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Abstract 

Spatial transcriptomics (ST) enables the study of gene expression in spatial context, but many ST technologies face 
challenges due to limited resolution, leading to cell mixtures at each spot. We present LETSmix to deconvolve cell 
types by integrating spatial correlations through a tailored LETS filter, which leverages layer annotations, expression 
similarities, image texture features, and spatial coordinates to refine ST data. Additionally, LETSmix employs a mixup-
augmented domain adaptation strategy to address discrepancies between ST and reference single-cell RNA sequenc-
ing data. Comprehensive evaluations across diverse ST platforms and tissue types demonstrate its high accuracy 
in estimating cell-type proportions and spatial patterns, surpassing existing methods (URL: https://​github.​com/​ZhanY​
angen/​LETSm​ix).
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Background
In the last decade, the continuous advancement of single-
cell RNA sequencing (scRNA-seq) technology has facili-
tated high-throughput sequencing of individual cells, 
revealing comprehensive gene expression profiles within 
them [1, 2]. This technological leap has unearthed cellular 

heterogeneity, enabling the identification of diverse cell 
types, cell subpopulations, and transcriptional state alter-
ations within complex cell populations [3]. However, the 
intrinsic nature of scRNA-seq—sequencing individual 
cells—necessitates the isolation of cells from their native 
tissue prior to sequencing, hampering the integration 
of spatial information for analysis [4]. To determine the 
spatial distribution of gene transcriptomes and the tissue 
microenvironment, spatial transcriptomics (ST) tech-
nology has emerged. This innovative approach enables 
the detection of gene expression profiles across numer-
ous locations within tissue regions while retaining posi-
tional information [5, 6]. Currently, ST techniques are 
broadly categorized into image-based and sequence-
based methods, which complement each other to some 
extent [7]. Image-based methods such as MERFISH [8] 
and seqFISH + [9] utilize fluorescent probes to target 
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specific genes, offering high resolution even at the sub-
cellular level [10]. However, due to their reliance on tar-
geted fluorescent probes, these techniques are confined 
to detecting a limited number of genes, typically a few 
hundred [11]. In contrast, sequence-based techniques, 
such as Spatial Transcriptomics (ST) [12] and SLIDE-seq 
[13], can capture the expression profiles of a complete 
gene repertoire, but their sequencing resolution is lower, 
often encompassing multiple cells within each detection 
site, referred to as a “spot” [7]. Notably, these sequence-
based techniques usually provide not only the positional 
coordinates of each detection site but also H&E-stained 
histological images of the sequenced tissue. Despite 
ongoing advancements in improving their resolution, 
accurately assigning individual cells to each spot remains 
a challenge [14].

In sequence-based ST data, to discern the spatial dis-
tribution of diverse cell types and gain deeper insights 
into their compositional structure, prevailing methods 
integrate scRNA-seq with ST data [15, 16]. scRNA-
seq provides gene expression profiles of individual 
cells alongside their corresponding cell type informa-
tion, facilitating the inference of cell type-specific gene 
expression traits. The integration of this information 
with expression patterns observed in each spot from ST 
allows the analysis of contributions from each cell type at 
each spot [17–19]. Current mainstream cell-type decon-
volution methodologies can be broadly categorized into 
three types: statistical probabilistic models, matrix fac-
torization-based models, and deep learning-based mod-
els [16, 20, 21]. Probabilistic models such as RCTD [19], 
Stereoscope [22], Cell2location [23], and POLARIS [24] 
assume that gene expression in scRNA-seq and ST data 
follows certain distributions, such as the negative bino-
mial or Poisson distribution. However, although various 
influencing factors, such as technology sensitivity, batch 
effects, and per-location shifts, can be specifically param-
eterized within these methods, the regressed parameters 
may deviate from their original design. Similarly, these 
factors can also be transformed into parameter matri-
ces in models based on nonnegative matrix factorization 
(NMF), as exemplified by SPOTlight [17], SpatialDWLS 
[18], and CARD [25]. The learned cell-type gene signa-
tures from scRNA-seq are used to disentangle each spot 
in the ST by the aforementioned two modeling strategies. 
On the other hand, deep learning approaches are gaining 
traction as promising solutions because of their capacity 
to apprehend and leverage intricate patterns and corre-
lations within data. Techniques such as graph networks 
[26–28] capitalize on spatial relationships among ST 
spots, while domain adaptation methods [29, 30] bridge 
technical variances between scRNA-seq and ST. For 
instance, self-supervised training with variational graph 

autoencoders applied in Spatial-ID [31], tissue histo-
logical image integration applied in SpaDecon [32], and 
domain-adversarial learning applied in CellDART [33] 
are innovative deep learning strategies that improve cell-
type deconvolution accuracy in ST data.

However, existing methods face two significant limi-
tations: insufficient utilization of spatial contextual 
information and inadequate consideration of domain 
differences between ST and scRNA-seq data. The rich 
spatial information available in ST datasets, such as spa-
tial coordinates, histological images, and region-specific 
annotations, holds the potential to enhance our under-
standing of spatially resolved cellular compositions 
and tissue microenvironments, ultimately improving 
the accuracy and robustness of cell type deconvolution. 
Besides, integrating ST and scRNA-seq data is challeng-
ing due to inherent differences in their statistical distri-
butions, a phenomenon termed as the “platform effect” 
[19]. This discrepancy arises from variations in sequenc-
ing technologies, gene detection sensitivities, and sam-
ple preparation protocols, which collectively distort the 
alignment between these two modalities. Addressing 
these domain differences is essential for ensuring reli-
able and biologically meaningful deconvolution results. 
Although a few methods attempt to address these limi-
tations individually, a comprehensive solution remains 
elusive. For instance, RCTD [19], Cell2location [23], and 
CellDART [33] explicitly account for the platform effect 
but fail to incorporate spatial dependencies within the 
ST data. Moreover, the treatments of the platform effect 
in RCTD and Cell2location are rather rudimentary, rely-
ing on simplistic parameter-based adjustments that may 
inadequately capture the complex nature of these cross-
platform discrepancies. Conversely, methods such as 
SpaDecon [32], GraphST [34], SpatialPrompt [35], and 
SONAR [36] leverage the spatial context of ST data to 
improve deconvolution but largely overlook the sys-
tematic biases introduced by the platform effect. While 
SONAR integrates the platform correction strategy origi-
nally proposed in RCTD, its performance remains subop-
timal, as evidenced by its poor deconvolution accuracy in 
previous benchmarking studies [35]. This dichotomy in 
current methodologies highlights the pressing need for 
an integrated approach that not only bridges the domain 
differences between ST and scRNA-seq data but also 
fully exploits the spatial contextual information embed-
ded in ST datasets, thereby improving the accuracy and 
reliability of cell type deconvolution in spatial transcrip-
tomics analysis.

To this end, we propose LETSmix that simultaneously 
addresses both challenges by leveraging spatial context 
information and incorporating domain adaptation tech-
niques. Furthermore, our method introduces several key 



Page 3 of 25Zhan et al. Genome Medicine           (2025) 17:16 	

innovations in both areas. With respect to spatial infor-
mation, LETSmix goes beyond previous methods like 
SpaDecon by incorporating region annotations and gene 
expression similarity, and constructing a LETS filter to 
capture more finegrained spatial correlations among ST 
spots. To address the platform effect, LETSmix extends 
the domain adaptation strategy used in CellDART by 
introducing a novel mixup-based data augmentation 
process to mitigate the issue of sample size imbalance 
between the source and target domains, and optimiz-
ing the training procedure to enhance the stability of 
the domain adaptation learning process. Together, these 
innovations allow LETSmix to more effectively align 
scRNA-seq and ST data, ensuring robust and accurate 
cell-type deconvolution across domains.

Comprehensive experiments were conducted to vali-
date LETSmix on multiple datasets derived from differ-
ent ST technologies and tissues. Each dataset presents 
unique characteristics, such as the well-defined layer 
structure in the 10 × Visium human dorsolateral prefron-
tal cortex dataset [37], the inclusion of both internal and 
external data and the limited number of spots in the ST 
human pancreatic ductal adenocarcinoma dataset [38], 
the dominance of hepatocytes in the 10 × Visium mouse 
liver dataset [39], which poses challenges for identifying 
rare cell types, and the single-cell spatial resolution of 
the Stereo-seq mouse olfactory bulb dataset [14], which 
allows us to evaluate the applicability of LETSmix to cut-
ting-edge ST technologies. Across all these datasets, the 
proposed method consistently outperforms state-of-the-
art methods, demonstrating its versatility and superior 
performance under diverse biological conditions.

Methods
Public dataset collection
Human dorsolateral prefrontal cortex (DLPFC) data
The 10X Visium DLPFC dataset was derived from a 
postmortem 30-year-old neurotypical subject [37]. Our 
experiments included all twelve ST samples, each con-
taining 3000–5000 spots with 33,538 common genes. 
Layer annotations were provided by assigning each spot 
to a specific cortical layer, ranging from L1 to L6 and 
WM (white matter), based on layer-specific marker genes 
and expert inspections [40]. A few spots without layer 
annotations were excluded in our experiments. The ref-
erence single-nucleus dataset (also referred to as scRNA-
seq) was obtained from the DLPFC tissues of different 
postmortem individuals without neurological disorders 
[41]. This scRNA-seq dataset contained 56,561 cells and 
30,062 genes. We focused on 10 layer-specific excitatory 
neurons to evaluate different cell-type deconvolution 
models using AUC and ER metrics.

Human pancreatic ductal adenocarcinoma (PDAC) data
The PDAC dataset was acquired from two tumorous tis-
sue sections of two patients, denoted as PDAC-A and 
PDAC-B [38]. The ST datasets were collected using Spa-
tial Transcriptomics technology, while the correspond-
ing scRNA-seq datasets were obtained via inDrop. The 
paired ST and scRNA-seq data were both derived from 
the same tissues of the same patients. Additionally, an 
external scRNA-seq dataset named PDAC-Peng [42] 
obtained through 10 × Chromium was used to evalu-
ate model performance under unmatched conditions. 
Cell types and their compositions differ among the three 
scRNA-seq datasets. Although the true cell type com-
position of each spot in the ST data of PDAC-A and 
PDAC-B remains unknown, the overall composition of 
the whole tissue, i.e., the average cell-type proportions in 
all spots, is expected to be close to that of the matched 
reference scRNA-seq dataset. Thus, a JSD value can be 
calculated to measure the consistency between the esti-
mated overall cell type composition and the expected 
ground truth. Moreover, a few annotated cell types in the 
reference scRNA-seq dataset are assumed to be enriched 
within specific tissue regions (Additional file 1: Table S1). 
Based on this prior knowledge, the ER metric was imple-
mented to compare the performances of different decon-
volution methods in predicting the regional distribution 
patterns of these cell types.

