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Abstract 

Background  We recently reported non-coding variants in a cis-regulatory element of the beta-cell disallowed 
gene hexokinase 1 (HK1) as a novel cause of congenital hyperinsulinism. These variants lead to a loss of repression 
of HK1 in pancreatic beta-cells, causing insulin secretion during hypoglycaemia. In this study, we aimed to determine 
the prevalence, genetics, and phenotype of HK1-hyperinsulinism by screening a large international cohort of patients 
living with the condition.

Methods  We screened the HK1 cis-regulatory region in 1761 probands with hyperinsulinism of unknown aetiology 
who had been referred to one of three large European genomics laboratories.

Results  We identified a HK1 variant in 89/1761 probands (5%) and 63 family members. Within the Exeter HI cohort, 
these variants accounted for 2.8% of all positive genetic diagnoses (n = 54/1913) establishing this as an impor‑
tant cause of HI. Individuals with a disease-causing variant were diagnosed with hyperinsulinism between birth 
and 26 years (median: 7 days) with variable response to treatment; 80% were medically managed and 20% underwent 
pancreatic surgery due to poor response to medical therapy. Glycaemic outcomes varied from spontaneous remis‑
sion to hypoglycaemia persisting into adulthood. Eight probands had inherited the variant from a parent not reported 
to have hyperinsulinism (median current age: 39 years), confirming variable penetrance. Two of the 23 novel HK1 vari‑
ants allowed us to extend the minimal cis-regulatory region from 42 to 46 bp.

Conclusions  Non-coding variants within the HK1 cis-regulatory region cause hyperinsulinism of variable severity 
ranging from neonatal-onset, treatment-resistant disease to being asymptomatic into adulthood. Discovering variants 
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in 89 families confirms HK1 as a major cause of hyperinsulinism and highlights the important role of the non-coding 
genome in human monogenic disease.

Keywords  Congenital hyperinsulinism, Non-coding, Hexokinase 1, Monogenic disease, Variable penetrance

Background
The HK1 gene encodes the glycolytic enzyme hexokinase 
1 which is expressed across all human tissues except for 
the pancreas and liver [1]. Silencing of HK1 in pancreatic 
beta-cells is essential for appropriate glucose sensing and 
glucose-induced insulin secretion which instead is con-
trolled by glucokinase (GCK or hexokinase 4), an enzyme 
with up to fivefold lower affinity for glucose than HK1 
[2]. Silencing of HK1 in favour of GCK therefore prevents 
insulin secretion at low blood glucose levels.

We recently demonstrated that large de novo deletions, 
single nucleotide variants (SNVs) and indels affecting a 
42 bp intronic region of HK1 can cause congenital hyper-
insulinism (HI), a condition defined by the inadequate 
suppression of plasma insulin during hypoglycaemia [3, 
4]. These dominantly acting, non-coding variants affected 
a cis-regulatory element bound by beta-cell transcription 
factors. Analysis of affected pancreatic tissue demon-
strated that HK1 silencing was lost within the beta-cells, 
which lowered the set point for glucose metabolism 
resulting in severe HI. The clinical severity of this genetic 
form of HI was demonstrated by presentation in early 
infancy, poor response to the drug diazoxide, with doses 
exceeding 10  mg/kg/day in eight individuals, and the 
need for a pancreatectomy to control hypoglycaemia in 
five children [3]. These findings provided a rare exam-
ple of highly penetrant deleterious variants affecting a 
cis-regulatory region, highlighting the importance of the 
non-coding genome in the aetiology of human mono-
genic disease [5, 6].

In the previous study, HK1 variants were identified in 
9% of probands (14/162 screened) [3]. These individuals 
were selected for testing as they had a severe phenotype 
suggestive of a monogenic aetiology. Consequently, the 
original study could not establish whether phenotypic 
variability exists within HK1-HI as described in other 
genetic forms of HI. For example, individuals with acti-
vating GCK variants (GCK-HI) can present with HI at 
birth which responds poorly to diazoxide [7], or present 
outside of infancy and show good response to medical 
therapy [8–10]. At the mildest end of the spectrum are 
family members of affected probands who carry the caus-
ative GCK  variant but remain clinically unaffected into 
mid-adulthood [11, 12].

