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Abstract 

Background  DNA methylation (DNAm) is a developmentally dynamic epigenetic process; yet, most epigenome-
wide association studies (EWAS) have examined DNAm at only one timepoint or without systematic comparisons 
between timepoints. Thus, it is unclear whether DNAm alterations during certain developmental periods are more 
informative than others for health outcomes, how persistent epigenetic signals are across time, and whether epige‑
netic timing effects differ by outcome.

Methods  We applied longitudinal meta-regression models to published meta-analyses from the PACE consortium 
that examined DNAm at two timepoints—prospectively at birth and cross-sectionally in childhood—in relation 
to the same child outcome (ADHD symptoms, general psychopathology, sleep duration, BMI, asthma). These mod‑
els allowed systematic comparisons of effect sizes and statistical significance between timepoints. Furthermore, we 
tested correlations between DNAm regression coefficients to assess the consistency of epigenetic signals across time 
and outcomes. Finally, we performed robustness checks, estimated between-study heterogeneity, and tested path‑
way enrichment.
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Results  Our findings reveal three new insights: (i) across outcomes, DNAm effect sizes are consistently larger in child‑
hood cross-sectional analyses compared to prospective analyses at birth; (ii) higher effect sizes do not necessarily 
translate into more significant findings, as associations also become noisier in childhood for most outcomes (show‑
ing larger standard errors in cross-sectional vs prospective analyses); and (iii) DNAm signals are highly time-specific, 
while also showing evidence of shared associations across health outcomes (ADHD symptoms, general psychopa‑
thology, and asthma). Notably, these observations could not be explained by sample size differences and only partly 
to differential study-heterogeneity. DNAm sites changing associations were enriched for neural pathways.

Conclusions  Our results highlight developmentally-specific associations between DNAm and child health out‑
comes, when assessing DNAm at birth vs childhood. This implies that EWAS results from one timepoint are unlikely 
to generalize to another. Longitudinal studies with repeated epigenetic assessments are direly needed to shed light 
on the dynamic relationship between DNAm, development and health, as well as to enable the creation of more 
reliable and generalizable epigenetic biomarkers. More broadly, this study underscores the importance of considering 
the time-varying nature of DNAm in epigenetic research and supports the potential existence of epigenetic “timing 
effects” on child health.

Keywords  Epigenetics, Pediatrics, Child psychiatry, DNA methylation, Longitudinal analysis, Meta-analysis, ADHD, 
Sleep, BMI, Asthma

Background
DNA methylation (DNAm) is an important epige-
netic regulator of development and health. DNAm is 
influenced by genetic [1, 2] and environmental factors, 
beginning in utero (e.g., maternal smoking [3], stressful 
life events [4], air pollution [5], or physical activity [6]). 
DNAm alterations have also been linked to a wide range 
of health outcomes across childhood, including asthma 
[7], attention-deficit/hyperactivity disorder (ADHD) 
symptoms [8], and body mass index (BMI) [9]. Together, 
these properties make DNAm an attractive biological 
process in the search for biomarkers and mediators of 
disease risk.

DNAm is highly dynamic during development mak-
ing it particularly interesting, but also challenging to 
study. Over half of DNAm sites show changes in meth-
ylation from birth to 18  years of age [10]. Furthermore, 
in around a third of DNAm sites, the degree of change 
varies between individuals, perhaps reflecting exposure 
to different postnatal environments, genetic variation, 
or stochastic processes [11]. Yet, most studies linking 
DNAm to health phenotypes measure DNAm only once 
[12]. Thus, it is largely unknown (i) whether the relation-
ship between DNAm and health outcomes varies across 
development (ii) at which developmental periods DNAm 
profiles could be most informative for these outcomes, 
and (iii) to what extent DNAm-health associations at one 
timepoint can be generalized to other timepoints.

In most pediatric population studies, DNAm is either 
measured in cord blood samples at birth and associated 
with a child outcome at a later timepoint (i.e., prospective 
epigenome-wide association study [EWAS]) or DNAm 
is measured from a blood sample at the same time-
point as the child outcome (i.e., cross-sectional EWAS). 

Theoretical arguments exist for either design. On the one 
hand, DNAm measured at birth coincides with a devel-
opmentally sensitive period and may reflect causal effects 
of genetic and in utero environmental factors influenc-
ing the risk of later outcomes [13]. Furthermore, reverse 
causation scenarios are less likely, given that outcomes 
in childhood are unlikely to affect methylation profiles 
at birth. However, cross-sectional EWASs during child-
hood may result in a stronger association signal, due to 
the temporal proximity between predictor and outcome, 
a larger accumulation of environmental effects (prenatal 
and postnatal), or the potential for DNAm patterns to 
reflect both causes and consequences of health (reverse 
causality). Cord and peripheral blood also represent dif-
ferent tissues, with different cell compositions (e.g., 
nucleated red blood cells being present in cord blood), 
which may contribute to association differences [14, 15]. 
However, as cord blood is only available at birth, and 
early cell-type changes are in part developmentally regu-
lated, separating the influence of tissue versus timing is 
challenging [15, 16].