Mouse liver (Liver) data
The Liver dataset was obtained from a published study 
[39]. Three consecutive Visium slices of healthy mouse 
liver tissues were analyzed in this study, each delineated 
into five distinct regions. These ST samples are primar-
ily composed of hepatocytes, making it challenging for 
deconvolution tools to accurately identify other cell 
types. The reference scRNA-seq datasets includes cells 
obtained from three different digestion protocols: ex vivo 
digestion, in vivo liver perfusion, and frozen liver single-
nucleus RNA-seq (referred to as “ex vivo scRNA-seq,” “in 
vivo scRNA-seq,” and “nuclei scRNA-seq,” respectively) 
[21]. All three scRNA-seq datasets contain the same nine 
cell types. Notably, portal vein and central vein endothe-
lial cells (ECs) are expected to be exclusively present in 
the portal and central regions, respectively. Moreover, 
previous studies based on confocal microscopy have sug-
gested that the average proportion of each cell type in all 
spots within the ST sample is equivalent to that in the 
nuclei scRNA-seq dataset [21, 39]. Therefore, JSD values 
were computed to evaluate the estimated proportions 
in ST. Cell-type proportions in the ex  vivo and in  vivo 
scRNA-seq datasets were adjusted to match those in the 
nuclei scRNA-seq dataset.
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Mouse olfactory bulb (MOB) data
The ST dataset was collected using Stereo-seq [14], 
which is an emerging spatial omics platform with subcel-
lular spatial resolution. Here, it was binned to a cellular-
level resolution (~ 14 μm), allowing for more manageable 
data analysis. Seven layers of the laminar organization 
in MOB were annotated by Xu et al. [27], including the 
rostral migratory stream (RMS), granule cell layer (GCL), 
internal plexiform layer (IPL), mitral cell layer (MCL), 
external plexiform layer (EPL), and olfactory nerve layer 
(ONL). Given the large number of spots in this ST data-
set (approximately 20,000), we randomly selected half of 
the spots to expedite computation. For cell-type decon-
volution, a publicly available scRNA-seq dataset gener-
ated using 10 × Chromium from the same tissue source 
was used as the reference [43], which originally contained 
38 cell types. In our experiments, we merged several cell 
subtypes, resulting in 27 distinct cell types used for model 
training. To evaluate the deconvolution performance, 
we employed the ER metric to assess the enrichment of 

specific cell types in their expected regions. Addition-
ally, due to the well-characterized laminar structure of 
the olfactory bulb, which presents distinct inside-out 
regional patterns, we used Moran’s I to analyze the spatial 
autocorrelation of the deconvolution results, providing 
further insights into the spatial organization of the pre-
dicted cell types.

Implementation of LETSmix
A schematic diagram illustrating the proposed method 
is presented in Fig.  1. The overall network framework 
comprises three main components. First, an adjacency 
matrix termed as “LETS filter” was constructed leverag-
ing information from Layer annotations, gene Expres-
sion similarities, histological image Texture features, 
and Spot coordinates to accurately capture the spatial 
correlations among different spots. This matrix was sub-
sequently employed to perform local smoothing on the 
ST dataset, emphasizing spatial relationships between 
neighboring spots with similar morphological features. 

Fig. 1  Schematic overview of the LETSmix workflow. LETSmix is designed to perform cell-type deconvolution for spatial transcriptomics based 
on the labeled reference scRNA-seq data. A An adjacency matrix reflecting internal correlations between spots in ST was constructed leveraging 
information from layer annotations, spot gene expression, histological image texture features, and spot spatial coordinates. B Pseudo-ST data 
with known cell type compositions were synthesized by randomly selecting cells from the reference scRNA-seq dataset. The real-ST data were 
refined by the LETS filter constructed from A and then underwent a mixup procedure for data augmentation. C The network structure comprises 
a shared feature extractor and two classifiers: the source classifier estimates cell type proportions, and the domain classifier identifies spots as real 
or pseudo. The two branches are trained in an adversarial manner, aiming to eliminate domain shifts in the extracted features. After training 
the model, the spatially refined real-ST data were directly fed into the feature extractor and the source classifier for cell-type deconvolution
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Second, a fixed number of cells were randomly selected 
from the scRNA-seq dataset to synthesize gene expres-
sion data for each pseudo-spot. Meanwhile, the spatially 
refined real-ST data were also randomly mixed to gener-
ate more samples in the target domain. In the final stage, 
the synthesized pseudo-ST data and mixed real-ST data 
were simultaneously fed into a deep learning network for 
adversarial domain adaptation training. Here, the domain 
classifier aims to differentiate the domain of the input 
spot expression data, while the source classifier esti-
mates cell type compositions within each spot in both the 
pseudo-ST and real-ST datasets.

Spatial refinement of the ST data
The expression data could be noisy due to the limited 
number of cells in each spot. To address this issue, we 
construct an adjacency matrix that aggregates informa-
tion from neighboring spots. Initially, the distance  di,j 
between spots i and j is calculated by incorporating spa-
tial, morphological and expression features. Following 
the method adopted in SpaDecon, the coordinate zi for 
spot i , representing its histological image texture fea-
tures, is defined as.

where µr  , µg  , µb    are the means of the RGB values 
across all pixels in the h × h  image patch of spot i , and 
h  is the diameter of each spot. σr , σg , σb  are the stand-
ard deviations of µr , µg , µb , respectively, across all spots. 
Then, zi  was further scaled as

Here, µz    and σx , σy , σz    are the means and standard 
deviations, respectively, of the (x, y, z)    coordinates of 
all the spots in the ST data. This scaling ensures that the 
weight of the histological features approximately matches 
that of the spatial location features. The Euclidean dis-
tance between two spots i  and j  using the three coordi-
nates is given by

The total number of spots in the real-ST data is 
denoted by n , and the adjacency matrix A =

[
ai,j

]
n×n

 is 
constructed based on di,j combined with expression data 
and layer annotation information, as.

(1)zi =
µrσ

2
r + µgσ

2
g + µbσ

2
b

σ 2
r + σ 2

g + σ 2
b

,

(2)z∗i =
zi − µz

σz
× max(σx, σy).

(3)di,j =

√
(
xi − xj

)2
+

(
yi − yj

)2
+

(
z∗i − z∗j

)2
.

where li is a scaling factor controlling the degree of 
local smoothing, ci,j is the cosine similarity between 
the expression data of two spots, and mi,j is an element 
from a mask matrix M =

[
mi,j

]
n×n

 constructed using 
layer annotations, as.

Note that SpaDecon only utilizes spatial coordinates 
and histological images to construct the adjacency 
matrix, whereas we leverage additional information 
from layer annotations and gene expression data. This 
improvement caused by our designed adjacency matrix 
accurately reflects the intrinsic spatial correlations 
within the ST data, thereby enhancing the accuracy of 
the cell-type deconvolution results. Next, we describe 
the selection strategy of an appropriate value for li . 
Define si by.

which represents the summed weights of other spots 
with respect to the target smoothing spot i . The value of 
si is determined by li . Although the relationship between 
them cannot be definitively ascertained through numeri-
cal methods, it is established that si increases monotoni-
cally with respect to li . Thus, we start by specifying the 
desired value of si and then iteratively approach the value 
of li , as outlined in Additional file 1: Algorithm S1. In our 
experiments, si of different spots where i ∈ {1,2, . . . , n} 
were set to be the same value s̃  . Note that SpaDecon 
employs a similar approximation technique for determin-
ing the value of l . However, the scaling factor l in Spa-
Decon is a scalar, ensuring that only the average summed 
weights of other spots are a specific value, resulting in 
varying degrees of local smoothing for different spots. 
Although there are n different values in the vector l to 
be approximated in our improved method, the compu-
tational complexity of the designed algorithm is similar 
to that of the original algorithm. It requires only a single 
round of approximation to directly compute each value 
in the vector l , thereby not compromising the opera-
tional speed of the model. With the constructed adja-
cency matrix A , we performed matrix multiplication to 
obtain smoothed gene expression data G∗

r  of real-ST data, 
as follows:

(4)αi,j = exp −
d2i,j

2l2i
× ci,j × mi,j ,

(5)

mi,j =

{
1, if spot i and j are in the same layer
0, otherwise

.

(6)si =
∑n

j=1 αi,j − 1,
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Mixup of the ST and scRNA‑seq data
The expression data for each pseudo-spot were synthe-
sized from randomly selected k cells in the reference 
scRNA-seq dataset. We used [gc1, gc2, . . . , gck ] to represent 
the gene expression profile of each selected cell. Moreo-
ver, random weights [wc1,wc2, . . . ,wck ] are assigned to 
each cell, representing its proportion in the generated 
pseudo-spot, and the sum of the k weights is constrained 
to 1. Thus, the gene expression profile of the pseudo-spot 
is the weighted sum of k cells, denoted as:

Similarly, the ground truth cell-type proportions in this 
pseudo-spot are also the weighted sum of the cell types of 
the selected k cells. In this way, the total amount of gene 
expression in a pseudo-spot is equivalent to that in a cell 
according to the scRNA-seq data.

Through various combinations, an infinite number of 
pseudo-spots can be synthesized, whereas the quantity of 
real-spots is typically limited. To address the discrepancy 
in data volume between the target domain and the source 
domain during the subsequent domain adaptation pro-
cess, we also apply mixup to real-ST data refined by the 
LETS filter, thereby significantly increasing the amount 
of data in the target domain. Specifically, a mixup ratio � 
is randomly sampled from a Beta distribution Beta(α, α) 
for α > 0 . The resulting mixed-spot is generated by:

where g∗ri and g∗rj are two randomly selected refined 
real-spots. In fact, mixup is a commonly used data aug-
mentation strategy in computer vision. We find it par-
ticularly suitable for ST data, where concerns about 
its potential negative impacts such as the loss of target 
images or confusing merged objects are not as relevant.

Adversarial domain adaptation training for the deep 
learning network
The training process of the LETSmix network, which 
consists of nonlinearly activated fully connected lay-
ers (detailed in Additional file 1: Table S2), is conducted 
using the PyTorch-gpu package (version 1.12.0). Initially, 
a shared feature extractor F  is utilized to derive low-
dimensional features from both pseudo-ST and locally 
smoothed real-ST data. The subsequent source classi-
fier S and domain classifier D are trained in an adver-
sarial manner. Specifically, we first pretrain the feature 

(7)G∗
r = AGr.

(8)gp =
∑k

i=1 wcigci, where
∑k

i=1 wci = 1.

(9)gm = �g∗ri + (1 + �)g∗rj ,

extractor and the source classifier using only the pseudo-
ST data for cell-type deconvolution, leaving the domain 
classifier aside. Then, the two branches are trained alter-
natively. In the domain classifier training procedure, the 
learnable weight parameters in the feature extractor and 
source classifier are frozen. This process aims to effec-
tively distinguish whether the extracted features origi-
nate from pseudo-ST or real-ST. At this stage, the loss 
function is defined as the binary cross-entropy between 
the predictions of the domain classifier and the assigned 
domain label, formalized as.

where x and yd denote the input data and the domain 
label (0 for pseudo-ST and 1 for real-ST), respectively. 
In the source classifier training procedure, we freeze the 
trained domain classifier and use it to classify the domain 
of the input data. At this stage, the feature extractor aims 
to deliberately confuse the domain discriminator, pre-
venting it from accurately distinguishing the domain 
of the extracted features. This serves the purpose of 
eradicating domain variances existing in the feature 
space. Simultaneously, the source classifier endeavours 
to accurately estimate the proportions of different cell 
types within each input pseudo-spot. Thus, there are 
two components in the loss function. The first compo-
nent is defined as the Kullback–Leibler divergence (KLD) 
between the estimations of the source classifier and the 
cell-type proportion labels, while the second component 
is the binary cross-entropy between the predictions of 
the frozen domain classifier and the inverted assigned 
domain label, which can be formalized as.