There is evidence that phenotypic variability within 
HK1-HI exists. In 2013, 9  years prior to the discovery 
by Wakeling et  al., Henquin et  al. demonstrated a role 

for the glycolytic enzyme in the pathophysiology of HI 
by detecting aberrant expression of HK1  in pancreatic 
tissue from five children with HI of unknown genetic 
cause [3, 13]. Age at diagnosis ranged from the neona-
tal period to 6  months with two individuals receiving 
high doses of diazoxide (15–18  mg/kg/day) suggesting 
non-responsiveness to the drug [13, 14]. In a separate 
study, linkage analysis identified an 8.2-Mb region on 
chromosome 10q21–22, encompassing HK1, in a large 
pedigree with dominantly inherited HI that responded 
to diazoxide [15]. Sequencing analysis subsequently 
detected three intronic HK1 variants, one of which 
(GRCh37:Chr10:g.71,108,666dup) was within the regu-
latory region later described by Wakeling et  al. [3]. In 
that family, HI was diagnosed between the ages of 3 and 
17 months in all but one individual who was diagnosed 
with hypoglycaemia at the age of 89  years. Five unaf-
fected obligate heterozygotes were also identified. More 
recently, a HK1 variant of uncertain clinical significance 
was reported in an individual from Norway with diazox-
ide-responsive HI diagnosed at the age of 5.5  months. 
The child had inherited the variant from its mother 
whose glycaemic status was not known [16].

In this current study, we investigate the genetics and 
prevalence of HK1-HI, and explore the phenotypic spec-
trum associated with this condition. Through these stud-
ies, we firmly establish that HK1 cis-regulatory variants 
are a common cause of HI that can exhibit phenotypic 
variability between and within families.

Methods
Cohort studied
We studied 1761 probands referred by their clinician for 
HI genetic testing over a period of 20 years to three Euro-
pean genomic centres: Exeter, UK (n = 1090; 2004–2023), 
Paris, France (n = 486; 2003–2023), and Magdeburg, Ger-
many (n= 185; 2012–2022). All probands had received 
a clinical diagnosis of HI as defined by the finding of 
increased insulin action and/or inadequate suppression 
of plasma insulin during spontaneous or fasting-induced 
hypoglycaemia [17]. All individuals were recruited into 
the study by their clinicians.

The Exeter unsolved cohort (n = 1090) consisted of UK 
(n = 370) and internationally (n = 720) referred patients. 
Of these, 162 individuals were included in the study by 
Wakeling et  al. [3]. Disease-causing variants in at least 
12 known HI genes had been excluded in all individuals 
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by targeted next-generation sequencing (tNGS) (ABCC8, 
CACNA1D, GCK, GLUD1, HADH, HNF1A, HNF4A, 
INSR, KCNJ11, PMM2, SLC16A1, and TRMT10A) [18]. 
To compare the frequency of HK1 variants to other 
known genetic causes of HI, we collated variant data on 
genetically solved individuals from the Exeter cohort 
(n = 1859) (Additional file 1: Fig. S1).

In all 486 individuals referred to Paris, disease-caus-
ing variants in the ABCC8 and KCNJ11 genes had been 
excluded by Sanger sequencing (n = 131) or tNGS 
(n = 355). Sanger sequencing or tNGS had also excluded 
disease-causing variants in additional HI genes in a 
subset of individuals; GLUD1 (n = 207), GCK (n = 389), 
HADH (n = 205), HNF4A (n = 421), and HNF1A (n = 437).

The Magdeburg cohort included 185 individuals 
in whom disease-causing variants in the ABCC8 and 
KCNJ11 genes had been excluded by Sanger sequencing 
or tNGS. In 142 of these individuals, disease-causing var-
iants were excluded by tNGS in a subset of the following 
genes: GLUD1, GCK, HNF4A, HNF1A, HADH, SLC16A1, 
INSR, and TRMT10A.

The study was conducted in accordance with the Dec-
laration of Helsinki principles with informed written 
consent obtained from the parents of all participants 
included in this study. The study was approved by the 
Wales Research Ethics Committee 5 (22/WA/0268), with 
participants recruited to the Genetic Beta Cell Research 
Bank (IRAS: 316,050), and the ethics committee of the 
Otto von Guericke University at the Medical Faculty and 
at the University Hospital Magdeburg A.ö.R, Leipziger 
Str. 44, 39,120 Magdeburg (Ethics Board vote (110/04)). 
Appropriate consent in accordance with national regula-
tions for diagnostic genetic testing and the scientific use 
of anonymized/pseudonymized genetic and clinical data 
was obtained.

