
tumor fraction (median [95% confidence interval, CI] PFS 
and OS in low vs. high cfDNA tumor fraction groups: 2.1 
months [0.9–11.0] vs. 1.0 months [0.7–1.8], p = 0.009; 
7.5 months [1.4–not estimable] vs. 3.5 months [0.7–4.4], 
p = 0.010, respectively, Fig. 4B and C). After adjusting for 
covariates (age, sex, platinum-sensitivity) using a multi-
variate Cox proportional hazards model, cfDNA tumor 

fraction at baseline was an independent determinant of 
PFS and OS (Additional file 1:Table S2 and Table S3).

We then examined whether cfDNA tumor fraction 
can track tumor response or progression. As indicated 
in Fig. 4D, cfDNA tumor fraction declined or stabilized 
at low levels in patients who achieved complete or par-
tial response to treatment. Marked reduction of cfDNA 
tumor fraction was observed in patients who achieved 
complete (NCI0422, Fig.  4E) or partial (CL0126, Addi-
tional file  1:Fig S5A) tumor responses. Both patients 
developed brain-only disease progression, but nota-
bly showed no detectable signals in the plasma (Fig. 4E, 
Additional file 1: Fig. S5A), suggesting that this approach 
may not be sensitive enough to detect intracranial tumor 
shedding. In contrast, cfDNA tumor fraction significantly 

Fig. 3 Somatic copy number alterations (SCNAs) and mutational signature profiles are highly concordant between circulating cell-free DNA 
(cfDNA) and tumor. A Heatmap of SCNAs in cfDNA and tumor. In each row, samples from each patient are aligned tumor followed by cfDNA 
from top to bottom as indicated on the left. B Spearman’s coefficients of correlations between cfDNA and tumor SCNA at matched or different 
time points. C Representative correlation of SCNAs between pre-treatment tumor (x-axis) and pre-treatment cfDNA (y-axis) in patient CL0106. 
Spearman’s correlation coefficient (R) and P value are indicated. D Representative correlation of SCNAs between pre-treatment cfDNA (x-axis) 
and post-treatment cfDNA (y-axis) in patient CL0106. Spearman’s correlation coefficient (R) and P value are indicated. E Clinical characteristics, 
TMB, HRD score, and mutational signature profiles in cfDNA and tumor COSMIC mutational signature version 3.2 [40] is computed and shown 
in the heatmap. Platinum-sensitive defined as disease progression ≥ 90 days after first-line platinum-based chemotherapy, and platinum-resistant 
disease progression < 90 days or during first-line chemotherapy. F Correlation of mutational signature proportions between tumor (x-axis) 
and cfDNA (y-axis). G Distribution of Jaccard index of mutational signatures between cfDNA and tumor at matched or different time points. 
H Correlation of HRD scores in pre-treatment cfDNA (x-axis) and tumor (y-axis). Abbreviations: SCNA: somatic copy number alteration; cfDNA: 
circulating cell-free DNA; cfDNA: circulating free DNA; SCNA: somatic copy number alteration; TMB: tumor mutational burden; HRD: homologous 
recombination repair deficiency; TIL: tumor infiltrating lymphocytes; CR: complete response; PR: partial response; SD: stable disease; PD: progressive 
disease; NE: not evaluable; NA: not assessed; COSIMIC: Catalogue of Somatic Mutations in Cancer: Psensitive: platinum sensitivity; prior IO: prior 
immunotherapy
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increased over time in patients with non-responding 
tumors (Additional file 1:Fig. S5B). In a patient who had 
a minor radiographic response of a pleural lesion fol-
lowed by rapid progression in liver (total volumetric 
measurements: from 47.2  cm3 to 44.2  cm3 to 205.1  cm3 
pre-treatment, post-treatment, and disease progression, 
respectively), the cfDNA tumor fraction tracked these 
radiographic changes (CL0116, Additional file  1:Fig. 
S5C). The cfDNA tumor fraction in a patient who had 
disease progression as best response steadily increased 

through treatment time course (CL0124, Additional 
file 1:Fig. S5D).