Here, z is the total number of cell types, while yi,s and 
S(F(x))i stand for the label and estimation for the i th cell 
type, respectively. Note that the KLD loss is only calcu-
lated for input data from the source domain (pseudo-ST), 
while the binary cross-entropy loss is calculated for data 
from both domains. Maintaining the same batch size for 
data from pseudo-ST and real-ST, we find that it is cru-
cial for the training iterations of the domain classifier to 
be more than that of the source classifier within a cycle 
of alternation, where the ratio between the two branches 
is d : 1 . This observation aligns with logical expectations 
because the ability of the domain discriminator to guide 
the feature extractor in learning domain-invariant fea-
tures hinges upon its accurate domain differentiation.

(10)
Ld = γd · log(D(F(x))) + (1 − γd) · log(1 − D(F(x))),

(11)

Ls =
∑Z

i=1 yi,s log

(
S(F(x)))i

yi,s

)

+ (1 − yd) · log(D(F(x))) + yd · log(1 − D(F(x))).
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Preprocessing spatial and single‑cell datasets
The preprocessing of the ST and scRNA-seq data was 
conducted in Python using the Scanpy package (version 
1.9.3). Initially, m highly expressed marker genes for each 
cell type in the scRNA-seq data were selected through 
the Wilcoxon rank-sum test. Note that the expression 
data from the scRNA-seq data were normalized and 
log1p-transformed before the marker gene selection pro-
cess, ensuring an equivalent total amount of gene expres-
sion for each cell. The subsequent procedures utilized 
the intersection between the extracted marker genes and 
all genes in the ST data. Then, the expression data of the 
selected marker genes from both the scRNA-seq and ST 
data were once again normalized and log1p-transformed. 
Importantly, the normalized total amount of expression 
in each cell from the scRNA-seq data should be  times 
greater than that in each spot from the ST data. This 
adjustment accounts for the real-ST refinement process, 
ensuring that the total counts in a generated pseudo-spot 
and a real spot are equal. Finally, the expression data in 
pseudo-ST and real-ST are min–max scaled, to ensure 
that the values lie between 0 and 1. This comprehen-
sive preprocessing pipeline sets the stage for subsequent 
analyses in LETSmix, enhancing the comparability and 
accuracy of the deconvolution results across different 
datasets.

Evaluation metrics
In the experiments presented in this paper, four quantita-
tive metrics were employed to evaluate the performance 
of various cell-type deconvolution methods: Area Under 
the Curve (AUC), EnRichment (ER), Jensen-Shannon 
Divergence (JSD), and Moran’s I. The AUC and ER gauge 
the agreement between the predicted spatial distribution 
patterns of regionally restricted cell types and layer anno-
tations, while JSD assesses the alignment of the estimated 
general cell type composition in the ST dataset with 
prior knowledge from the matched scRNA-seq dataset. 
Moran’s I, on the other hand, is used to assess the spatial 
autocorrelation of the predicted cell-type distributions, 
specifically evaluating the similarity of cell type compo-
sitions within spatially adjacent spots. A high Moran’s I 
value indicates strong spatial clustering of similar cell 
types, which is expected in certain tissues with clear 
structural organization. In the context of receiver operat-
ing characteristic (ROC) analysis, a spot is labeled 1 if it 
resides in the target region of the layer-specific cell type 
under examination; otherwise, it is labeled 0. The AUC 
value is then calculated between the estimated propor-
tions of this cell type in all spots and the assigned labels. 
Despite the common use of the AUC metric in other cell-
type deconvolution studies [33, 44], it is acknowledged 

to have certain limitations. Notably, not all spots within 
the target region necessarily contain the layer-specific 
cell type under investigation in reality. Additionally, set-
ting the label to 1 does not realistically represent the 
actual proportion of this cell type in a spot within the tar-
get region. Therefore, even if the model accurately pre-
dicts cell type compositions in each spot, achieving an 
AUC value of 1 is improbable. To address these limita-
tions, an additional metric called EnRichment (ER) was 
introduced in this study. The ER calculates the estimated 
total counts of a layer-specific cell type within the target 
region divided by the total counts of that cell type in the 
entire tissue section. Due to the unknown total number 
of cells in each spot, this value was approximated using 
the estimated proportions of that cell type as a substitute. 
The formalization of the ER is given by:

where �′ and � denote the spots in the target region 
and the entire tissue section, respectively. pi,j is the esti-
mated proportion of the j th cell type in the i th spot. In 
cases where multiple cell types share a common target 
region, such as cancer clone A and cancer clone B cells in 
the PDAC-A dataset, their estimated proportions in each 
spot are first summed together as a broader cell type, and 
an ER value is calculated based on this merged cell type. 
To obtain JSD values, we first computed the overall pro-
portions of various cell types in both the scRNA-seq and 
ST data. The calculation for the latter involved averaging 
the cell type compositions across all estimated spots, as 
illustrated by Formula (13).

All the quantitative results presented in this paper were 
obtained from five repeated experiments. The models 
under evaluation were trained from scratch five times 
with different random seeds. In each repeated experi-
ment, the learned parameters in LETSmix were saved 
at the training epoch where the best performance was 
achieved. The distribution patterns of 10 layer-specific 
cell types in the DLPFC datasets estimated by different 
models were examined using the AUC and ER metrics. 
The AUC metric was also utilized in the ablation and 
hyperparameter analysis for the DLPFC dataset. For the 
PDAC dataset, ER and JSD values were calculated for dif-
ferent models under matched conditions, and only the 
ER values were computed under unmatched conditions. 

(12)ERj =

∑
i∈�′ Pi,j∑
i∈� Pi,j

,

(13)

Pst = (
∑n

i=1 pi)/n,

JSD(Psc � Pst) =
1
2 DKL(Psc � M) + DKL(Pst � M)),

where M = (Psc + Pst)/2, DKL(P�Q) =
∑

iPi log(Pi/Qi).
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Similarly, the ER and JSD metrics were applied to the 
Liver dataset to analyze the estimated distribution pat-
terns of two regionally restricted cell types and the gen-
eral cell type compositions, respectively. In the MOB 
dataset, ER and Moran’s I values were computed for 
certain cell types with potentially regional distribution 
patterns.

Method comparison
The deconvolution performance of LETSmix was bench-
marked against that of seven other state-of-the-art com-
putational methods: CellDART [33], SpaDecon [32], 
Cell2location [23], POLARIS [24], CARD [25], GraphST 
[34], and SpatialPrompt [35]. CellDART and SpaDecon 
are two deep learning-based models, and can be seen 
as different simplified versions of LETSmix. CellDART 
also follows a source-domain dual-branch framework, 
leveraging the adversarial domain adaptation strategy to 
bridge technical variances between ST and the scRNA-
seq data, but completely ignores the inherent correla-
tions among spots in the ST dataset and the significant 
imbalance between the number of samples in the source 
and the target domain. SpaDecon simply utilizes infor-
mation from spot coordinates and histological images to 
locally smooth the ST dataset. The model is trained on 
scRNA-seq data with a supervised clustering algorithm 
and is directly employed to infer cell-type proportions in 
ST. Cell2location assumes that gene expression data in 
scRNA-seq and ST data follow a negative binomial dis-
tribution. Cell type signatures were inferred from the ref-
erence scRNA-seq dataset and used to estimate cell type 
proportions decomposed from the ST data. The model 
incorporates parameters capturing various sources of 
data variability. POLARIS, like Cell2location, is also 
a statistical probabilistic model. While it accounts for 
fewer sources of variability than Cell2location, POLARIS 
uniquely incorporates region annotations, allowing for 
the possibility that gene expression levels may vary across 
different regions within the tissue. In CARD, the count 
matrices of the scRNA-seq and ST data are decomposed 
into different parameter matrices. Cell-type signatures 
were inferred from the reference scRNA-seq dataset, and 
the cell type composition matrix was estimated from the 
ST data via NMF regression. The model introduces a con-
ditional autoregressive assumption, leveraging position 
coordinate information to consider spatial correlations 
among spots. GraphST and SpatialPrompt are other two 
recently developed learning-based approaches. GraphST 
employs a graph autoencoder framework trained on ST 
data using a contrastive learning strategy. In this frame-
work, spatially adjacent spots are treated as positive sam-
ple pairs, and the decoder reconstructs ST data enriched 
with local context information. In parallel, GraphST 

implements an autoencoder for scRNA-seq data recon-
struction to mitigate data noise. By leveraging a spatially 
informed contrastive learning mechanism, the model 
captures the mapping relationships between scRNA-seq 
cells and ST spots. SpatialPrompt is a regression-based 
traditional machine learning method. It focuses on mod-
eling spot-level interactions and generating pseudo-local 
microenvironment information for synthetic pseudo-
spots derived from scRNA-seq data. This is achieved 
by first learning the associations between each spot and 
its neighboring spots, thereby characterizing the spatial 
microenvironment. Subsequently, a k-nearest neighbor 
(KNN) regressor is employed to associate each ST spot 
with relevant pseudo-spots, enabling cell type decon-
volution. For all methods, the default parameters were 
applied for analyses unless otherwise specified.

Parameter selection
The key parameters of the proposed LETSmix method 
include the degree of spatial context information used 
( ̃s  ), the ratio of training iterations between the domain 
classifier and the source classifier ( d ), the number of 
marker genes per cell type ( m ), and the number of cells 
per pseudo-spot ( k ). To determine the optimal values 
for these parameters, we investigated the variation in 
LETSmix performance in the DLPFC dataset across a 
spectrum of conditions as a reference (Additional file 1: 
Fig. S1). Different choices for s̃  revealed that optimal 
performance is achieved when its value ranges from 0.5 
to 1. Extremes in the utilization of spatial background 
information, either too low or too high, impeded the cell-
type deconvolution process. However, considering that 
a parameter similar to s̃  is incorporated in SpaDecon, 
we set the value of s̃  to 0.5, which is the default value 
applied in SpaDecon, for a fair comparison. Effective dis-
crimination by the domain discriminator between the 
two domains is crucial in guiding the feature extractor 
to eliminate domain differences, which is substantiated 
by the fact that more training iterations for the domain 
discriminator led to enhanced performance. However, 
improvements in deconvolution performance stop when 
d reaches 10, as the discriminative capacity of the domain 
discriminator itself has inherent limitations. Notably, the 
official implementation in CellDART did not prioritize 
additional training iterations for the domain classifier. 
In our reproduced experimental outcomes, adhering to 
the training methodology outlined in the public code of 
CellDART yields notably lower accuracy in deconvolu-
tion results compared to those reported in the original 
paper. To maintain fairness, all experiments in this paper 
maintain a proportional ratio of 10:1 for training itera-
tions between the domain and source classifiers within 
both LETSmix and CellDART. Increasing the number of 
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marker genes per cell type during the data preprocess-
ing stage consistently yielded improved results, provid-
ing more comprehensive information for the model but 
at the expense of greater computational cost. Empirically, 
the value of m is set to 50 for all three public datasets 
used in this study. Similar to m , increasing the value of 
k consistently leads to enhanced deconvolution perfor-
mance. With sufficient data, the model can learn more 
diverse features and adapt to complex application scenar-
ios by including more cells in each pseudo-spot. In our 
experiments, k is set to 8 for all datasets because it is the 
default value applied in CellDART for a fair comparison.