HK1 sequencing
Sequencing analysis of the HK1 cis-regulatory element was 
performed on leukocyte DNA from 1761 probands. The 
minimum region screened in all individuals was GRCh37
:Chr10:71,108,536–71,108,807. This was performed using 
whole genome sequencing (WGS) (135 individuals as pre-
viously described [3]) or Sanger sequencing (1626 indi-
viduals). Details of PCR primers and sequencing analysis 
pipelines are provided in Additional file 1: Table S1. Vari-
ants that were absent from gnomAD v3 were considered 
for follow-up [19]. When a mosaic variant was identified, 
allele fractions were calculated from Sanger sequencing 
data using the standardised allele ratio in Mutation Sur-
veyor version 3.24 (SoftGenetics, Rouen, France) [20], or 
by read-depth analysis from WGS data [21].

Deletion screening
When sequencing analysis did not identify a rare variant 
(n = 1689), detection of common heterozygous variants 
within the sequencing data were used to exclude a large 
deletion over the critical regulatory region (n= 556/1689; 
33%). The common variants used were: rs7093863 
(minor allele frequency (MAF): 0.14) and/or rs7094214 
(MAF: 0.24) in Exeter, Paris and Magdeburg cohorts or 
rs151188129 (MAF: 0.003) and rs12257925 (MAF: 0.009) 
in the Paris cohort only [19]. Deletion analysis was per-
formed on the 1133 remaining probands.

For the Exeter cohort (n = 679), deletion analysis 
involved read depth analysis of WGS data (n = 90), 
droplet digital PCR (ddPCR) (n = 17), or quantitative 
PCR (qPCR) (n= 572). For qPCR, quadruplet reac-
tions (5  μl) containing a custom TaqMan Copy Num-
ber Assay (Applied Biosystems, Waltham, MA, USA, 
Additional file  1: Table  S2) and genomic DNA (20  ng) 
were amplified. Fluorescence was detected using a 
QuantStudio 12 K Flex and data analysed using Copy-
Caller v2.1 analysis software (Thermo Fisher Scientific, 
Waltham, MA, USA). Details of the WGS analysis and 
ddPCR have been reported previously [3, 21].

For the Paris cohort (n = 314), deletion analysis 
was performed by qPCR using a SYBR Green assay. 
Briefly, triplicate qPCR reactions were carried out on 
an ABI7500 Real-Time PCR System with data ana-
lysed using SDS software v2.4 (Applied Biosystems, 
Waltham, MA, USA) (Additional file 1: Table S2).

For the Magdeburg cohort (n = 140), deletion analy-
sis was performed by multiplex ligation-dependent 
probe amplification (MLPA). Briefly, custom probes 
spanning the region were designed and used in a reac-
tion mix with a P300 reference MLPA kit as per the 
manufacturer’s instructions (MRC Holland, The Neth-
erlands). Following analysis on an ABI 3500xl genetic 
analyser (Life Technologies GmbH, Darmstadt, Ger-
many) obtained data were analysed using the Sequence 
Pilot software v.5.3.4 (JSI medical systems, Ettenheim, 
Germany). Probe sequences are provided in Additional 
file 1: Table S2.

Family member testing
When available, samples from parents and additional 
affected family members of individuals with a HK1 var-
iant underwent sequencing or deletion analysis. When 
a de novo variant was identified, parental relationships 
were confirmed using WGS trio data or by genome-
wide microsatellite analysis (PowerPlex, Promega, 
Southampton, UK).
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Variant classification
Variants were assessed according to the guidelines for 
interpretation of variants in the non-coding genome, 
based on the ACMG variant classification guidelines, 
and the ACGS Best Practice Guidelines for Variant 
Classification in Rare Disease [22–24].

Phenotypic analysis
Clinical data were provided for all cases at referral using 
a laboratory request form with follow-up informa-
tion obtained by case-note review where possible. Birth 
weight Z-scores were calculated using WHO standards, 
accessed through the Zanthro package in Stata 16 (Stata-
Corp, Texas, USA) [25].