Recently, the Pregnancy And Childhood Epigenet-
ics (PACE) Consortium [17] published five multi-cohort 
EWAS meta-analyses that investigated DNAm using both 
designs in relation to the same child outcome, spanning 
mental and physical health domains, namely: ADHD 
symptoms [8], general psychopathology (measured as 
a latent factor; GPF) [18], sleep duration [19], BMI [9], 
and asthma [7]. Results from these previous studies can 
be summarized as follows (Table  1): for ADHD symp-
toms, there were more hits for DNAm at birth rather 
than in childhood (i.e., prospective EWAS showed more 
hits than cross-sectional EWAS); whereas the opposite 
was true for BMI and asthma (i.e., prospective EWAS 
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showed fewer hits than cross-sectional EWAS). For GPF 
and sleep duration, results were mostly null at either 
timepoint. Together, these findings point to the potential 
existence of epigenetic “timing effects” on child health.

Despite these intriguing findings, the studies’ main goal 
was to maximize the identification of health-relevant 
DNAm sites at each timepoint, rather than systematically 
quantify temporal changes of DNAm-health associa-
tions. Addressing this aim requires analyses that were not 
originally performed, including quantitatively comparing 
effect sizes between timepoints, accounting for sample 
size imbalances that affect statistical power per time-
point, and examining statistical and biological factors 
contributing to temporal differences in DNAm-health 
associations. Furthermore, no comparison has been per-
formed across studies, to establish how temporal patterns 
may vary for different health outcomes, and whether 
methylation signals for one outcome correlate with that 
for other outcomes (indicating pleiotropy/shared epige-
netic effects).

Here, we re-analyzed the five PACE meta-analyses on 
ADHD symptoms, GPF, sleep duration, BMI, and asthma 
to explore timing effects on DNAm-health associations 
during development. For each outcome, we integrated 
results from the prospective EWAS (cord blood DNAm 
at birth) and the cross-sectional EWAS (whole blood 
DNAm in childhood) into a longitudinal meta-regression 
model. This model systematically quantified changes 
in effect sizes and statistical significance between time-
points, and we also explored a range of factors that may 
contribute to the observed temporal trends. We then cor-
related DNAm associations between timepoints (to assess 
the generalizability of epigenetic signals from one time-
point to another) and across health outcomes (to explore 
the presence of shared DNAm associations).

Methods
Participating cohorts
We requested cohort-level epigenome-wide summary 
statistics from five meta-analytic studies previously 
performed by the PACE Consortium. We obtained 
permission for re-analysis from the meta-analysis 
leads and representatives of all originally participat-
ing cohorts, except for the GOYA study, which was 
excluded here from further analysis. Cohort-level 
summary statistics were obtained from the meta-anal-
ysis leads through personal correspondence. Respec-
tive local ethics committees previously approved the 
included studies [7–9, 18, 19].

In total, we included 26 cohorts with pooled sam-
ple sizes ranging from 2178 to 4102 participants per 
outcome. Additional file  1: Tables S1 and S2 show an 
overview of included cohorts and the overlap between 

timepoints/outcomes, see also original publications for 
details [7–9, 18, 19]. All cohorts were population-based 
studies with no inclusion/exclusion criteria based on 
diagnostic status or medication use.

Data
EWAS summary statistics included the association 
between DNAm (predictor) and four different continu-
ous outcomes (ADHD symptoms, GPF, sleep duration, 
and BMI) and one categorical outcome (asthma diagno-
sis). Regression statistics were available for both prospec-
tive analyses and cross-sectional analyses. Prospective 
here refers to associating DNAm at birth with the pheno-
type in childhood, whereas cross-sectional refers to asso-
ciating DNAm measured at the same age as a continuous 
outcome, or in case of asthma, symptoms or medication 
use up to 1 year prior. See Table 1 and original publica-
tions [7–9, 18, 19] for age distributions per outcome.

DNAm was either measured in cord blood at birth or 
in peripheral blood in childhood with either Illumina 
450 K or EPIC arrays (although only 450 K DNAm sites 
remained after QC, see below). Predictors were the 
DNAm betas ranging from 0 to 1, corresponding to 0 to 
100% methylation. In the case of GPF and sleep duration, 
the studies trimmed DNAm outliers outside the range 
of [25th percentile − (3*interquartile range (IQR) to 75th 
percentile + 3*IQR) based on the analytical choices made 
in the previously published work.