Results
Overview of LETSmix
The proposed cell-type deconvolution method inte-
grates spatial correlations among spots while eliminat-
ing domain variances between the ST and the reference 
scRNA-seq data. As illustrated in Fig. 1, both the scRNA-
seq and ST data were preprocessed before they were fed 
into the deep learning network. The synthesis of pseudo-
ST from annotated scRNA-seq data was implemented 
by randomly selecting cells to generate pseudo-spots, 
with their total gene expression counts determined by a 
weighted sum of the chosen cells. This procedure accu-
mulated a substantial corpus of pseudo-ST data with 
known cell type compositions, facilitating supervised 
training of the feature extractor and source classifier. 
Real-ST data were locally smoothed with ancillary spa-
tial context information. Considering potential noise 
in expression data due to limited cell numbers per spot 
and sequencing techniques, it is rational to aggregate 
information from neighboring spots with similar histo-
logical and gene expression features [32]. To this end, an 
adjacency matrix, termed the LETS filter, was designed 
to signify spatial, histological, and gene expression simi-
larities among real-ST spots. Further optimization of 
this matrix incorporated layer annotations as masks, 
restricting information sharing to spots within the same 
layer. Multiplying the constructed adjacency matrix with 
the original real-ST expression count matrix effectively 
enhances the data quality. Due to inherent technical dif-
ferences between ST and scRNA-seq, the refined real-
ST and synthetic pseudo-ST data underwent adversarial 
training within the deep learning network, employing 
a label inversion technique commonly used in domain 
adaptation methods. This technique ensures that the 
learned domain classifier effectively distinguishes real-
spots from pseudo-spots, while the extracted features 
try to deceive the trained domain classifier. Notably, aug-
mented training data were generated by mixing spots 
randomly selected from the spatially refined real-ST 
data to compensate for the significant disparity in data 

volume between real-spots and pseudo-spots. Thus, the 
source classifier, trained exclusively with labeled pseudo-
ST, demonstrates superior performance in estimating cell 
type compositions from real-ST data.

To assess the efficacy of our proposed deconvolution 
method, LETSmix was applied to four representative 
public real ST datasets (Additional file 1: Table S3). These 
datasets encompass 12 ST samples of human brain cortex 
(DLPFC) data, 2 ST samples of human pancreatic ductal 
adenocarcinoma (PDAC) data, 3 ST samples of mouse 
liver (Liver) data, and 1 ST sample of Mouse olfactory 
bulb (MOB) data. All the ST samples in the DLPFC data-
set share a common reference scRNA-seq dataset, while 
each PDAC ST sample is paired with a matched reference 
scRNA-seq dataset, supplemented by an external scRNA-
seq dataset. The Liver dataset comprises 3 distinct 
scRNA-seq datasets with different sequencing protocols, 
and only one scRNA-seq dataset is used to deconvolve 
MOB ST data. The performance of LETSmix was bench-
marked against that of other state-of-the-art methods, 
including CellDART, SpaDecon, Cell2location, POLA-
RIS, and CARD, through qualitative heuristic inspec-
tion and quantitative evaluation using metrics such as 
Area Under the Curve (AUC), EnRichment (ER), Jensen-
Shannon Divergence (JSD), and Moran’s I. Among these 
metrics, the AUC and ER evaluate the enrichment of 
regionally restricted cell types within target areas, while 
the JSD measures the consistency of the overall cell-type 
proportions between the entire ST tissue region and the 
matched reference scRNA-seq dataset. Moran’s I assesses 
the spatial autocorrelation of cell type distributions, indi-
cating whether specific cell types exhibit clustered or dis-
persed spatial patterns.

Benchmarking and robustness evaluation of LETSmix 
in deconvolution of human DLPFC data
We assessed the performance of LETSmix using a 10X 
Visium dataset derived from postmortem neurotypical 
human DLPFC tissues [38]. In this dataset, 12 ST sam-
ples exhibit clear structural stratification, ranging from 
L1 to L6 and WM (white matter) annotated by patholo-
gists (Fig. 2A, Additional file 1: Fig. S2). A shared refer-
ence scRNA-seq dataset [14] was applied to train each 
deconvolution method for benchmarking, as visualized 
by the UMAP representation in Fig.  2B. Among the 28 
annotated cell types, the spatial mapping results of 10 
layer-specific excitatory neurons were used to quantify 
the deconvolution performance of the different tools.

Figure  2C presents the box plots of the AUC and ER 
values achieved by different models on all 12 ST samples. 
The ranks of all these models remain consistent across the 
two metrics, with LETSmix consistently holding the top 
position. Due to the greater sensitivity of the AUC metric 
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compared to that of the ER metric, the evaluation results 
based on the AUC metric exhibit more pronounced dif-
ferences in cell-type deconvolution performances across 
different models. Figure 2D and Additional file 1: Fig. S3 
show the spatial distribution heatmaps of layer-specific 
cell types estimated by each model trained exclusively on 
the ST sample named “151,673.” Compared to layer anno-
tations, estimations of excitatory neurons from LETSmix 
were more accurate and coherent than those from other 
models. All excitatory neuron cell types estimated by 
LETSmix demonstrated reasonable regionally restricted 
patterns. For example, a distinct gap between layers 4 and 
6 can be clearly observed in the LETSmix predictions for 
Ex_6_L4_6 cells. In contrast, the estimation results from 
other models were either excessively sparse or entirely 
fail to identify this cell type. Additionally, only LETSmix 
demonstrated the ability to correctly predict significantly 
more Ex_3_L4_5 cells within layers 4 and 5. Compared 
to CellDART, LETSmix exhibited a more continuous spa-
tial distribution and fewer false positive results, crediting 
it to the utilization of information from spatial context. 
SpaDecon struggled to accurately predict the distribu-
tion of these cell types, mainly due to its neglect of the 
domain differences between the scRNA-seq and ST data 
during the modelling process. The same issue was also 
present in the CARD model. Although Cell2location also 
considered the domain shifts between data from the two 
sequencing technologies through traditional statistical 
probabilistic approaches, its performance fell short com-
pared to that of the deep learning-based domain adap-
tation method employed in this study. Layer annotation 
information was also incorporated in POLARIS, but its 
estimation results evidently diffused into other non-
target regions. Although GraphST and SpatialPrompt 
demonstrate a discernible stratification pattern in the 
deconvolution results for those excitatory neurons, sub-
stantial discrepancies persist when compared with the 

layer annotations. Additional file 1: Fig. S4 provides the 
results of all cell types estimated by LETSmix. Regarding 
other nonneuronal cells, LETSmix predicted that astro-
cytes are primarily distributed in layers 1 and 6, while 
oligodendrocytes were mainly located in the white mat-
ter region, which was consistent with findings from other 
biomedical studies [33], demonstrating the credibility 
and reliability of the predictions made by LETSmix.

Furthermore, LETSmix and other models were tested 
under three different conditions on the “151,673” ST 
sample. The AUC and ER values were calculated for 
each excitatory neuron type in 5 repeated experiments. 
As shown in Fig.  2E and Additional file  1: Fig. S5, the 
scRNA-seq dataset was used with the original 28 cell 
types for model training under the “original” condition. 
These 28 cell types include several cell subtypes. In the 
“merge” condition, these subtypes were merged into a 
broader category before training the models. For exam-
ple, Astros_1, Astros_2, and Astros_3 were merged into 
the Astros cell type. Only the 10 layer-specific excitatory 
neuronal cell subtypes used for metric calculations were 
not merged, resulting in 16 cell types in total. Under the 
“del Inhib” condition, all cells belonging to the inhibi-
tory subtype, which accounts for approximately 20% of 
the entire dataset, were removed from the scRNA-seq 
data before model training. For both metrics and three 
conditions, LETSmix consistently achieved the highest 
scores, evidently outperforming other models, in accord-
ance with the visual inspection in Fig. 2D. To assess the 
robustness of different models under varying conditions, 
we visualized the predicted cell-type proportions of the 
ten neuronal cell types using UMAP representations, and 
further quantified the centroid distances in UMAP space 
between estimation results across different condition 
pairs for each method (Fig. 2F, G, and Additional file 1: 
Fig. S6). Interestingly, the traditional machine learn-
ing-based methods (Cell2location, POLARIS, CARD, 

(See figure on next page.)
Fig. 2  Application to the human brain cortex 10X Visium dataset. A Layer annotations of the ST sample named “151,673” in the DLPFC dataset. 
B UMAP representation of the reference scRNA-seq dataset. C Box plots displaying the calculated AUC and ER values for the estimated cell type 
distribution in all 12 ST samples. Each box comprises 50 datapoints that represent scores for 10 layer-specific cell types in 5 repeated experiments, 
and ranges from the third and first quartiles with the median as the horizontal line, while whiskers represent 1.5 times the interquartile range 
from the lower and upper bounds of the box. D Estimated proportion heatmaps of 3 layer-specific excitatory neurons by each deconvolution 
method. E Box plots showing the calculated AUC and ER values for the estimated cell type distributions in the “151,673” ST sample. “original” 
includes all 28 cell types in the scRNA-seq dataset. “merge” indicates that the cell subtypes were merged before model training except for the 10 
excitatory neurons. “del Inhib” indicates that inhibitory neurons were deleted from the scRNA-seq dataset. F UMAP representation of deconvolution 
results from different methods under the “original” and “del Inhib” conditions. G Scatter plots of cluster centroid distances in the UMAP computed 
for each method under different condition pairs. H Clustering results of the “151,673” ST sample given by GraphST. I Ablation study on the “151,673” 
ST sample. “cluster” represents the situation where LETSmix leverages clustering results given by GraphST as the layer annotation information. 
“wo_LETS” represents the situation where LETSmix ignores all spatial context information, and “wo_DA” represents the situation where LETSmix 
is trained without the implementation of the domain adaptation strategy. Error bars represent the mean ± standard deviation. An independent 
t-test was performed between LETSmix and the other ablated models. Statistical significance is indicated above the bars (ns: not significant, 
****P-value < 0.0001)
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Fig. 2  (See legend on previous page.)
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and SpatialPrompt) demonstrated consistently higher 
stability when compared to most deep learning-based 
approaches (LETSmix, CellDART, and SpaDecon). This 
enhanced stability may be attributed to the handcrafted 
features and fewer variable parameters in traditional 
machine learning models, which are less prone to overfit-
ting under varying conditions. However, among the deep 
learning models, LETSmix exhibited smaller centroid 
distances overall, second only to GraphST, indicating bet-
ter consistency across different conditions. Despite the 
superior stability of machine learning-based methods 
and GraphST, they significantly lagged behind LETS-
mix in deconvolution accuracy. As a result, the apparent 
robustness of these methods is of limited utility, as their 
lower prediction accuracy undermines their practical 
relevance in accurately resolving cell type compositions 
from spatial transcriptomics data.