Given that SCLC responds poorly to immunothera-
pies despite its highly mutated genome [74], we sought to 
identify potential mechanisms of immunotherapy resist-
ance from cfDNA. Truncating mutation of B2M (B2M 
Asn103fs), a known resistance mechanism to immune 
checkpoint blockade [75, 76], was identified in the cfDNA 
of a patient who did not respond to treatment (CL0191, 
Fig.  4F). Notably, the cfDNA mutation allele frequency 

Fig. 4 cfDNA tracks the clinical course and reveal mechanisms of treatment response and resistance. A Correlation between cfDNA tumor 
fraction and volumetric measurements in time point-matched computed tomography. The y-axis (volumetric measurement) is logarithm 
transformed. B, C Kaplan–Meier curves of PFS (B) and OS (C) in patients with high vs. low cfDNA tumor fraction. High or low cfDNA tumor 
fraction is defined as patients whose cfDNA tumor fraction is higher or lower than the median of the cfDNA tumor fraction among all 20 samples 
pre-treatment. P values are evaluated by log-rank test. D Changes of cfDNA tumor fractions in patients who had CR or PR as best response. 
E Changes of cfDNA tumor fraction (red solid line, left y-axis) and radiological volumetric tumor measurement (green dash line, right y-axis) 
through treatment time course in a patient who had CR followed by brain only progression (NCI0422). Red circles in CT images indicate right 
supraclavicular lymph node metastases. F, G CT images of para-aortic lymph node metastasis (top, light blue arrowheads), left breast metastasis 
(bottom, small yellow arrowheads), and left mediastinal lymph node metastasis (bottom, large yellow arrowheads) in a patient who had PD 
as best response and with B2M Asn103fs variant in cfDNA and tumor (CL0191). “Bx” in panel F indicates the biopsy site for tumor sequencing. 
MAF changes of the B2M Asn103fs variant from pre-treatment to post-treatment cfDNA is indicated in panel G. P value is evaluated by Fisher’s 
exact test. H Comparison of HRD scores derived from pre-treatment cfDNA between patients with SD or PD (= Non-responder, NR) vs. those 
with CR or PR (= Responder, R). P value is evaluated by Mann–Whitney U test. Abbreviations: cfDNA: circulating cell-free DNA; Tfx: tumor fraction; 
PFS: progression-free survival; OS: overall survival; CI: confidence interval; m: months; SCLC: small cell lung cancer; CR: complete response; PR: 
partial response; SD; stable disease; PD: progressive disease; HRD: homologous recombination repair deficiency; CT: computed tomography; MAF; 
mutation allele frequency; Bx: biopsy; cfDNA; circulating free DNA
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(MAF) of the B2M variant significantly increased at dis-
ease progression compared with baseline (from 17.6 to 
64.9%, p < 0.0001 by Fisher exact test, Fig. 4G). Although 
anecdotal, this observation suggests clonal expansion of 
B2M as a potential resistant mechanism. Consistent with 
the synthetic lethality of PARP inhibition in HRD tumors 
[77], a cfDNA-derived HRD score [47] was significantly 
higher in patients who achieved tumor responses com-
pared with those who did not (median [range] HRD score 
in responder vs. non-responder: 58 [38–59] vs. 26 [12–
50], respectively, P = 0.019, Fig. 4H). Together, profiling of 
cfDNA can predict SCLC tumor burden, non-invasively 
track the disease course, and discover mechanisms of 
treatment response and resistance.

Longitudinal profiling of cfDNA reveal SCLC clonal 
architecture and track treatment responses
Since longitudinal tumor biopsies are not practical in the 
setting of the generally rapid progression of SCLC, the 
evolutionary patterns of SCLC under treatment pres-
sure remain poorly understood. By sampling cfDNA 
and tumors at multiple timepoints, we evaluated the 
clonal evolution of SCLC through the treatment course. 
Phylogenic analyses revealed linear evolution in 18 of 
19 patients whose longitudinal samples were success-
fully processed, indicating a genetic landscape that does 
not change markedly over treatment time course and is 
dominated by truncal clones harboring alterations of 
TP53 and RB1. Prior studies have also reported low sub-
clonal diversity in SCLC [23, 78]. However, there were 
few notable exceptions. In a patient who achieved com-
plete response followed by recurrence in the brain 1 
year after the treatment initiation (NCI0422), a relatively 
higher proportion of unique mutations were identified in 
the relapsed tumor compared with either pre-treatment 
cfDNA or tumor, whereas the pre-treatment samples 
harbored clonally similar cell populations (Fig.  5A and 
B). The median MAFs among mutations in the subclone 
increased at disease progression, indicating the expan-
sion of the clone through acquired resistant mechanisms 
with the treatment (Fig.  5C). On the other hand, the 
majority of mutations were shared between cfDNA and 
tumor obtained at multiple time points in a patient who 
did not respond to treatment (CL0116, Fig.  5D and E). 
Three genomic clones were identified and their MAFs did 
not change over treatment time course (Fig. 5F).