Results
We identified a dominant HK1 variant in 89 probands 
with HI, representing an overall prevalence of 5% 
(89/1761) in genetically unsolved individuals. The pick-
up rates were similar across the three centres: Exeter: 
54/1090 (5%), Paris: 29/486 (6%), Magdeburg: 6/185 (3%). 
Within the Exeter cohort, this represented an overall 
pick-up rate of 1.8% (n = 54/2949) and 2.8% of the posi-
tive genetic diagnoses (n = 54/1913) (Additional file  1: 
Fig. S1).

Thirty-two different variants were detected, of which 
23 (72%) were novel [3, 16]. Nineteen of the variants were 
SNVs (56/89 probands), 12 were indels (16/89 probands), 
and 17 probands had a large deletion encompassing the 
critical region (Fig. 1).

Fig. 1  Schematic representation of the location of HK1 variants identified in probands with congenital hyperinsulinism. The ubiquitously expressed 
isoform (ENST00000359426) is depicted. The position of copy number variants (CNVs) within intron 2 is shown below the HK1 gene. The breakpoints 
of the large deletions have been defined in two cases, the remaining 15 are known to extend beyond the sequenced region but not into 
the coding sequence as depicted by the dashed line. The horizontal bars depict indels. Only bases within the indel that are affecting the minimal 
regulatory region are shown (Chr10:71,108,642–71108687). The g.71,108,688–71,108,691del has been named according to HGVS nomenclature, 
this variant deletes a TGTT repeated sequence that starts at g.71,108,683. Directly below the indels is the reference sequence. The greyed boxes 
around the nucleotide bases of the genomic sequence indicate the previously defined predicted transcription factor binding sites [3]. Single 
nucleotide variants (SNVs) are listed, according to position, below the genomic sequence. Black lines/text indicate variants classified as pathogenic 
or likely pathogenic and grey lines/text indicate those classified as variants of uncertain significance according to the current classification 
guidelines [22–24]
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Inheritance of HK1 variants
Forty of the 89 probands (45%) had a de novo variant. 
In seven of these, the variant was mosaic (~ 12–34% in 
leukocyte DNA). Eight probands (9%) had inherited 
the variant from a parent with HI, and 18 (20%) had 
inherited the variant from a parent not reported to 

have HI (including 2 obligate heterozygotes). For the 
remaining 23 (26%) probands, inheritance could not be 
established. The familial HK1 variant was also present 
in 37 additional family members (including 14 obligate 
heterozygotes) of 14 probands (Fig. 2, Additional file 1: 
Fig. S2).

Fig. 2  Pedigrees depicting inheritance of pathogenic and likely pathogenic HK1 variants (n = 65 families). Squares, males; circles, females; diamonds, 
unknown sex; filled black symbols, clinical diagnosis of hyperinsulinism; filled grey symbols, anecdotal evidence of hypoglycaemia; diagonal line 
through symbol, deceased; M, HK1 variant; N, no variant; *, obligate heterozygote; NA, DNA not available. The arrow indicates the proband in larger 
pedigrees
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HK1 variant classification
There was sufficient evidence to classify 20 of the 32 dif-
ferent variants as pathogenic or likely pathogenic [22, 23]. 
This included as a minimum the absence of the variant 
in multiple population datasets (PM2_moderate) [19, 26–
30], and the finding of a de novo variant in at least one 
individual with HI (PS2_strong) (Fig. 1, Additional file 1: 
Table  S3). These pathogenic and likely pathogenic vari-
ants were identified in 112 individuals (65 probands, 31 
family members, and 16 obligate heterozygotes) (Fig. 2).

The remaining 12 variants were classified as vari-
ants of uncertain significance (VUS) [22, 23]. Although 
insufficient, there was evidence to support their causal-
ity including absence in multiple population datasets 
(PM2_moderate) [19, 26–29] and affecting a base that 
was disrupted in two or more unrelated individuals with 
HI (PS4_moderate). Five of the variants were also pre-
dicted to disrupt a binding motif of a transcription fac-
tor, the perturbation of which is repeatedly shown to be 
pathogenic (PM1_supporting) (Fig.  1, Additional file  1: 
Table S3) [3]. These VUSs were identified in 40 individu-
als (24 probands and 16 family members) (Additional 
file 1: Fig. S2).