In real-world applications, it is often challenging to 
obtain precisely annotated spatial regions from expert 
pathologists due to the scarcity or inaccessibility of such 
detailed annotations for tissue samples. However, with 
the rapid advancement of clustering methodologies 
applied to omics data, automated spatial region annota-
tion has become increasingly feasible through the use 
of sophisticated computational tools [34, 45, 46]. To 
explore this possibility, we evaluated the performance 
of LETSmix when employing clustering-based annota-
tions, generated by GraphST, as a surrogate for expert-
curated spatial regions in sample 151,673 (Additional 
file 1: Fig. S7). The clustering-based annotations achieved 
an Adjusted Rand Index (ARI) score of 0.63 when com-
pared to the ground truth annotations (Fig.  2H), indi-
cating a moderate level of agreement. To further assess 
the impact of this automated annotation approach on 
deconvolution performance, we compared results from 
LETSmix using the clustering-derived regions against 
the results obtained with expert annotations. Based on 
the AUC metric, no significant differences were observed 
between the two conditions (Fig.  2I), supporting the 

feasibility of using clustering-derived annotations for 
deconvolution tasks. This finding underscores the poten-
tial of automated computational methods in addressing 
the limitations posed by the lack of expert annotations, 
especially in large-scale spatial transcriptomics studies. 
In addition to the clustering-based evaluation, we further 
tested performance of LETSmix when spatial contextual 
information and domain adaptation were systematically 
omitted. Both modifications led to a marked decline in 
performance, highlighting the critical importance of 
these components in maintaining the robustness and 
accuracy of the deconvolution process.

LETSmix achieved superior and robust performance 
on PDAC data under matched and unmatched conditions
The second dataset used for evaluation originated from 
cancerous tissues from human PDAC patients. Here, ST 
and paired scRNA-seq data were collected following dif-
ferent protocols compared to those in the previously ana-
lyzed DLPFC dataset. We first applied LETSmix to an ST 
sample denoted as PDAC-A using paired scRNA-seq data 
for model training. The ST sample was delineated into 
four distinct regions by pathological experts (Fig.  3A). 
Among the annotated cell types in scRNA-seq (Fig. 3B), 
acinar, cancer, and ductal cells are expected to be located 
within specific regions (Additional file  1: Table  S1). As 
previously discussed in the “Evaluation metrics” sec-
tion, the AUC metric presents certain limitations when 
assessing the performance of ST deconvolution methods. 
Furthermore, experimental results on the DLPFC data-
set revealed that rankings of different models remained 
consistent across both the AUC and ER metrics. Given 
these observations, only the ER metric is applied from 
this section onward to evaluate the regional enrichment 
of selected cell types.

Figure  3C and Additional file  1: Fig. S8A present 
the spatial distribution pattern of cell types inferred 
by each model. Credited to the effective utilization of 
comprehensive spatial context information, acinar cells 

Fig. 3  Application to the pancreatic ductal adenocarcinoma ST dataset. A Region annotations of the PDAC-A ST sample. B UMAP representation 
of the reference PDAC-A scRNA-seq dataset. C Estimated proportion heatmaps of 4 regionally restricted cell types by each model trained 
with matched PDAC-A ST and scRNA-seq data. D Left: model comparisons with matched ST and scRNA-seq data from PDAC-A. JSD and ER metrics 
were calculated using prior knowledge of cell type compositions and localizations, respectively, in PDAC-A tissue. Right: model comparisons 
through the ER metric evaluated in PDAC-A tissue, but models were trained with unmatched scRNA-seq data from PDAC-B and PDAC-Peng. 
E Stacked bar plots showing the overall cell type compositions in the PDAC-A ST sample estimated by each model using the paired PDAC-A 
scRNA-seq dataset. The ground truth was shown in the first row (denoted as “scRNA-seq”). The predicted proportion of each cell type is the average 
value of 5 repeated experiments. F Ablation study with the proposed LETS filter conducted on the matched PDAC-A dataset. “L”, “E”, “T”, and “S” 
denote layer annotations, expression similarity, image texture features, and spot coordinates, respectively. “l_vec” denotes the modified vectorized 
scaling factor l  G. Performance of LETSmix using varying ratios of available ST spot data for the mixup-augmented domain adaptation training. The 
model was tested on the PDAC-A ST sample through ER and JSD metrics, and trained with matched scRNA-seq data. “r = 0” denotes the situation 
without the mixup procedure. Each box plot ranges from the third and first quartiles with the median as the horizontal line, while whiskers 
represent 1.5 times the interquartile range from the lower and upper bounds of the box

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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estimated by LETSmix were mainly distributed in the 
lower half of the pancreatic area, closely aligning with 
the manual annotation. In contrast, other models exhib-
ited certain issues in inferring this cell type: some were 
excessively sparse (such as CellDART and GraphST), 
while others generated numerous false-positive results, 
extending the predictions beyond the pancreatic area 
into stroma and cancer regions. Cancer clone A and can-
cer clone B cell types are expected to be primarily distrib-
uted within the cancer region. The distinguishing marker 
genes for these two cell types are TM4SF1 and S100A4, 
respectively (Additional file 1: Fig. S9A). TM4SF1 is sig-
nificantly associated with tumor migration and invasion 
[47], indicating that areas with high TM4SF1 expression 
may represent late-stage cancer regions with metastatic 
potential. In contrast, S100A4 serves as an early prog-
nostic marker for pancreatic cancer [48]. Upon exami-
nation, the upper half of the cancer region in PDAC-A 
tissue exhibited increased TM4SF1 expression, while the 
lower half exhibited increased S100A4 expression (Addi-
tional file 1: Fig. S9B). Thus, it was inferred that the upper 
region corresponds to late-stage cancer likely populated 
by cancer clone A cells, while the lower region represents 
early-stage cancer, possibly populated by cancer clone B 
cells. Among the results obtained from the five decon-
volution models, LETSmix was able to most accurately 
identify such nuanced differences in the spatial distribu-
tion between the two cancer cell types. Although Cell-
2location and GraphST generally delineated the cancer 
regions accurately, it failed to capture the relationship 
between these two cell types, incorrectly predicting a 
significant presence of Cancer clone A cells in the lower 
region. LETSmix also reasonably inferred the distribu-
tions of other cell types in PDAC-A tissue, consistent 
with the corresponding marker genes (Additional file  1: 
Fig. S10). For example, spots enriched with TFF3, VIM, 
and CD74 marker genes were also estimated to have high 
proportions of ductal terminal, endothelial, and mDC 
cells, respectively.

Based on the test results under two quantification met-
rics in Fig. 3D left and Additional file 1: Fig. S8B, LETS-
mix achieved the highest ER value and ranked second in 
terms of JSD, showing that our proposed method was 
not only capable of mapping cells to their expected loca-
tions in ST, but also precisely estimating the proportions 
of various cell types. Although SpatialPrompt excelled 
in the JSD evaluation, its performance in the ER metric 
was notably poor, highlighting its limitations in accu-
rately capturing the spatial distribution of cells. Similar 
to LETSmix, the CellDART model, which also employed 
domain adaptation techniques, outperformed other 
methods in the JSD metric evaluation, demonstrating the 
effectiveness of the applied adversarial training strategy 

in mitigating domain shifts between the two datasets. 
Although Cell2location performed well in predicting the 
enrichment of various cell types within specific regions, 
it ranked the poorest in the JSD metric, indicating its 
inability to accurately estimate the specific proportions 
of various cell types within each spot. This limitation was 
also reflected in the previous visualization of the predic-
tion results for the two cancer subtypes. As visualized in 
Fig.  3E and Additional file  1: Fig. S8D, LETSmix accu-
rately estimated the overall cell-type proportions in ST. 
Due to the complete neglection of domain differences in 
SpaDecon, the input spot data exhibited significant dis-
tances from every clustering center in its feature space 
trained on scRNA-seq data, leading to a similar estimated 
proportion for each cell type.

Next, the performance of different models was evalu-
ated on scRNA-seq and ST data collected from another 
tissue region, denoted as PDAC-B (Additional file 1: Fig. 
S11-12). Distributions of cancer, ductal centroacinar, and 
RBC cells predicted by each method are compared in 
Additional file 1: Fig. S11C. Proportion heatmaps of the 
remaining cell types predicted by LETSmix are shown in 
Additional file 1: Fig. S13, and Additional file 1: Fig. S14 
displays the distribution patterns of their corresponding 
marker genes for reference. Compared with the region 
annotations of the PDAC-B tissue shown in Additional 
file 1: Fig. S11A, all models predicted the distribution of 
cancer clone A cells primarily within the cancer region. 
However, CARD and GraphST incorrectly predicted a 
considerable number of cancer cells in the interstitium 
area, while SpaDecon estimated a very low percentage 
of cancer cells within the target region. Furthermore, the 
distribution of ductal centroacinar cells predicted by the 
SpaDecon model diffused from the ductal area to almost 
the entire tissue. As shown in Additional file 1: Fig. S12A, 
similar to previous results on PDAC-A, although Cell-
2location and POLARIS performed well under the ER 
marker, their JSD values were significantly greater than 
those of the other models. In contrast, GraphST and 
SpatialPrompt exhibited the opposite trend, achiev-
ing lower JSD values but performing poorly on the ER 
metric. Taken together, LETSmix achieved satisfactory 
performance in terms of both metrics. The presence of 
RBCs should be minimal or absent in pancreatic tissue, 
as PDAC tumors often compress and disrupt blood ves-
sels, leading to reduced blood flow and impaired vascular 
function. This is also reflected in the stacked bar plot of 
the scRNA-seq data shown in Additional file 1: Fig. S12B. 
However, many methods estimated a substantial pres-
ence of RBCs in this tissue, whereas LETSmix produced 
results consistent with expectations, which reaffirms the 
high accuracy of LETSmix in predicting the proportions 
of various cell types.
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To further investigate the role of domain adaptation 
in the LETSmix model, we conducted additional tests 
in two scenarios of data mismatch. Specifically, when 
assessing cell-type deconvolution performance on the 
ST data from PDAC-A, models were trained using ref-
erence scRNA-seq data from PDAC-B (Additional file 1: 
Fig. S15) and an external dataset denoted as PDAC-Peng 
(Additional file 1: Fig. S16). The PDAC-Peng dataset was 
collected from 24 primary PDAC tumors and 11 normal 
pancreas tissues. Among the two ductal subtypes shown 
in Additional file 1: Fig. S16A, ductal cell type 1 was iden-
tified as nonmalignant while the other was identified as 
malignant by previous studies [42], suggesting that ductal 
cell type 2 may infiltrate into the cancer region. Accord-
ing to the results obtained from the PDAC-B scRNA-
seq data (Additional file 1: Fig. S15C), predictions made 
by LETSmix were highly consistent with the previously 
obtained results using the matched PDAC-A scRNA-
seq dataset. In contrast, other models exhibited signifi-
cant changes in the predicted distributions compared to 
the previous outcomes. Specifically, acinar and ductal 
centroacinar cells estimated by other models exhibited 
severe diffusion into nontarget regions. Since scRNA-seq 
data from PDAC-B lack cells of the cancer clone B type, 
predictions for cancer clone A cells inferred by LETSmix 
appeared to be a fusion of both cancer cell types. The 
visual inspection in Additional file 1: Fig. S16C obtained 
by using data from PDAC-Peng further underscored that 
consistent prediction of acinar cells was made by LETS-
mix. Our proposed method also correctly estimated the 
distribution patterns of the two ductal subtypes, where 
non-malignant ductal cell type 1 was mainly enriched in 
the ductal region and malignant ductal cell type 2 was 
distributed across ductal and cancer regions. According 
to the ER metric shown in Fig. 3D right and Additional 
file  1: Fig. S8C, the superior performance of LETSmix 
over the other methods was even more pronounced than 
that achieved in the matched condition, which substan-
tiated its stability in cell-type deconvolution when faced 
with considerable domain shifts between the scRNA-seq 
and ST data, demonstrating the ability to mitigate the 
need for alignment between these two data sources.