Similar findings have been described in the context of 
chemotherapy wherein patients with clinical response to 
first-line platinum-based chemotherapy exhibited a sig-
nificant increase in subclonal mutations when comparing 
tumors before treatment and at relapse [79]. In contrast, 
the number of subclonal mutations in specimens before 
and after chemotherapy from patients with refractory 

SCLC did not differ significantly. Together, the sub-
clonal architecture of SCLC profiled non-invasively using 
cfDNA demonstrates a generally linear evolution with 
treatment, pointing to non-genetic mechanisms such as 
transcriptional plasticity [29, 80] in most cases.

cfDNA occupancy at TFBS predicts SCLC phenotypes 
and treatment response
DNA is protected from nuclease digestion through its 
association with a nucleosome core particle and other 
chromatin proteins (Additional file 1:Fig.S4A) and there-
fore it may be possible to infer differences in TF binding 
between different medical conditions from cfDNA [62, 
71, 81]. We analyzed differential occupancy of cfDNA at 
TFBS using our recently described approach [53]. First, 
we identified loci with largest changes of cfDNA occu-
pancy by scanning the genome with 10,000 base-pair (bp) 
sliding window and identifying regions which have simi-
lar cfDNA occupancy across all samples with the same 
condition (pre- or post-treatment), but significant change 
in occupancy post-treatment versus pre-treatment. Fol-
lowing these criteria (detailed in “Methods”), we iden-
tified 267 and 342 regions where cfDNA occupancy 
decreased or increased respectively post-treatment.

The regions with altered cfDNA occupancy were ana-
lyzed for enrichment of TFBS (Additional file 1:Table S4) 
and aggregate profiles of cfDNA occupancy calculated 
around these TFBS (Additional file 1:Fig. S6A and S6B). 
Interestingly, for the class of regions where cfDNA occu-
pancy increased post-treatment, it usually declined at the 
time of disease progression but remained higher than 
at pre-treatment levels. Among the individual TFs with 
marked differences in cfDNA occupancy over the treat-
ment course, the most prominent were NRF1 and REST 
(Fig. 6A and B), which are known to co-localize on DNA 
binding sites, with REST facilitating NRF1 occupancy 
by promoting local DNA hypomethylation [82]. Plotting 
cfDNA occupancy profiles for patients from our cohort 
around sites bound by REST in SCLC cell line A549 
showed clear distinction of the pre-treatment profile 
from post-treatment and disease progression (Fig.  6C). 
Binding sites of the chromatin organizer protein CTCF 
and its close paralog BORIS also showed distinct changes 
pre- and post-treatment (Fig. 6D and E, Additional file 1: 
S6C and S6D), suggesting the potential impact of treat-
ment on three-dimensional genome organization.

We also separated our cohort into two groups based 
on platinum sensitivity and analyzed cfDNA occupancy 
at TFBS. Higher REST occupancy was seen at disease 
progression in platinum-resistant compared with plat-
inum-sensitive cases (Fig.  6F). NEUROD1 occupancy 
also changed over the treatment time-course, with 
numerically higher occupancy at disease progression 
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in platinum-resistant compared with platinum-sensi-
tive cases (Fig.  6G, Additional file  1: Fig. S6E). Of note, 
average GC content was not different genome-wide and 
in regions with differential cfDNA occupancy, suggest-
ing that GC content did not confound the analysis of 
cfDNA occupancy (Additional file 1:Fig.S6F). The regions 
with differential cfDNA occupancy defined above also 
had very limited overlap with CNVs (only ~ 11% over-
lap with regions undergoing amplifications with  log2fold 
change > 1). Thus, CNV-based and cfDNA occupancy-
based analyses are complementary. The average cfDNA 
occupancy profiles were also not different between 
samples with high or low cfDNA tumor fraction (Addi-
tional file  1:Fig. S6G and S6H). Together, cfDNA TFBS 

occupancy analysis showed distinct treatment-related 
changes, which may reflect the impact of treatment on 
the transcriptional landscape.