Clinical characteristics of individuals with a pathogenic 
or likely pathogenic HK1 variant
HI had been clinically diagnosed in 80% (90/112) of indi-
viduals with a pathogenic or likely pathogenic HK1 vari-
ant (65 probands and 25 family members, 17 reported 
previously) [3]. The median age at diagnosis was 7 days 

(IQR: birth–9  months) with 54% diagnosed in the 
neonatal period (≤ 28  days of age), 25% diagnosed in 
infancy (1  month–12  months), 16% diagnosed in child-
hood (1 year–17 years), and 4% diagnosed in adulthood 
(≥ 18  years). Large for gestational age birthweights (> 2 
SDS) were reported in 16/66 (24%) individuals where 
data was available. Of these, all had neonatal onset HI 
supporting increased insulin secretion in utero [31]. No 
difference in the median age at diagnosis of HI or birth 
weight Z-score was observed between probands and 
affected family members (P = 0.06 and P = 0.7, respec-
tively, Mann–Whitney U) (Table  1, Additional file  1: 
Table S4).

Extra-pancreatic features, excluding neurological con-
ditions which could be related to hypoglycaemic brain 
insult, were reported in nine individuals (10%) (Addi-
tional file  1: Table  S4). None of these were commonly 
shared between patients in keeping with HK1-HI causing 
isolated pancreatic disease.

Management and glycaemic outcome of HK1‑HI
The median age at the last clinical update of 
the 90 affected individuals was 6  years (range: 
2 months–66 years). Treatment details were available for 
75 individuals; 60 (80%) had therapeutically managed HI, 
and 15 (20%) had undergone pancreatic surgery.

Of the 60 medically managed individuals, 46 (77%) had 
received diazoxide only (doses up to 25 mg/kg/day), and 
14 (23%) had received somatostatin receptor analogues 
(SSRA) as an adjunct or alternative therapy to diazoxide. 

Table 1  Summary of clinical data for 90 individuals with a clinical diagnosis of congenital hyperinsulinism and a pathogenic or likely 
pathogenic variant within the HK1 regulatory region

Numbers of individuals (n) where data is available is provided

*Mann–Whitney U statistical analysis, P > 0.05

Probands n = 65 Affected family members n = 25 Combined n = 90

Median age at follow-up in years (range) (n) 5 (0.2–66) (60) 9 (2–43) (21) 6 (0.2–66) (81)

Female sex, % (n) 45% (29/65) 52% (13/25) 47% (42/90)

Median age at diagnosis, [IQR] (n) 3 days [birth–6 months]* (65/65) 8 months [35 days–2 years]* (14/25) 7 days [birth–8.5 months] (79/90)

Neonatal onset HI, % (n) 60% (39/65) 29% (4/14) 54% (43/79)

Infancy-onset HI, % (n) 23% (15/65) 36% (5/14) 25% (20/79)

Childhood-onset HI, % (n) 15% (10/65) 21% (3/14) 16% (13/79)

Adult-onset HI, % (n) 2% (1/65) 14% (2/14) 4% (3/79)

Median glucose at presentation, mmol/L
(paired insulin, pmol/L) (n)

1.45 (150) (48/65) 1.9 (58.5) (6/25) 1.5 (118) (54/90)

Median birth weight Z-score, [IQR] (n) 0.47 [− 0.12–1.99]* (57/65) 0.58 [0.12–0.79]* (9/25) 0.48 [− 0.12–1.97] (66/90)

Medical management, % (n) 81% (50/62) 77% (10/13) 80% (60/75)

Diazoxide only, % (n) 78% (39/50) 80% (8/10) 77% (46/60)

Diazoxide + somatostatin receptor ana‑
logue combined, % (n)

16% (8/50) 0% (0/10) 15% (9/60)

Somatostatin receptor analogue, % (n) 6% (3/50) 20% (2/10) 8% (5/60)

Pancreatic surgery, % (n) 19% (12/62) 23% (3/13) 20% (15/75)
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Eleven individuals had lost their initial response to low or 
moderate dose of diazoxide between the ages of 6 months 
and 5  years, resulting in an increased dose of diazoxide 
(n = 4), the addition of SSRA (n = 3), or pancreatic sur-
gery (n = 4). Four further probands were reported to 
have remission with subsequent relapse at ages 6 weeks, 
7 months, 23 years, and 50 years. Ten medically treated 
individuals were not receiving treatment at follow-up 
with medication discontinued between 3 and 49.5 years 
(Table 1, Additional file 1: Table S4).