Building upon our preliminary investigation of the effi-
cacy of the LETS filter in the DLPFC dataset (Fig.  2I), 
we conducted a more comprehensive analysis by per-
forming an ablation study to examine the contribution 
of each individual component of the LETS filter to the 
overall deconvolution performance (Fig. 3F). Specifically, 
we systematically removed each element of the LETS fil-
ter—layer annotations, expression similarity, image tex-
ture features, and spot coordinates—and evaluated the 
subsequent effects on the deconvolution outcomes. The 
removal of image texture features resulted in the smallest 

decline in performance based on the JSD metric, yet it 
caused a significant reduction in the ER score, suggest-
ing that while texture features may not drastically affect 
the global cell-type composition, they are essential for 
accurately identifying regionally enriched cell popula-
tions. Conversely, the removal of spot coordinates did 
not significantly affect the ER score, but it led to a pro-
nounced increase in the JSD value, indicating that spatial 
information is crucial for maintaining overall consistency 
between the predicted and reference cell-type propor-
tions. These findings highlight the complementary nature 
of the components within the LETS filter, as their com-
bined use yields optimal deconvolution performance. 
Additionally, we observed that the modified vectorized 
scaling factor l . also plays a critical role, as its removal 
led to a notable deterioration in both JSD and ER scores, 
underscoring its importance in balancing the integration 
of spatial and molecular features. Altogether, this abla-
tion study demonstrates that individual components of 
the LETS filter contribute differently to the overall per-
formance of LETSmix, and their synergistic integration is 
crucial for achieving the best deconvolution results.

Furthermore, given the limited number of available 
spots in the PDAC dataset, with only 428 spots in the 
PDAC-A sample and 224 spots in the PDAC-B sample, 
experiments were conducted to specifically assess the 
impact of the mixup data augmentation strategy inte-
grated into the LETSmix model. We systematically evalu-
ated the performance of LETSmix using different ratios 
of available spot data (Fig. 3G). As expected, the decon-
volution performance deteriorated progressively as the 
number of available spots decreased. Nevertheless, by 
applying the mixup augmentation, LETSmix was able to 
maintain performance even in the most extreme condi-
tion where only 10% of the spots were utilized, achieving 
results comparable to those obtained without mixup aug-
mentation when the full dataset was used. This under-
scores the crucial role of mixup in maintaining model 
performance in scenarios with limited spatial transcrip-
tomics data, such as those frequently encountered in 
clinical and experimental settings.

LETSmix excelled in deconvolving complex spatial patterns 
in mouse liver using multiple scRNA‑seq datasets
LETSmix was further applied to analyze three Visium 
slices of healthy mouse liver tissues (Additional file 1: Fig. 
S17A). Three scRNA-seq datasets obtained with differ-
ent experimental protocols, denoted nuclei, ex vivo, and 
in  vivo, respectively, were used for joint analysis (Addi-
tional file 1: Fig. S17B). Figure 4A and Additional file 1: 
Fig. S18 illustrates the estimation results of two cell 
types with regional distribution patterns on the JBO001 
Visium slice using three scRNA-seq datasets separately 
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to train each model. Compared with ground truth region 
annotations shown in Fig.  4B, it can be observed that 
LETSmix consistently provided the most accurate pre-
dictions among the tested methods for the spatial dis-
tribution patterns of these two cell types. However, it 
was also acknowledged that distributions of central vein 
ECs estimated by LETSmix slightly differed from that of 
the annotated central regions, and there was a tendency 
to misidentify substantial central vein ECs in the portal 
area. Yet, predictions for this cell type made by other 
methods also exhibited similar issues, potentially with 
more pronounced discrepancies. This difficulty may be 
attributed to the scarcity of central vein ECs within the 
applied scRNA-seq datasets (Fig. 4C), limiting the ability 
of each model to sufficiently capture the characteristics 
of this cell type. Nevertheless, upon closer inspection of 
predicted central vein ECs by LETSmix (Additional file 1: 
Fig. S17C), it can be observed that they still maintained a 
high similarity to the manually annotated central region, 
albeit with lower estimated proportions. Moreover, esti-
mations for portal vein ECs by LETSmix were almost in 
perfect agreement with region annotations. LETSmix 
maintained high consistency in its estimation results 
when trained with three different scRNA-seq datasets. 
Although CellDART also produced stable prediction 
results with different scRNA-seq datasets, it estimated a 
relatively lower content for both types of ECs and did not 
accurately identify their locations compared to LETS-
mix. GraphST and Cell2location produced relatively 
decent estimation results, showing a certain correlation 
with the annotated regions. However, their results varied 
greatly when trained with different scRNA-seq datasets, 
indicating inferior stability compared to that of LETS-
mix. SpaDecon falsely predicted the occurrence of the 
two endothelial cell types across almost the entire tissue 
region, especially when trained with ex vivo scRNA-seq 
data. Similar issues were also observed in predictions 
made by POLARIS and SpatialPrompt. In contrast, the 
CARD results hardly showed the presence of these two 
cell types. Although the estimation results for the two cell 
types generated by CARD trained on the in vivo dataset 
were also distributed throughout the entire tissue region, 

closer inspection revealed that the two predicted cell 
types accounted for only very small proportions, with the 
upper limit of the color bar much lower than 0.1.

Quantitative evaluations further confirmed the excep-
tional performance of LETSmix compared to other 
deconvolution methods (Fig.  4D and Additional file  1: 
Fig. S19). SpatialPrompt outperformed other methods 
with remarkably low JSD values but was the weakest 
model in terms of ER metric evaluation. GraphST ranked 
second only to LETSmix in the overall evaluation across 
both metrics. SpaDecon and POLARIS generated rela-
tively uniform estimations for all cell types, which aligns 
with the experimental results observed in the PDAC 
dataset, with only hepatocytes being noticeably more 
abundant than other cell types in estimation results made 
by SpaDecon. When trained with the nuclei scRNA-
seq dataset, Cell2location, and CARD tended to predict 
an excessive number of T cells. Although this issue was 
alleviated in the exVivo and inVivo results, where Cell-
2location and CARD achieved improved deconvolution 
performances, they were still significantly behind LETS-
mix. In fact, their performance on the PDAC dataset also 
surpassed that on the DLPFC dataset, with the former 
utilizing single-cell RNA-seq data and the latter utiliz-
ing single-nucleus RNA-seq data. This suggests a more 
pronounced domain shift between single-nucleus RNA-
seq and ST data than between single-cell RNA-seq and 
ST data. Conversely, the performance of LETSmix on the 
nuclei scRNA-seq dataset was even slightly better than 
that on the exVivo and inVivo datasets, as indicated by 
the lower JSD value and the higher ER value. A similar 
trend can be observed in the performance of CellDART, 
which also applies domain adaptation techniques. This 
implies that confounding information unrelated to the 
platform effect between ST and scRNA-seq data may 
be inadvertently introduced into features learned by 
the domain classifier when the degree of domain shift is 
inconspicuous. This, in turn, could impede the learning 
process of the source classifier.

Additionally, we investigated the differences between 
the estimated proportions of the two endothelial cell 
types within the central and portal regions, respectively 

(See figure on next page.)
Fig. 4  Application to the healthy mouse liver 10 × Visium dataset. A Estimated proportion heatmaps of central vein and portal vein endothelial 
cells in the JBO001 Visium slice by each model trained with different reference scRNA-seq datasets. B Annotations of central and portal regions 
on the JBO001 ST sample. C Stacked bar plots showing the overall cell type compositions estimated by each model and the ground truth. The 
predicted proportion of each cell type is the average value in three Visium slices in 5 repeated experiments. D Model comparisons through JSD 
and ER metrics calculated using prior knowledge of cell type compositions and localizations, respectively, in mouse liver tissues. Each bar represents 
the average value of the involved cell types in three Visium slices and in 5 repeated experiments. E Comparisons of the average proportions of two 
cell types with regional distribution patterns in the target area estimated by each model. Each bar represents the average value of the involved cell 
type in three Visium slices and in 5 repeated experiments. F Scatter plots of metric values achieved by each deconvolution method under different 
experiment settings. “all” represents that the three scRNA-seq datasets are all used to train each model
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Fig. 4  (See legend on previous page.)
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(Fig.  4E and Additional file  1: Fig. S20A). In the central 
region, irrespective of the scRNA-seq dataset utilized, 
only LETSmix, Cell2location, and GraphST were able to 
accurately identify the quantitative relationship between 
the two cell types, with central vein ECs significantly out-
numbering portal vein ECs. However, Cell2location and 
GraphST also incorrectly estimated substantial portal 
vein ECs. CellDART achieved desirable results only when 
utilizing the nuclei scRNA-seq dataset. When trained 
with the other two scRNA-seq datasets, the proportions 
of both cell types predicted by CellDART were too low, 
and thus, their quantity differences were less distinct. 
SpaDecon, POLARIS, CARD, and SpatialPrompt exhib-
ited suboptimal performance, producing unreasonable 
results where the number of portal vein ECs exceeded 
that of central vein ECs. Meanwhile, SpaDecon and 
POLARIS excessively estimated the proportions of the 
two cell types. In the portal region, LETSmix consist-
ently predicted more portal vein ECs when trained with 
each scRNA-seq dataset. CellDART achieved similar 
results, but the predicted proportions of portal vein ECs 
were significantly lower than those of LETSmix, while 
the proportions of central vein ECs remained the same. 
Although SpaDecon and POLARIS predicted a large 
number of portal vein ECs in this region, they also inac-
curately predicted a high proportion of central vein ECs. 
CARD predicted excessively low content for both cell 
types when trained with the ex vivo scRNA-seq dataset, 
aligning with the observations in Fig. 4A.