The analysis performed above gave equal weights 
to binding sites of a given TF even if some sites con-
tained weaker DNA binding motifs. To check whether 
TFBS strength influences this analysis, we also profiled 
SCLC-specific TFs using a recently proposed nucleo-
some footprint analysis method [62] which takes into 
account top 50% strongest TFBS from GTRD [63]. Using 
this approach, binding site accessibility of NEUROD1, 
an SCLC lineage defining TF [29], was significantly cor-
related with NEUROD1 gene expression in the corre-
sponding time point matched tumor (Spearman’s r = 

Fig. 5 Longitudinal profiling of cfDNA reveal SCLC clonal architecture and track treatment responses. A Mutation frequencies of variants at different 
time points in cfDNA and tumor from a patient who achieved complete response followed by brain only progression (NCI0422). B Correlations 
of mutation frequencies between cfDNA vs. tumor pre-treatment (top) and pre-treatment vs at disease progression tumors (bottom) in a patient 
who achieved complete response followed by brain only progression (NCI0422). Spearman’s coefficients (R) and P values are indicated. C 
Visualization of genomic clones through treatment time course in a patient who achieved complete response followed by brain only progression 
(NCI0422). D Mutation frequencies of variants at different time points in cfDNA and tumor in a patient who had disease progression as the best 
response (CL0116). E Correlations of mutation frequencies between pre-treatment vs. post-treatment tumors (top), pre-treatment tumor vs. cfDNA 
(middle), and cfDNA pre-treatment vs at disease progression (bottom) in a patient who had disease progression as the best response (CL0116). 
F Visualization of genomic clones through treatment time course in a patient who had disease progression as the best response (CL0116). 
Abbreviations: cfDNA: circulating cell-free DNA; cfDNA: circulating free DNA; SCLC: small cell lung cancer; Mut. freq: mutation frequency; MAF: 
mutation allele frequency
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− 0.58, P = 0.0003; higher cfDNA read depth indicates 
less binding of TFs predicting less gene expression) 
(Fig. 6 J). Consistent with MYC driving the NEUROD1-
high SCLC subtype [29, 83, 84], increased accessibility 

of NEUROD1 in cfDNA was associated with upregula-
tion of MYC transcriptional targets in the correspond-
ing tumors (Spearman’s r = − 0.51, P = 0.0030) (Fig.  6 
K). Binding site accessibility of REST, a transcriptional 