The 15 individuals who underwent pancreatic surgery 
were diagnosed with HI in the neonatal period with sur-
gery performed at a median age of 18  months (range: 
2  weeks–32  months). Follow-up data were available 
on 12 individuals, which confirmed that one was with-
out treatment, ten had ongoing hypoglycaemia requir-
ing treatment, and one had insulin-dependent diabetes 
(Additional file 1: Table S4).

Twenty-two family members (9 females) with a patho-
genic or likely pathogenic variant did not have a clini-
cal diagnosis of HI at the median age of 40 years (range: 
25–60  years). This included 15 obligate heterozygotes. 
Four individuals had reported anecdotal episodes of 
hypoglycaemia which had not been biochemically con-
firmed (Fig. 2). Survival analysis showed that by the age 
of 60 years, the risk of disease was 64% for family mem-
bers with a HK1 variant (Additional file 1: Fig. S3).

Clinical characteristics of individuals with a VUS in the HK1 
regulatory region
A clinical diagnosis of HI had been made in 75% (30/40) 
of individuals with a VUS (24 probands and 6 family 
members). The median age at diagnosis was 8  months 
(IQR: 6–12  months) and none were born large for ges-
tational age (Additional file  1: Table  S5 and S6). The 
median current age of the ten unaffected family members 
was 33 years (range: 25–52 years).

Follow-up data were available on 29/30 affected indi-
viduals with a VUS, confirming they had been medi-
cally treated; 28 had received diazoxide only (doses up to 
13.5  mg/kg/day), and one SSRA only. Seven individuals 
were not receiving treatment having discontinued medi-
cation between the ages of 3 and 5  years. One further 
proband reported a remission of HI which relapsed at 
the age of 7 years, after being off medication for 3 years 
(Additional file 1: Table S5).

Discussion
We identified variants in the HK1 cis-regulatory region in 
89 of 1761 probands with HI. This represents a minimum 
prevalence of 4% in unsolved cases based on pathogenic/
likely pathogenic variants (65/1761). When variants of 

uncertain clinical significance are included, the preva-
lence rises to 5% (89/1761, all variants). This detection 
rate is similar to that reported in the Norwegian cohort 
(3%) but lower than the 9% reported by Wakeling et  al. 
[3, 16]. This likely reflects the wider heterogeneity in our 
study population which included all referrals to three 
international genomics laboratories regardless of disease 
severity. These results firmly establish HK1 as a major 
cause of HI with a prevalence similar, and in some cases 
higher, to other well-reported genetic forms of the con-
dition including HNF4A-HI, GCK-HI, and HADH-HI 
(Additional file  1: Fig. S1) [10, 16, 32, 33]. To the best 
of our knowledge the findings also establish HK1 as the 
most common known cause of monogenic disease due 
to non-coding variants affecting a cis-regulatory element 
controlling tissue-specific gene silencing [5, 6].

Twenty-three novel variants were identified in this 
study taking the total number of variants reported in this 
region to 32. Two novel SNVs allowed us to extend the 
originally described 42 bp minimal regulatory region by 
four bases (Chr10:71,108,642–71,108,687) (Fig.  1). All 
46 bases within the newly defined region were disrupted 
by at least one indel or SNV identified in this study. This 
high density of variants in a non-coding cis-regulatory 
element is extremely rare and likely reflects the complex 
interplay between multiple transcription factors that 
are required for the maintenance of silencing HK1  in 
the pancreatic beta-cell during foetal development and 
throughout life [3]. Studies to assess the transcriptional 
regulation of HK1 will be important to gain insights into 
mechanisms of tissue-specific gene repression and to fur-
ther assess how disruption of these processes impacts on 
disease severity.