Finally, we investigated the performance differences 
when training the models using a combination of three 
scRNA-seq datasets compared to using each dataset indi-
vidually (Fig. 4F and Additional file 1: Fig. S20B). While 
the use of multiple datasets can provide a more com-
prehensive representation of cellular heterogeneity and 
mitigate the risk of missing rare cell types due to insuf-
ficient data, it also introduces additional internal noise 
caused by batch effects. This added noise complicates 
the task of accurately learning cell-specific features, as 
the model must contend with variability between data-
sets. Our results show that only LETSmix and Cell2lo-
cation demonstrated a slight improvement in ER values 
when trained on multiple datasets simultaneously. This 
improvement in Cell2location can be attributed to its 
explicit modelling of batch effects as a variable, which 
allows it to account for the discrepancies between data-
sets. LETSmix, on the other hand, was able to maintain 
performance by leveraging its spatial context integration 
and domain adaptation strategies, which help mitigate 
the impact of domain shifts across datasets. When assess-
ing performance using the JSD metric, SpaDecon, and 
POLARIS showed improved results when trained on all 
datasets concurrently. However, given the overall lower 

initial performance of these two models, the marginal 
improvements in JSD are of limited practical significance. 
Their initial poor performance suggests that despite the 
apparent gains in JSD, these models still struggle to pro-
vide accurate cell-type deconvolution.

In summary, LETSmix predicts the spatial distribu-
tion of different cell types more accurately than Cell-
DART, benefiting from the ability to utilize additional 
spatial context information in ST data. Although CARD, 
GraphST, and SpatialPrompt also considers spatial cor-
relations among spots in ST using their positional coor-
dinates, the scattered distribution patterns of different 
regions within the Liver dataset make it challenging to 
accurately capture inherent correlations based solely on 
coordinate information. Similarly, POLARIS, which lev-
erages region annotation information, struggles with this 
dataset due to the complex and irregular regional distri-
bution, making it difficult to rely solely on such annota-
tions for accurate deconvolution. In contrast, LETSmix 
overcomes these limitations and achieves superior per-
formance by integrating multiple complementary sources 
of information. Credited to the use of domain adaptation 
techniques, only LETSmix and CellDART maintain high 
consistency in their estimation results when trained with 
the three different scRNA-seq datasets. This confirms 
that the proposed LETSmix model is more versatile and 
effectively alleviates the requirement for a high degree of 
matching between ST and scRNA-seq data.

LETSmix demonstrated accurate cell‑type deconvolution 
in single‑cell resolution MOB data
With the continuous advancements in ST technologies, 
particularly in increasing spatial resolution, we sought to 
evaluate the performance of LETSmix on a MOB tissue 
ST dataset acquired by Stereo-seq, where spatial reso-
lution reaches single-cell granularity. This dataset was 
divided into seven distinct anatomical layers, extending 
from the innermost to the outermost regions (Fig.  5A). 
These regions were initially annotated on the DAPI-
stained image, which, notably, lacked precise region 
labels for each individual spot. Based on prior analyses 
performed on the DLPFC dataset concerning the corre-
spondence between ground truth region annotations and 
clustering results obtained from advanced computational 
methods (Fig.  2I), the ConSpaS clustering model [46] 
was employed to infer the spatial region annotations for 
each spot in the MOB dataset (Fig. 5B, Additional file 1: 
Fig. S21A), providing a foundation for subsequent cell 
type deconvolution analysis. For the deconvolution task, 
we merged certain subtypes in the scRNA-seq dataset 
with similar UMAP distribution characteristics, reduc-
ing the original 38 cell types to a final set of 27 (Fig. 5C, 
Additional file 1: Fig. S21B). This refinement streamlined 
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the analysis while maintaining sufficient granularity for 
distinguishing between biologically relevant cell types. 
Of particular interest in this study were cell types with 

potentially distinct spatial distribution patterns, as these 
could provide valuable insights into tissue organization 
and functional heterogeneity. To identify these cell types, 

Fig. 5  Application to the mouse olfactory bulb Stereo-seq dataset. A Laminar structures of the MOB tissue annotated on the DAPI-stained image. B 
Spots clustering results generated by ConSpaS. C UMAP representation of the reference scRNA-seq dataset. D Correlation heatmap between region 
markers and cell types. E Proportion heatmaps of five cell types with potentially regional distribution patterns estimated by each model. F Scatter 
plots comparing the performance of different deconvolution models across two metrics. The left panel shows the results based on the predicted 
cell-type proportions for each spot. The right panel displays the performance after applying an argmax operation to assign each spot to the cell 
type with the highest predicted proportion. G Bar plots comparing the computational resource usage of each method based on their training time 
and peak memory usage
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we performed a correlation analysis between region-spe-
cific marker genes and the cell types in the scRNA-seq 
data (Fig.  5D). Based on this analysis, we identified five 
cell types that displayed high correlations with specific 
anatomical regions, showing strong potential for spatial 
enrichment (Additional file 1: Table S1), which were sub-
sequently prioritized for focused analysis in the deconvo-
lution task. Notably, unlike the previous datasets where 
H&E-stained images were utilized to construct the LETS 
filter for LETSmix, this MOB dataset provided single-
channel DAPI-stained images, which primarily highlights 
the nuclei, providing a less comprehensive view of tissue 
morphology compared to H&E. Due to the smaller spot 
diameter in this ST dataset, the hyperparameter k in 
LETSmix was reduced from the default to 2, which con-
trols the number of cells in each generated pseudo-spot.

The deconvolution performance of different mod-
els in predicting the spatial distribution of five key cell 
types with presumed spatial patterns is visualized in 
Fig.  5E and Additional file  1: Fig. S22A. LETSmix and 
SpatialPrompt demonstrated superior accuracy in pre-
dicting the spatial distribution of these cell types, with 
results that were highly consistent with the distribu-
tion of known marker genes. Compared to other meth-
ods, LETSmix consistently showed higher sensitivity 
in capturing the distinct spatial regions associated with 
these cell types, as reflected by the more defined and 
concentrated patterns in the predicted distributions. 
This was particularly evident for GC-4 cells and OECs, 
where LETSmix predictions aligned with known ana-
tomical knowledge, showing a clear enrichment in dis-
tinct regions of the MOB tissue. Astro cells predicted by 
LETSmix were predominantly located in the EPL region 
of the olfactory bulb, which was consistent with their 
known biological function in supporting synaptic trans-
mission and maintaining the extracellular environment. 
In contrast, alternative methods such as SpaDecon, Cell-
2location, and CARD failed to clearly delineate the high 
prevalence of astro cells in this region, demonstrating a 
more diffused and less concentrated spatial distribution. 
GraphST, while able to identify OEC enrichment in the 
ONL, showed limited capability in distinguishing spa-
tially enriched regions for other cell types.

Considering that the ST data used in this study features 
single-cell resolution, it is reasonable to expect that each 
spot should predominantly represent a single cell type. 
This expectation was largely met by LETSmix and Spa-
tialPrompt, where the predicted cell type distributions 
were characterized by deep, saturated colors, implying 
high confidence in the predicted cell types within each 
spot (Additional file 1: Fig. S22A, B). The robust perfor-
mance of SpatialPrompt can be attributed to its explicit 
modeling of single-cell-type scenarios during training. 

Specifically, this method generated a substantial num-
ber of pseudo-spots containing only a single cell type, 
thereby enabling the model to effectively learn and pre-
dict spot-level cell type assignments with high fidelity. 
Notably, LETSmix achieved comparable performance 
despite not being specifically optimized for this applica-
tion scenario, demonstrating exceptional capability in 
accurately resolving cellular compositions at individual 
spots. This observation aligns with its previously superior 
performance on the PDAC and Liver datasets, where sig-
nificantly reduced JSD values were obtained. In contrast, 
other models, such as POLARIS, exhibited lower confi-
dence in their deconvolution results. For instance, in the 
case of M_TC-1 cells, the upper limit of the color bar in 
predictions made by POLARIS reached only 0.6, indicat-
ing a lack of certainty in assigning this spot to specific cell 
types. This lower confidence may limit the ability to accu-
rately capture the spatial distribution of cells, particularly 
in regions where sharp demarcations between cell types 
are expected.

To further explore the model predictions, we applied 
an argmax transformation to the deconvolution results, 
allowing us to identify the cell type with the highest pre-
dicted confidence for each spot. This transformation 
shifts the focus from cell-type proportion estimation 
(deconvolution) to spot classification. The classification 
results, visualized in Additional file 1: Fig. S23, revealed 
notable changes in the predictions from methods such 
as Cell2location, POLARIS, and CARD. In these mod-
els, the distribution of cells became more sparse follow-
ing the argmax operation, reflecting low confidence in 
certain regions. In addition to the visual inspection of 
the predicted cell-type distributions, a comprehensive 
quantitative evaluation was conducted using ER and 
Moran’s I metrics to assess the performance of different 
deconvolution approaches. The analysis encompassed 
both cell-type deconvolution and spot classification 
tasks, with corresponding cellular abundance patterns 
depicted across the target regions (Fig.  5F and Addi-
tional file  1: Fig. S22C, D). The quantitative assessment 
corroborated the previous observations, with LETSmix 
and SpatialPrompt demonstrating superior performance 
in terms of ER and Moran’s I metrics, respectively, sub-
stantially outperforming alternative methodologies. A 
notable observation emerged from the comparative anal-
ysis between deconvolution and classification tasks. The 
transition from deconvolution to classification resulted 
in marked improvements in ER scores across all meth-
ods. However, this improvement was accompanied by a 
concurrent decrease in Moran’s I values, with POLARIS 
and CARD exhibiting particularly pronounced reduc-
tions. The increased ER values suggest that the argmax 
transformation effectively mitigates noise by reducing 
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the presence of low-confidence predictions in non-target 
regions. Nonetheless, this transformation also led to a 
more scattered distribution of certain cell types, thereby 
decreasing the spatial coherence of the estimation results. 
Despite this tradeoff, LETSmix demonstrated consistent 
robustness across both tasks, achieving high ER values 
while maintaining superior spatial coherence as reflected 
by relatively stable Moran’s I scores. These results under-
score its capability to accurately predict cell-type distri-
butions while preserving biologically meaningful spatial 
patterns.

We also evaluated the computational resource con-
sumption of each method on this dataset, focusing on 
both training time and memory usage (Fig. 5G and Addi-
tional file 1: Fig. S22E). LETSmix, despite incorporating 
multiple sources of information and leveraging sophis-
ticated domain adaptation techniques, demonstrated 
moderate training time, placing it in the middle range 
among the methods tested. In terms of memory con-
sumption, LETSmix exhibited a clear advantage due to its 
efficient code implementation and the LETS filter, which 
improves data quality and reduces the need for complex 
network architectures with numerous parameters. It is 
noteworthy that compared to CellDART, although LETS-
mix integrates additional spatial context information 
such as high-resolution histological images, as well as 
applying data augmentation strategies, the computational 
efficiency of the proposed method is nearly identical to 
that of CellDART. This achievement in computational 
efficiency while maintaining enhanced functionality rep-
resents a significant advancement in methodology design. 
In contrast, GraphST demonstrated the highest compu-
tational demands in both training duration and memory 
consumption, while yielding suboptimal performance 
compared to most benchmark methods. This limitation 
can be attributed to the necessity of establishing compre-
hensive connections between individual scRNA-seq cells 
and ST spots. When applied to large-scale datasets such 
as MOB, the high dimensionality of these relationships 
presents substantial challenges for accurate mapping and 
learning procedures in GraphST. In summary, the dem-
onstrated balance between computational efficiency and 
predictive accuracy makes LETSmix a highly suitable 
choice for complex spatial transcriptomics applications.