Fig. 6 cfDNA transcription factor occupancy predicts SCLC phenotypes and treatment response. A–E Aggregate cfDNA occupancy profiles 
around binding sites of NRF1,REST, and CTCF pre-treatment (red), post-treatment (black) and at disease progression (blue). A Computationally 
predicted NRF1 binding sites inside regions which where cfDNA occupancy increases post-treatment. B cfDNA occupancy profiles 
around computationally predicted REST binding sites inside regions where cfDNA occupancy increases post-treatment. C cfDNA occupancy 
profiles around experimentally determined REST binding sites in A549 SCLC cells. D cfDNA occupancy profiles around CTCF binding motifs 
inside experimentally determined CTCF binding sites in A549 SCLC cells. E cfDNA occupancy profiles around a subset of CTCF binding sites from D, 
which do not overlap with CTCF sites bound in healthy lungs. F, G cfDNA occupancy at TFBSs of REST and NEUROD1. TFBSs occupancies are shown 
for the three time points of individual patients, along with group averages. Patients were split into two groups which were sensitive (grey circles 
and connecting lines) and resistant (red circles and lines) to platinum-based chemotherapy. Top: individual TFBS activity in REST (F) or NEUROD1 
(G) are shown. Bottom: averages within the groups of platinum-sensitive (Pt-sensitive) and resistant (Pt-resistant) in REST (F) or NEUROD1 (G) are 
shown. REST sites are defined based on chromatin immunoprecipitation sequencing in A549 cells. NEUROD1 motifs are defined computationally 
inside regions with increased cfDNA occupancy post-treatment vs pre-treatment. Platinum-sensitive defined as disease progression ≥ 90 days 
after first-line platinum-based chemotherapy, and platinum-resistant disease progression < 90 days or during first-line chemotherapy. P values 
are evaluated by Mann-Whitney U test. H, I cfDNA occupancy profiles at different timepoints around computationally predicted TP53 binding 
sites inside regions which have increased cfDNA occupancy post-treatment, in samples with (H) vs. without (I) mutations in TP53. J Correlation 
between cfDNA read depth of NEUROD1 binding sites (x-axis) and NEUROD1 gene expression (TMM-FPKM) in timepoint-matched tumors (y-axis). 
Higher read depth indicates less TF binding, predicting less gene expression. K Correlation between NEUROD1 cfDNA read depth at TFBS (x-axis) 
and the PID_MYC_ACTIV_PATHWAY scores by ssGSEA in timepoint-matched tumors (y-axis). Higher read depth indicates less TF binding, predicting 
less gene expression. L Correlation between cfDNA read depth at TFBS (x-axis) and gene expression of tumor RNA sequencing (TMM-FPKM, 
y-axis) in the gene REST. Higher read depth indicates less TF binding, predicting less gene expression. M A Kaplan-Meier curve of PFS in patients 
with high vs. low predicted REST expression. N Correlation between cfDNA tumor fraction and nucleosome occupancy at ASCL1 binding sites, 
the pre-treatment samples. Pearson’s r = −0.61, P = 0.03. High vs. low predicted REST expression is defined as higher or lower than median predicted 
REST expression by cfDNA read depth among 13 patients whose pre-treatment cfDNA was successfully processed for the TFBS analysis. Higher 
predicted REST expression was defined as lower read depth and vice versa, given that higher read depth indicates less TF binding, predicting 
less gene expression. P value is evaluated by Log-rank test. Abbreviations: cfDNA: circulating cell-free DNA; bp: base pair; TFBS: transcriptional factor 
binding site; Pt: platinum-based chemotherapy; TMM-FPKM: Trimmed Mean of M-values-normalized Fragments per kilo base per million mapped 
reads; ssGSEA; single sample gene set enrichment analysis; PFS; progression-free survival; HR: hazard ratio; CI: confidence interval
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repressor of neuroendocrine differentiation [29, 84] 
was higher in cfDNA corresponding to tumor samples 
with increased REST expression (Spearman’s r = − 0.33, 
P = 0.061, Fig. 6L). Importantly, patients with higher pre-
dicted REST expression based on lower REST read depth 
in cfDNA had prolonged PFS following immunotherapy 
than patients with lower predicted expression (Fig. 6 M). 
REST binding site accessibility was not associated with 
OS (Additional file 1:Fig. S7). These results are consistent 
with recent observations of low neuroendocrine SCLC 
differentiation driven by Notch signaling which targets 
REST being predictive of benefit from immunotherapy-
based approaches, but not a prognostic marker [31, 33]. 
Another important TF that determines SCLC subtypes 
is ASCL1 [85]. We made use of a recent ASCL1 ChIP-
seq dataset reported for SCLC cells [61]. Similar to many 
other TFs that we investigated, the cohort-average nucle-
osome profiles around ASCL1 binding sites were consist-
ently similar between different time points. Interestingly, 
ASCL1 appeared to be a good predictor of cfDNA tumor 
fraction of individual patients. Nucleosome occupancy at 
ASCL1 binding sites was anticorrelated with cfDNA frac-
tion, which was particularly pronounced pre-treatment 
(Pearson’s r = − 0.61, P = 0.03) (Fig.  6N). Post-treatment 
and in disease progression, the anticorrelation of nucleo-
some occupancy at ASCL1 binding sites remained but 
was not statistically significant (Additional file 1:Fig.S8). 
This suggests that ASCL1-related transcription program 
has strongly changed after treatment. Thus, TFBS occu-
pancy/accessibility estimation derived from cfDNA can 
inform prediction of SCLC neuroendocrine phenotypes 
and treatment response.

Discussion
There are few systematic comparisons of the effective-
ness of cfDNA at elucidating tumor-derived molecular 
features relative to standard single-lesion tumor biop-
sies in prospective cohorts of patients. The use of plasma 
instead of tissue to guide therapy is a particularly attrac-
tive alternative for patients with SCLC [86–89], driven by 
transcription addiction, and whose clinical course makes 
it exceedingly challenging to obtain tumor biopsies. Here, 
in a prospective cohort of molecularly defined patients 
with recurrent SCLC, treated uniformly with an immu-
notherapy-based combination, we find that cfDNA not 
only mirrored the mutation and copy number landscape 
of the tumor, but also its genomic signatures, while also 
detecting clinically relevant resistance mechanisms, and 
cancer driver alterations not found in matched tumor 
biopsies. Our study also confirmed previous observa-
tions of high cfDNA tumor fraction in patients with 
SCLC compared with other solid tumors [15], as well as 
the utility of longitudinal cfDNA analysis to reliably track 