ADHD symptoms and GPF were assessed via paren-
tal questionnaires. For both outcomes, most partici-
pants were scored by either the Child Behavior Checklist 
(CBCL) or the Development and Well-being Assessment 
(DAWBA). For ADHD symptoms, DSM-oriented ADHD 
scales were used [8]. The GPF, on the other hand, was a 
latent variable inferred from all internalizing, externaliz-
ing, thought, and other symptom subscales featured on 
the instruments [18]. Sleep duration was determined by 
parental reports on either hours slept or calculated from 
reported falling asleep and wake-up times [19]. BMI was 
computed based on measured height and weight [9]. 
These four continuous outcomes were z-score standard-
ized within each cohort to account for questionnaire 
differences and other study-specific effects [8, 9, 18, 19]. 
Asthma was analyzed dichotomously with asthma status 
based on a doctor’s diagnosis. Symptoms or medication 
use had to be present currently or in the year prior to 
assessment [7]. All EWAS were adjusted for sex, mater-
nal age, maternal education, maternal smoking, cell 
proportions, and possible batch effects, in addition to 
other variables, which differed depending on outcome 
and time-point (Table  1). A variety of analysis models 
were employed, such as ordinary-least square (OLS) lin-
ear models (sleep duration), robust linear models (GPF, 
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BMI), and logistic regression (asthma) (Table  1). For 
ADHD symptoms, two cohorts used OLS regression and 
otherwise linear mixed models with a random effect for 
batch. In the case of prospective analyses, multiple child-
hood ADHD measures were available for three cohorts. 
These cohorts added a participant-level random effect to 
account for repeated measures. For cross-sectional analy-
ses, a single ADHD assessment at the same age as DNAm 
measurement was chosen [8].

Each cohort had performed conventional quality con-
trol, such as detection thresholds, removal of probes with 
failed bisulfate conversion, hybridization, and extension; 
sex checks; and call rate filters; see the original publica-
tions for details [7–9, 18, 19]. We applied the following 
additional quality control: (1) kept only autosomal DNAm 
sites, (2) removed DNAm sites with information in less 
than three cohorts or 1000 participants per time-point, (3) 
kept only CpG sites present both at birth and in childhood, 
(4) removed cross-reactive probes using the maxprobe 
0.0.2 package [20]. Finally, to examine whether the differ-
ences in statistical significance were influenced by sample 
size differences, we also performed sensitivity analyses with 
similar sample sizes at both timepoints. We removed (com-
bination of) cohorts which resulted in the most similar 
sample sizes between cohorts (Additional file 1: Table S1).

Statistical analysis
Each summary statistic contained information on the 
regression coefficient (βjk) and SE. β represents the 
difference in child health outcomes in standard devia-
tions (SD) between no to full methylation in the case of 
continuous variables or in odds ratio for the categori-
cal outcome asthma. β is given per DNAm assessment 
timepoint j (birth or childhood) estimated in cohort k. 
We applied multi-level meta-regressions to pool effect 
sizes across cohorts and to model changes in effect 
sizes depending on DNAm assessment time-point. This 
model therefore quantified the DNAm associations at 
birth, in childhood, as well as the differences in asso-
ciations between timepoints. Repeated measures from 
cohorts that contributed association estimates for 
both DNAm at birth and in childhood were taken into 
account with a random intercept. The main model took 
the form of:

βbirth is the intercept and represents the pooled vari-
ance-weighted associations of methylation at a CpG site 
on an outcome at birth or childhood, respectively.

βΔchildhood refers to the change in association from 
DNAm at birth to childhood.

βjk = βbirth + β△childhood + uk + rk

uk is the study random effect and refers to the deviation 
of the mean associations within cohort k from overall 
mean associations.

rk denotes a residual error.
We also ran a statistically identical model with reverse 

time direction to extract DNAm effects in childhood. We 
applied these meta-regression models to each DNAm site 
separately using metafor 4.2.0 [21] in R 4.2.2 [22]. After 
estimating the associations and their change for each 
CpG site, we aggregated statistics across the genome 
to characterize global trends. Specifically, we exam-
ined across all CpG sites the mean absolute effect size 
at birth 

(
∣

∣βbirth

∣

∣

)

 , mean absolute effect size in childhood 
βchildhood  , and the mean effect size difference between 

birth and childhood 
(
∣

∣β△childhood

∣

∣

)

 . In addition, we exam-
ined trends of statistical significance by taking the mean 
z test statistic of βbirth (|zbirth|) and βchildhood (|zchildhood|) , 
representing the evidence of association for DNAm at 
birth and childhood, respectively. Furthermore, we also 
characterized the change in mean statistical significance 
from birth to childhood methylation (△z) . The use of 
absolute values makes it possible to aggregate effect size 
magnitudes across different effect direction patterns, 
but such statistics by design do not distinguish between 
directions. We therefore also classified all DNAm sites 
showing a nominally significant change into nine dif-
ferent effect direction categories: Pos/Pos, Pos/Null, 
Null/Pos, Neg/Neg, Neg/Null, Null/Neg, Pos/Neg, Neg/
Pos, and Null/Null. Pos and Neg here refer to a positive 
or negative association above the 80% quantile at birth/
childhood; otherwise, they are referred to as null.

We also examined whether between-study heterogene-
ity changed between birth and childhood estimates by 
adding a random slope of βΔchildhood on the cohort level. 
We extracted τ, which indicates to which degree DNAm 
effects vary due to between-study heterogeneity within 
1SD. In other words, assuming no sampling error and 
normal distribution, 67% of estimates are expected to be 
within β + -τ due to study differences. Reported correla-
tions are Spearman correlations. GO term enrichment 
for DNAm sites with nominally significant change and 
nominally significant association for at least one time-
point was tested using missMethyl 1.36.0. [23, 24].