Our results confirm that HK1 variants cause HI with 
extensive variability in clinical severity, similar to that 
described in GCK-HI [7, 9, 12]. At the most severe end of 
the spectrum were individuals born large for gestational 
age, who were diagnosed with drug-resistant HI at birth, 
with some still requiring high-dose medication after sub-
total pancreatectomy. In contrast, some individuals had 
reached mid/late-adulthood without reported symptoms 
of hypoglycaemia. This finding of reduced penetrance 
is consistent with the observations of Pinney et  al. who 
reported five asymptomatic individuals in the pedigree 
with linkage to HK1 [15]. In the future it will be impor-
tant to undertake clinical testing of glucose metabolism, 
to explore whether asymptomatic individuals show a 
mild form of HI, and to follow these individuals to see if 
symptomatic HI develops later in life as described in the 
89-year-old individual reported by Pinney et al. [15].

The observation that 11 individuals had reported a 
loss of responsiveness to medical therapy is interesting 
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given that for most forms of HI the severity of the disease 
reduces over time [34]. This finding is consistent with the 
observations of Henquin et al. who reported progressive 
loss of diazoxide efficacy in two patients in their cohort 
[13, 14]. For one of these, there was evidence of aberrant 
HK1 expression in pancreatic beta-cells, whilst in the sec-
ond case a mosaic pathogenic GCK variant p.(Ile211Phe) 
was identified within the pancreas. The authors hypoth-
esised that the diminishing responsiveness to diazoxide 
could result from mosaicism with the number of beta-
cells with the variant increasing with ageing [13]. In our 
study, a de novo variant was confirmed in nine of the 11 
individuals with progressive loss of responsiveness to 
diazoxide whilst in one proband the variant was pater-
nally inherited and in one case inheritance could not be 
established.

Although this study represents the most comprehen-
sive report to date describing HK1 variants in HI, our 
work has some limitations. Our calculation of the over-
all prevalence of HK1 variants may be underestimated 
given that individuals with the mildest forms of HI 
may not be referred for genetic testing, and all known 
genetic causes of HI were not excluded in our cohort. 
The number of individuals with an undetected patho-
genic variant in a known HI gene is however likely to 
be small given that the most common genetic aetiolo-
gies had been excluded (e.g. ABCC8 and KCNJ11 were 
screened in 100% of individuals, and GLUD1 in 79% 
of the cohort and 100% of individuals with reported 
hyperammonaemia, a feature of GLUD1-HI) [35]. Clin-
ical data was also limited in patients who were lost to 
follow-up, a consequence of screening historic cohorts 
recruited over a 20-year period, this however only 
applied to a minority of the cohort. Furthermore, it is 
possible that there are slight differences in the report-
ing of diagnosis of HI and treatment response between 
clinicians. Our findings are however applicable to 
patients worldwide as we have studied a large num-
ber of individuals from multiple centres with different 
genetic ancestries, outweighing concerns over minor 
variations in clinician reporting. Finally, for 12 variants, 
there was insufficient evidence to confirm pathogenic-
ity [22, 23]. This is due to the absence of finding a de 
novo occurrence of the variant which provides strong 
evidence for pathogenicity, incomplete penetrance of 
variants within families, variants residing in a region 
that has not yet been associated with endocrine-spe-
cific transcriptional regulation, and/or a lack of patient 
pancreatic tissue for HK1 expression studies. As more 
reports of HK1-HI emerge in the literature and as the 
region becomes better functionally characterised, it 
is likely that further evidence will become available to 
support their pathogenicity.

Conclusions
Through screening three large international cohorts, we 
have firmly established that dominant variants in the 
HK1 cis-regulatory region are a common cause of iso-
lated HI, accounting for ~ 4–5% of genetically unsolved 
cases. Variants affecting the promoter region of the beta-
cell disallowed gene SLC16A1 cause exercise-induced HI 
with variants that disrupt distal cis-regulatory elements 
of two other genes (PTF1A and FOXA2) having also been 
reported to cause a monogenic disorder of insulin secretion 
[5, 36, 37]. Taken together these findings highlight the criti-
cal role of the non-coding genome in controlling pancreatic 
development and function. Through this study, we have 
provided a genetic diagnosis for 89 families living with HI, 
most of whom have waited many years to understand the 
cause of their disease. In doing so, we have established that 
HK1-HI is associated with variable clinical severity in terms 
of age at diagnosis and response to medical therapy, with 
some individuals remaining asymptomatic in late-adult-
hood. Based on these findings, we recommend that the 
HK1 regulatory region is screened in all newly diagnosed 
children referred for HI genetic testing as well as historic 
cases where the genetic aetiology of HI remains unknown.
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