tumor response and progression, and reveal mechanisms 
of treatment response and resistance [90]. cfDNA tumor 
fraction in patients with CR or PR was overall decreased 
post-treatment (Fig.  4D), whereas increased in patients 
with SD or PD (Additional file  1:Fig.S5B). Although 
further studies with large sample size are required, it 
suggests that a potential of prediction of radiological 
response using cfDNA.

Most applications of cfDNA to date are gene-centric 
focusing on somatic variants and are of limited utility 
when tumor mutations are not known a priori and in 
tumors driven by dysregulated transcriptional programs. 
We find that cfDNA TF binding profiles are reflective of 
the altered transcriptional landscape in response to treat-
ment (before vs. after treatment vs. tumor progression) 
and chemo-sensitivity (platinum sensitive vs. resistant). 
We find a striking association between cfDNA accessi-
bility of NEUROD1 inferred from nucleosome footprint 
analysis and expression of NEUROD1 in the correspond-
ing tumor. A similar trend was observed between REST 
accessibility and expression, which defined tumors with 
low neuroendocrine differentiation and higher likelihood 
of response to immunotherapy [31, 33]. Another impor-
tant finding is that nucleosome occupancy at binding 
sites of ASCL1 shows strong anticorrelation with cfDNA 
fraction. Both NEUROD1 and ASCL1 have been pro-
posed previously as critical markers for SCLC subtyping 
[85]. NEUROD1, ASCL1, and REST binding sites have 
been used recently for SCLC subtyping based on targeted 
high-coverage cfDNA sequencing combined with gene 
expression [89]. Our finding that TFBS can be used for 
the analysis of liquid biopsies with ultra-low sequencing 
coverage of cfDNA provides an important step forward 
to affordable tumor subtyping based on cfDNA that does 
not require explicit knowledge of gene expression. Our 
TF analyses are not limited to classical SCLC markers, 
as shown for a number of TFs enriched in regions with 
differential nucleosome occupancy, and an observation 
that binding sites of CTCF and BORIS are very sensitive 
hotspots of differential cfDNA coverage in SCLC. SCLC 
tumors exhibit distinct inter-tumor heterogeneity with 
respect to expression of neuroendocrine features, driven 
by expression of lineage TFs [29, 33]. Whether the sub-
types engender specific therapeutic vulnerabilities is an 
area of active investigation [30–33]. A major barrier to 
clinical validation of the proposed subtypes is the limited 
availability of high-quality tumors for molecular analy-
ses. The number of available sequenced cfDNA datasets 
from different cancer subtypes reported by different labs 
continues to increase exponentially [91], thus the clinical 
validation of this study can be expected quite fast. Our 
findings—the distinction between SCLC neuroendocrine 
phenotypes based on cfDNA accessibility of binding sites 
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of TFs such as REST, ASCL1, and NEUROD1—could 
allow for noninvasive characterization and treatment for 
patients.

Our cohort was limited by the small sample size, of 
whom only few patients had clinical benefit from the 
treatment [34]. Post-treatment plasma was collected 
approximately 2 weeks after treatment initiation, which 
might not have enough time to examine genomic dynam-
ics through treatment time course. Future studies are 
needed to validate these findings in a general SCLC 
population and in other tumor types. Nevertheless, our 
cohort represents a prospective population, and the col-
lection and processing of all samples was performed in 
a systematic fashion, ensuring homogeneity of pre-ana-
lytical characteristics and careful control of experimen-
tal and analytical variables. Targeted cfDNA sequencing 
approaches enriching cfDNA fragments covering known 
transcription start sites across the genome or binding 
sites of SCLC-specific TFs might make this approach 
more amenable to clinical application.

Conclusions
By direct comparisons of cfDNA versus tumor biopsy, 
we offer insights into non-invasive stratification and sub-
type-specific therapies for SCLC, now treated as a single 
disease, and has broad implications for mapping tumor-
specific transcription factor binding on blood samples. 
Further studies with large cohort in a prospective man-
ner are warranted.
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