Results
Quantifying change in EWAS effect sizes from birth 
to childhood
For DNAm at birth, mean effect sizes across DNAm sites 
ranged from 0.77SD (BMI) to 1.23SD (GPF) for contin-
uous measures (Table 2; Figs. 1 and 2; Additional file 2: 
Fig. S1, S2). Averaged across phenotypes, 10% higher 
methylation was associated with a 0.10SD outcome dif-
ference. For asthma, mean log(odds) were 2.70, which 
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corresponds to a 10% methylation difference being 
associated with 1.30 lower/higher odds of receiving an 
asthma diagnosis.

Compared to DNAm at birth, mean effect sizes for 
DNAm in childhood were consistently higher across all 
tested outcomes (Tables 2 and 3; Figs. 1 and 2; Additional 
file 2: Fig. S1, S2), ranging from 1.10SD (BMI) to 1.60SD 
(sleep duration) for continuous outcomes and a log(odds) 
of 2.94 (odds ratio of 1.34) for asthma. When quanti-
fying this difference in effect sizes between birth and 
childhood, the smallest mean difference was observed 
for BMI 

(∣

∣βbirth

∣

∣ = 0.77 vs
∣

∣βchildhood

∣

∣ = 1.10
)

  and 
the largest difference for sleep duration 
(∣

∣βbirth

∣

∣ = 0.97 vs
∣

∣βchildhood

∣

∣ = 1.60
)

 . Aggregating 
across continuous outcomes, mean effect sizes were 
40% higher in childhood, resulting in a mean outcome 

difference of 0.14SD per 10% methylation. Additional 
file  1: Table  S3 shows effect size comparisons across 
percentiles.

While these effect size figures provide a global view 
of genome-wide association change, they do not take 
into account statistical precision (standard error (SE)). 
Another way to quantify DNAm differences at birth ver-
sus in childhood is by counting the number of sites at 
which DNAm effect sizes increase or decrease over time 
based on a p-value threshold of change. Among probes 
that showed at least a nominally significant difference 
between timepoints, there were 1.5–3 × more DNAm 
sites with a larger as opposed to smaller effect size in 
childhood across health outcomes (Table 2, Fig. 2, Addi-
tional file  2: Fig. S1–S4). To test the robustness of this 
approach, we also examined the ratio of DNAm sites that 

Fig. 1  Mean effect sizes and statistical significance for DNAm at birth and in childhood. Mean effect sizes (left column) and mean statistical 
significance (right column) across all tested autosomal DNAm sites per outcome (color) and timepoint. Upper row displays results from analyses 
utilizing the maximum available sample sizes. Lower row displays results from analyses with cohorts removed to achieve equal sample sizes 
at both timepoints. Effect size is given as absolute regression coefficient (|‾β|), representing the difference in child health outcomes in SD 
between full or no methylation in the case of continuous outcomes (ADHD, general psychopathology, sleep duration, and BMI), or log(odds ratio) 
for categorical outcomes (asthma diagnosis). Statistical significance is given as mean absolute Z-values
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show an effect size increase vs decreases over time across 
different change p-value thresholds from no threshold-
ing to p < 0.0001 (Additional file 2: Fig. S4). We observed 
that the ratio is always positive (more DNAm showing an 
increase in effect size over time)—a trend that becomes 
stronger as the threshold becomes more stringent (lower 
p-values).

For the DNAm sites that showed nominally significant 
change over time, we also examined the direction of asso-
ciation with health outcomes, and whether this direction 
was consistent across timepoints. The most common pat-
tern was a null or small effect at birth, followed by a posi-
tive association in childhood (Additional file 1: Table S3). 

This applied to all outcomes, except BMI. Here the most 
frequent pattern was a switch from a positive association 
at birth to a negative association in childhood.

Three DNAm sites showed a genome-wide significant 
change in association. Cg11945228 in BRD2 had no evi-
dence for association with GPF at birth (βbirth = 5.28, 
SE = 3.76, p = 0.16), but was associated in childhood 
(βchildhood = − 37.00, SE = 6.91, p = 8.58*10−8), a significant 
change (p = 7.68*10−8). Similarly, cg10644885 in ACP5 
had a significant change (p = 2.25*10−8) from no asso-
ciation with asthma at birth (βbirth = − 0.56, SE = 1.19, 
p = 0.64) to significance in childhood (βchildhood= − 15.00, 
SE = 2.29, p = 5.57*10−11). In addition, cg22708087 in 

Fig. 2  QQ-plots. Distribution of observed p-values (y-axis) vs expected (x-axis). Diagonal represents the expected distribution of p-values by chance. 
Upwards deviations indicate a higher presence of lower p-values than expected assuming a null effect. Distributions are given for DNAm effects 
at birth (left), in childhood (middle), and for change in effect between birth and childhood (right) per outcome (color). Gray displays the 95% 
confidence interval of the null distribution

Table 3  Comparison of birth EWAS (i.e., prospective analysis) versus childhood EWAS (i.e., cross-sectional analysis): Overview of study 
findings

Outcome Change from birth to 
childhood EWAS

Potential contributing 
factors

Sensitivity analyses Correlation analyses

Effect size Statistical 
significance

EWAS 
sample 
size

Between-study 
heterogeneity

Do results hold 
when making 
N equal across 
time points?