Discussion
The identification of spatial distribution patterns for spe-
cific cell types plays a pivotal role in elucidating their 
positions, densities, and interactions within tissue struc-
tures, facilitating a comprehensive understanding of 
tissue complexity and pathological changes. Sequencing-
based ST technologies measure average gene expression 
within cell mixtures. Through cell-type deconvolution, 

the positions and relative proportions of different cell 
types can be delineated on a spatial level, contributing to 
a more nuanced comprehension of tissue structure and 
cellular interactions. Additionally, spatial positions of 
spots and histological image information provide visual 
cues for tissue structure and cell distribution, enabling 
researchers to correlate ST data with specific cell types 
or structural features. This correlation aids in identifying 
differences and heterogeneity in cell types across differ-
ent tissue regions, providing crucial insights for in-depth 
analysis. Furthermore, due to variations in data process-
ing, detection sensitivity, technical specificity, cell han-
dling, and sample preparation, certain domain shifts exist 
between ST and reference scRNA-seq data, which may 
impede the joint analysis of cell-type deconvolution. In 
this study, we introduce LETSmix, a deep learning-based 
method trained on pseudo-spots synthesized from ref-
erence scRNA-seq data, and real-spots augmented by 
mixing spots from ST data. LETSmix effectively utilizes 
spatial context information to construct a LEST filter, 
which enhances the continuity of the spatial distribu-
tion in deconvolution results and reduces noise in raw ST 
data. Moreover, LETSmix employs adversarial domain 
adaptation techniques to facilitate the seamless transition 
of robust deconvolution capabilities trained on simulated 
pseudo-ST to real ST data, enhancing the generalizability 
of LETSmix across different domains.

LETSmix excels in constructing precise spatial maps of 
cell type composition for ST samples. Evaluated across 
four datasets from distinct tissues, LETSmix notably 
outperforms other advanced deconvolution methods 
through both visual inspections and quantitative analyses 
leveraging prior knowledge of general cell-type locations 
and compositions. While GraphST and SpatialPrompt 
occasionally achieve marginally lower JSD values, this 
metric primarily reflects the overall estimation accu-
racy of cell type proportions across the entire ST sample. 
However, a more nuanced understanding of deconvolu-
tion performance requires complementary analysis using 
the ER metric, which provide insights into the capabil-
ity of accurately resolving the spatial distributions of 
individual cell types. Consequently, LETSmix achieves 
a more comprehensive and reliable characterization of 
cell type localization, addressing critical challenges in 
spatial transcriptomics deconvolution tasks. Beyond its 
effective deconvolution capability, LETSmix also boasts 
efficient computational resource consumption. Prior to 
model training, LETSmix conducts highly variable gene 
selection, significantly reducing the dimensionality of the 
input expression data. In the DLPFC dataset, a shared 
reference scRNA-seq dataset was used to deconvolve 12 
ST samples. Marked domain differences exist between 
the scRNA-seq and ST data, and a high density of spots 
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in ST indicates considerable structural features and 
noticeable stratification. These characteristics allowed 
the advantages of LETSmix to be fully manifested. In the 
visualization of layer-specific cell-type proportion heat-
maps, predictions made by LETSmix closely aligned with 
layer annotations. Ablation and hyperparameter analy-
ses conducted on this dataset strongly demonstrated the 
benefits of the employed domain adaptation technique 
and the utilized spatial context information. In the PDAC 
dataset, the performances of different models were evalu-
ated using matched and unmatched scRNA-seq data 
as references to deconvolve two ST samples. Although 
fewer spots are available in this dataset and the domain 
shifts are less significant in the matched scenario, LETS-
mix still exhibits a nonnegligible performance advantage 
by mixing spots to effectively augment data samples in 
the real-ST domain. As the domain shift intensifies with 
unmatched reference scRNA-seq and ST data, LETS-
mix continued to reliably estimate cell-type distribu-
tion patterns, showing robustness. The performance of 
LETSmix was further assessed on mouse liver tissues 
using scRNA-seq data from different digestion protocols. 
Despite a weaker hierarchical structure among different 
functional regions, the incorporation of region annota-
tion information enabled LETSmix to accurately capture 
inherent spatial correlations in ST data. Regardless of the 
scRNA-seq dataset used for model training, LETSmix 
consistently showed the ability to accurately determine 
the spatial distribution patterns of different cell types. In 
the final evaluation using the MOB dataset, which fea-
tures spatial transcriptomics data at single-cell resolution 
and provides only single-channel DAPI-stained high-
resolution images, LETSmix demonstrated its capability 
to accurately locate cell types with potentially regional 
distribution patterns by the use of clustering results gen-
erated from advanced computational tools. Predictions 
from LETSmix exhibited high confidence and robust-
ness, highlighting the versatility of LETSmix in handling 
diverse ST datasets.

The LETS filter developed in this study serves as a ver-
satile plug-in module designed to enhance the quality of 
ST data by capturing inherent spatial correlations. This 
filter can be seamlessly integrated into other deconvo-
lution models, thereby expanding its utility beyond the 
LETSmix framework. By applying local smoothing to 
adjacent spots with similar morphological characteris-
tics, the filter ensures that their corresponding expres-
sion profiles exhibit intended similarity, which in turn 
facilitates spatial continuity in deconvolution results. As 
clustering analysis in ST continues to advance, we dem-
onstrated that state-of-the-art clustering models can 
be effectively utilized to guide the construction of the 
LETS filter, particularly in cases where manual region 

annotations are unavailable for the ST dataset. Notably, 
concerns may arise regarding the potential for the LETS 
filter to introduce “smoothing effects,” which could lead 
to the overshadowing of rare cell types by more abundant 
ones, thereby compromising the accurate representa-
tion of cellular heterogeneity. However, our experimen-
tal results on the Liver dataset provide strong evidence 
to the contrary. Despite the high prevalence of hepato-
cytes, which dominate the tissue and reduce the relative 
abundance of other cell types, LETSmix demonstrated 
remarkable capability in accurately delineating the spa-
tial distribution of rare cellular populations, exempli-
fied by central vein ECs, which constituted merely 1% 
of the average spot composition (Fig. 4C, E). These find-
ings substantiate the robustness of LETSmix in detect-
ing and preserving the characteristics of rare cell types 
within complex tissue contexts. In contrast, other meth-
odologies that similarly incorporate spatial contextual 
information, including POLARIS, CARD, GraphST, and 
SpatialPrompt, exhibited varying degrees of smoothing 
artifacts on this dataset, resulting in suboptimal decon-
volution outcomes. This limitation was particularly pro-
nounced in the case of SpatialPrompt, which, despite 
demonstrating favorable performance on datasets with 
distinct spatial hierarchical structures such as DLPFC 
and MOB, failed to effectively identify rare cell popula-
tions within the Liver dataset. The stark contrast in per-
formance across different tissue contexts and cell type 
abundance scenarios further underscores the distinctive 
advantages of LETSmix in maintaining sensitivity to rare 
cell populations while leveraging spatial information for 
improved deconvolution accuracy.

While LETSmix demonstrates exceptional perfor-
mance in deconvolving sequencing-based ST data, 
including high-resolution platforms such as Stereo-
seq, several considerations limit its direct application to 
imaging-based ST technologies. The absence of accom-
panying tissue images in many imaging-based ST data-
sets constrains the utility of the LEST filter functionality. 
Imaging-based platforms, including Xenium, CosMx, 
and MERSCOPE, inherently generate single-cell reso-
lution data with subcellular localization of transcripts, 
obviating traditional deconvolution requirements. The 
pseudo-spot generation strategy, which forms a corner-
stone of the LETSmix training process, becomes less 
relevant in contexts where individual cells are already 
spatially resolved. Furthermore, imaging-based platforms 
present distinct technical characteristics that fall outside 
the scope of the current architectural framework, includ-
ing limited gene panel sizes, spatially variable transcript 
detection efficiencies, and platform-specific background 
noise patterns. Although the domain adaptation strat-
egy in LETSmix successfully bridges technical disparities 
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between scRNA-seq and sequencing-based ST data, sub-
stantial architectural modifications would be necessary 
to accommodate the unique technical attributes of imag-
ing-based platforms.

To address the absence of actual cell-type propor-
tion labels in real-ST datasets, LETSmix employs a 
pseudo-ST generation methodology similar to that of 
CellDART, where a fixed number of cells with random 
weights are selected from scRNA-seq data to synthesize 
the gene expression profile of each pseudo-spot. While 
this approach theoretically allows for the generation of 
a sufficient number of pseudo-spots to simulate vari-
ous combinations of cell types, there remain opportuni-
ties for improvement in this synthesis process. Future 
research could investigate alternative strategies for refin-
ing the generation of pseudo-spots, particularly to tackle 
issues such as class-imbalanced sample sizes, in which 
the characteristics of rare cell types may be overshad-
owed by those of more dominant cell types. Furthermore, 
although the domain adaptation technique employed 
in LETSmix is enhanced by the mixup strategy, which 
helps mitigate the imbalance between source and target 
domains, it still relies on relatively conventional adver-
sarial training approaches. These approaches may reveal 
limitations in certain application scenarios. For instance, 
when the degree of domain shift between ST and the 
reference scRNA-seq data is minimal, it becomes chal-
lenging for the domain discriminator in LETSmix to 
effectively distinguish between the source and target 
domains. In such cases, the learned confusing features 
may negatively influence the source classifier, result-
ing in performance that is potentially less optimal than 
when domain adaptation is entirely omitted. Addition-
ally, the current domain adaptation strategy is primarily 
tailored for single-source, single-target domain applica-
tions. In scenarios where multiple scRNA-seq datasets 
are available as references for training the model, internal 
domain shifts between these multi-source domains may 
complicate the training process. Consequently, the use 
of multiple scRNA-seq datasets simultaneously may not 
necessarily lead to a significant improvement in decon-
volution performance. We anticipate that future develop-
ments in domain adaptation algorithms will offer more 
suitable solutions for handling the complexities of ST 
data analysis.

Conclusions
LETSmix emerges as a valuable tool in the field of spa-
tial transcriptomics, providing enhanced capabilities for 
cell-type deconvolution. Its incorporation of spatial con-
text information and effective domain adaptation tech-
niques contribute to its ability to accurately delineate 

spatial distribution patterns. Although LETSmix has 
already demonstrated superior performance compared 
to other state-of-the-art models across multiple datasets, 
there is still room for further improvements. We antici-
pate that the suggested method has broad applications 
in comprehensively mapping tissue architecture across 
diverse biological contexts, aiding biomedical research-
ers in understanding cellular interactions, developmental 
processes, and pathological mechanisms within complex 
biological systems.
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