Do results hold 
within single 
longitudinal 
cohort (ALSPAC)

Correlations 
between time 
points (i.e., 
stability)

Correlations with 
other phenotypes

ADHD ↑ ↑  =  ↑ ✓ ✓ ✓ (rs = 0.31) ✓ (rs = − 0.18–0.35)

GPF ↑  =   =   =  ✓ ✓  ≠ (rs = 0.08) ✓ (rs = − 0.07–0.35)

Sleep ↑  =  ↓ ↑ ✓ ✓  ≠ (rs = 0.06)  ≠ (rs = − 0.04–0.06)

BMI ↑ ↑ ↓ ↑ ✓ ✓  ≠ (rs = 0.05) ✓ (rs = − 0.18–0.06)

Asthma ↑ ↑  =  ↑ ✓ ✓  ≠ (rs = − 0.04) ✓ (rs = − 0.16–0.21)
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FRY changed from a positive association with asthma at 
birth (βbirth = 7.47, SE = 1.80, p = 3.42*10−5) to a negative 
association in childhood (βchildhood = − 12.64, SE = 3.32, 
p = 1.44*10−4). This change was genome-wide significant 
(p = 1.06*10−7). For all three DNAm sites, absolute effect 
sizes were larger in childhood.

Testing the relationship between effect size and the ability 
to identify significant associations
While mean effect sizes were robustly larger for DNAm 
in childhood compared to DNAm at birth for all out-
comes, this did not necessarily translate into more signif-
icant associations, as quantified by higher z test-statistics 
(lower p-values) (Tables 2 and 3; Figs. 1 and 2; Additional 
file 2: Fig. S1, S2).

ADHD symptoms
DNAm at birth showed the strongest association signal 
with ADHD symptoms, as evidenced by a mean z-value of 
1.02 and the identification of the largest number of signifi-
cant associations at all tested thresholds (Bonferroni/FDR/
nominal). Despite an increase in effect sizes from birth 
to childhood, the mean z-value dropped (1.02 at birth vs 
0.78 in childhood). Three DNAm sites were significant 
after Bonferroni correction at birth, but no CpG site was 
identified as genome-wide significant in childhood neither 
with FDR nor Bonferroni correction. Furthermore, the 
number of nominally significant sites was threefold lower 
in childhood (ncpg-birth = 57,339 vs ncpg-childhood = 19,034). 
Among all outcomes, ADHD showed the highest lambda 
for birth DNAm (λ = 1.60), which can either indicate a 
high polygenic signal in a well-powered sample, unmeas-
ured confounding, or both. We had previously investigated 
this issue [8] and concluded that the inflation stems most 
likely from a true signal based on the following observa-
tions: (1) reducing sample size by 1/3 effectively eliminated 
inflation, (2) BACON [25] analyses suggested that infla-
tion of the p-value distribution can be mostly attributed to 
a true signal rather than spurious inflation, (3) systematic 
genome-wide confounding biases would most likely affect 
birth and school-age methylation similarly, but inflation is 
only seen for birth DNAm.

GPF
The mean z-value remained constant at 0.78 for both 
timepoints, and the number of nominally significant 
sites remained similar. No DNAm site reached genome-
wide significance at birth, and one DNAm site reached 
genome-wide significance when assessed in childhood.

Sleep duration
Mean z-values for sleep duration did not differ between 
timepoints (0.76 at birth and 0.77 at school-age) and the 

number of nominally significant sites remained simi-
lar, with no genome-wide significant findings at either 
timepoint.

BMI
For BMI the higher DNAm effect sizes in childhood cor-
responded with a higher statistical significance, with 
mean z-values increasing from 0.75 at birth to 0.86 
in childhood. This is also reflected by the doubling of 
nominally significant associations from birth to child-
hood (16,012 to 30,615), as well as by the presence of one 
genome-wide hit in childhood (Bonferroni correction), 
but no genome-wide significant DNAm sites at birth.

Asthma
The mean z-values and number of nominally significant 
sites were somewhat larger at birth (z = 0.82) than in 
childhood (z = 0.77). While this reflects the genome-wide 
trend, it is important to emphasize that the number of 
probes with genome-wide significance was much larger 
for DNAm in childhood (0 hits at birth vs 11 in child-
hood, after Bonferroni correction).

What explains these outcome‑specific patterns?
We searched for potential explanations for why statisti-
cal significance did not necessarily increase over time, 
or even decreased, despite effect size increases. Z- and 
p-values represent the ratio between effect size and sta-
tistical uncertainty. We found that SE increased from 
birth to childhood either to a disproportionately larger 
(ADHD symptoms, asthma) or similar (GPF, sleep dura-
tion) extent as the effect size increased (Tables 2 and 3), 
i.e., only for BMI did the increase in effect size outpace 
the increase in SE leading on average to more statistical 
significance.

Next, we investigated potential sources for the SE 
increase. The first was sample size, which was unequal 
between timepoints for some outcomes. For GPF, the 
total sample size was very similar, and for asthma, the 
number of cases was equal between timepoints. How-
ever, especially for sleep duration and BMI, sample sizes 
were much lower for DNAm measured in childhood, 
which increases SE. In sensitivity analyses, we removed 
cohorts (Additional file  1: Table  S1) to achieve equal 
sample sizes between timepoints. Interestingly, patterns 
remained largely the same, i.e., with only BMI showing 
corresponding increases in both effect sizes and statisti-
cal significance over time (Additional file 1: Table S4).

Second, we examined between-study heterogeneity, 
which tends to increase SE. We fit random slope models, 
allowing for different amounts of heterogeneity at differ-
ent DNAm assessment periods. Between-study hetero-
geneity increased for all outcomes over time, except for 
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GPF (Additional file 1: Table S5), suggesting that it may 
partly influence differences in EWAS signal between 
timepoints. At the same time, re-computing meta-regres-
sion analyses using a single cohort (ALSPAC, the largest 
cohort contributing to all analyses with similar sample 
sizes at birth and childhood) led to similar results as the 
meta-analysis (Additional file 1: Table S6), suggesting that 
observed temporal differences are unlikely to be solely 
explained by cohort composition in the meta-analyses.

Estimating correlations in epigenetic signals 
across timepoints and child outcomes
To test the consistency of epigenetic associations over 
time and across outcomes, we computed Spearman 

correlations (rs) between the regression coefficients of 
all timepoints and outcomes (Fig.  3). For ADHD symp-
toms, estimates at birth correlated modestly with those 
in childhood (rs = 0.31). For all other outcomes, esti-
mates between timepoints were uncorrelated (rs < 0.08). 
The coefficients in the ADHD symptoms analysis corre-
lated most with the coefficients for other outcomes. For 
instance, the EWAS signal at birth for ADHD symptoms 
was positively correlated with the signal at birth for GPF 
(rs = 0.35) and asthma (rs = 0.21), but negatively cor-
related with the EWAS signal in childhood of BMI (rs = 
− 0.18) and asthma (rs = − 0.16).

Overlap between cohorts contributing to analyses at 
the same timepoint tended to be larger than between 

Fig. 3  Correlations between DNAm effects at birth and childhood and across outcomes. This correlation matrix displays Spearman correlations 
between regression coefficients for DNAm at birth and childhood and across outcomes. Intensity of red represents higher positive correlations 
and blue lower negative correlations



Page 11 of 19Neumann et al. Genome Medicine           (2025) 17:39 	

timepoints (Additional file  1: Table  S2). This may have 
led to an underestimation of correlations between time-
points. To test this, we re-ran correlation analyses within 
ALSPAC and found that between timepoint correlations 
remained low for GPF, sleep duration, and BMI (rs < 0.12) 
and modest for ADHD symptoms (rs = 0.25) (Additional 
file 2: Fig. S5). Asthma could not be tested, due to una-
vailable analyses in childhood.

Pathway enrichment analyses for health‑related DNAm 
patterns showing change from birth to childhood
We performed gene ontology enrichment analyses to 
probe the potential biological relevance of temporal 
changes in DNAm-health associations. A secondary aim 
was to examine the possibility that we may be mainly 
picking up tissue differences (as opposed to developmen-
tal/temporal differences) between birth and childhood 
assessments (i.e., cord vs peripheral blood). For example, 
if we were to identify enrichment of blood or cell-type 
specific terms (e.g., leukocyte differentiation), this could 
point at cell-type composition differences between cord 
and peripheral blood primarily driving observed changes 
in DNAm associations. On the other hand, enrichment 
for more outcome-specific pathways (e.g., neuron differ-
entiation) may instead indirectly lend further support for 
the involvement of developmental processes, independ-
ent of blood tissue differences. We selected sites that (i) 
were nominally associated with an outcome at either 
timepoint and (ii) showed at least nominally significant 
change in associations from birth to childhood. Notably 
for ADHD symptoms, GPF, and sleep duration, neural 
features stand out among the top 10 pathways (e.g., cere-
bral cortex and neuron development, synapses, and den-
drites; Table 4). While neural pathways also rank highly 
for BMI and asthma, other more general cell processes 
such as morphogenesis are prominently represented. 
However, no pathway was significant after adjustment 
for multiple testing of all 22,560 GO terms. See addi-
tional file 1: Tables S6–S11 for all pathways with nominal 
significance.

Discussion
We performed the first systematic comparison of 
DNAm-health associations between two developmen-
tal timepoints (birth and childhood) on child outcomes 
spanning mental and physical domains. Our findings lend 
three important new insights: (1) effect sizes tend to be 
larger when DNAm is measured in childhood compared 
to at birth; (2) even though EWAS effect sizes consist-
ently increase over time for all outcomes examined, this 
did not necessarily lead to more significant findings; (3) 
DNAm signals are largely distinct between timepoints, 

but they correlate across outcomes, indicating shared 
associations.

Key finding 1: EWAS effect sizes increase over time for all 
child health outcomes
Our first key finding is that across all five outcomes, 
mean EWAS effect sizes increased over time: they were 
stronger in the cross-sectional childhood analyses as 
compared to the prospective birth analyses. This may be 
due to a number of reasons: (i) the temporal proximity of 
the cross-sectional EWASs may better reflect immediate 
causal effects of DNAm on an outcome; (ii) in addition to 
genetic and prenatal environmental factors captured by 
DNAm at birth, DNAm in childhood may also reflect the 
accumulation of relevant postnatal environmental expo-
sures and genetic effects [11]; (iii) peripheral blood (in 
childhood) may be a more informative tissue than cord 
blood (at birth), e.g., due to tissue differences in cell-type 
composition or immune profile—although we do not find 
evidence of blood tissue-specific pathway enrichment; 
and (iv) there may be unmeasured confounding (e.g., 
lifestyle, allergens) and reverse causation in childhood, 
which is more likely to affect cross-sectional analyses 
than prospective analyses [26]. Indeed, Mendelian ran-
domization studies suggest that for at least some sites, 
DNAm levels are a consequence, rather than a cause, of 
BMI [27, 28] or asthma [29]. While we can only specu-
late as to the most likely reason for the observed effect 
size increase, we can conclude that it is consistent for dif-
ferent outcomes, and to a comparable degree, hinting at 
potentially common driving factors.

Key finding 2: Higher effect sizes ≠ more significant 
findings
While EWAS effect sizes robustly increased, this did 
not necessarily result in more significant findings, as 
the signal also became “noisier” with larger SE in child-
hood analyses. For BMI, effect size increases did corre-
spond with statistical significance increases; however, for 
the other four outcomes, significance on average either 
remained the same or in the case of ADHD symptoms 
even decreased from birth to childhood. Statistical mod-
els were very similar between prospective and cross-sec-
tional analyses and are unlikely to explain SE differences. 
Outcome definitions were identical and the same covari-
ates were included, with the only exception of cell-type 
proportion estimates, to enable estimation using tissue-
appropriate reference panels (i.e., cord or peripheral 
blood). The main difference was the predictor; i.e., when 
DNAm was assessed. The only study which applied dif-
ferent models was the EWAS of ADHD symptoms. Three 
of the nine participating cohorts used repeated ADHD 
measures for prospective models, but for cross-sectional 
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analyses, we chose a single timepoint closest to DNAm 
measurement to maximize precision and power in pro-
spective analyses, while ensuring concurrent assess-
ment in cross-sectional analyses. The repeated measures 
design may have contributed to lower standard errors for 
the birth DNAm statistics. However, as this modeling dif-
ference only applied to the EWAS of ADHD symptoms, it 
is unlikely that using single vs repeated measure models 
can fully explain the lower standard errors observed for 
prospective vs cross-sectional analyses, since this pattern 
was also found for all other outcomes (which only relied 
on single measures), except BMI.

Three other plausible “culprits” for the noisier signal 
include sample size differences, between-study hetero-
geneity, and increasing DNAm variance with age. First, 
an imbalance in sample sizes (and associated power) 
between the birth and childhood EWASs could have 
led to differences in mean statistical significance. How-
ever, results remained largely consistent when restrict-
ing sample sizes to be equal between timepoints, ruling 
out this explanation. Second, we found that for all out-
comes except GPF, between-study heterogeneity (system-
atic variability in effect sizes across cohorts) increased 
when DNAm was measured in childhood, potentially 
leading to more statistical uncertainty. Contributing fac-
tors may include (i) DNAm assessment age differences, 
which varied substantially less in EWAS analyses at birth 
(cohort differences in the order of days) compared to 
EWAS in childhood (age ranging from 5 to 17 years for 
asthma); and (ii) environmental differences between the 
included cohorts, which may cumulatively affect DNAm 
patterns (diet, pollutants, etc.), leading to more con-
text-dependent associations in childhood. Importantly, 
however, between-study heterogeneity does not seem 
to fully account for increasing error in EWAS estimates 
over time. Indeed, when we re-ran meta-regression 
analyses only in ALSPAC, we found largely the same pat-
tern of findings as the overall meta-analyses, meaning 
that sources of variability related to the use of multiple 
cohorts are unlikely to fully explain the observed tempo-
ral differences in the EWAS signal.

A third explanation relates to DNAm variance. Vari-
ance for most DNAm sites increases with age (on aver-
age increasing 1.26-fold per year from birth), with only 
a minority of DNAm sites showing significant decreases 
in variance [30]. It is likely that this increased variance 
reflects in part health-relevant variation, e.g., reflecting 
additional important postnatal exposures, resulting in 
increased effect sizes. At the same time, the increased 
variance likely also includes a substantial amount of vari-
ance unrelated to the studied health-related outcomes, 
increasing the noise of the DNAm estimates and lower-
ing power.

In summary, our findings caution against the assumption 
that larger effect sizes in EWAS lead to the identification of 
more hits. Rather, they suggest that statistical power varies 
depending on factors such as the degree of uncertainty and 
study heterogeneity, the timing of DNAm assessment, and 
the potentially causal nature and direction of associations 
between DNAm and a given outcome.

Key finding 3: epigenetic signals associated with child 
outcomes are time‑specific and pleiotropic
Our analyses correlating EWAS estimates between time-
points reveal largely distinct association signals at birth 
versus in childhood: estimates at birth did not correlate 
with those in childhood—or only modestly in the case 
of ADHD symptoms. Whether this specificity in DNAm 
signals extends more broadly to other life stages, or 
DNAm associations become more stable and comparable 
after some developmental point cannot be inferred from 
the current data [10, 30]. These temporal differences raise 
the question of which DNAm assessment timepoint may 
be most relevant for health. For biomarker purposes, 
DNAm estimates from cross-sectional childhood analy-
ses may explain the higher phenotypic variance, but at 
the cost of higher uncertainty of estimates. This may lead 
to less reliable methylation profile scores (MPS; akin to 
polygenic scores or PGS), which may also reflect conse-
quences of a phenotype, and thus less useful for the pre-
diction of later outcomes [31]. Our results caution that 
MPS computed from one DNAm timepoint may gener-
alize poorly across development. Repeated assessments 
of DNAm and the combination of multiple age-specific 
scores may be needed to improve MPS performance, 
although specific guidelines are difficult to formulate. 
For instance, MPSs based on allergy-related EWAS per-
formed similarly well when tested at both ages 6 and 
10  years [32], but differences between birth and child-
hood methylation profiles are likely more impactful.

Surprisingly, the consistency of estimates across child 
outcomes was larger than between timepoints for the 
same outcome. Our analyses suggest that DNAm asso-
ciations with ADHD symptoms, GPF, and asthma are to 
some degree shared. This is in line with previous studies 
pointing to phenotypic and genetic correlations [33–36] 
and may point towards early shared origins or network 
effects among the phenotypes reflected in the methyl-
ome. Enrichment analyses suggest that neural pathways 
may be involved in all tested health outcomes (particu-
larly mental phenotypes) and may partly explain the 
observed correlations. However, the negative correla-
tion between ADHD-related DNAm at birth/childhood 
and BMI-related DNAm in childhood is more perplex-
ing. Children with ADHD are more likely to be over-
weight and vice versa [37, 38], and BMI and ADHD also 
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show positive genetic correlations [34, 39]. The oppos-
ing correlation patterns may indicate that epigenetic risk 
mechanisms for ADHD are associated with lower BMI in 
childhood, but are overshadowed by (non-methylation) 
mechanisms causing positive phenotypic correlations. 
One such epigenetic mechanism may reflect mediation 
via ADHD medication use. ADHD-related DNAm levels 
could associate with increased probability of stimulant 
use. ADHD medications, such as methylphenidate, are 
in turn related to lower BMI [40]. It is unclear to which 
degree such mediation effects contribute to the negative 
correlation, given the low prevalence rates of stimulant 
medication use in these population-based cohorts [41], 
the small magnitude of reported effects of stimulant 
medicines on BMI [40], and the fact that medication use 
would not have affected DNAm levels at birth. Yet, it will 
be important to clarify these relationships in future stud-
ies, for example by performing an EWAS of ADHD medi-
cation (testing enrichment for medication-related DNAm 
patterns in EWAS of ADHD symptoms) or directly per-
forming epigenome-wide mediation analyses.

Study limitations and future research
The summary statistics-based approach enabled analysis 
of many outcomes and a large sample size, but also has 
limitations. The exact degree of sample overlap across 
timepoints and outcomes could not be explicitly modeled, 
though single cohort sensitivity analyses with largely over-
lapping samples did not alter conclusions. It was also not 
possible to model age at DNAm or phenotype assessment 
on an individual level and we had to rely on cohort aver-
ages. Another individual characteristic we cannot model 
with the given data is sex. Associations may differ depend-
ing on sex and affect childhood DNAm associations dis-
proportionately, especially after puberty, as opposed to 
birth DNAm associations. Future studies with individ-
ual-level data should also study the impact of increas-
ing DNAm variance on association estimates. Lastly, we 
could not perform formal epigenetic correlation tests and 
the regression coefficient correlations should therefore be 
interpreted as hypothesis-generating for future research.

With current study designs, it is also impossible to 
disentangle timing differences from tissue differences 
between cord and peripheral blood. Future studies are 
needed that examine different tissues at birth (to deter-
mine the specificity to cord blood as opposed to the 
neonatal period in general) as well as DNAm at multiple 
timepoints during childhood (to test if effect sizes change 
non-linearly across development) [10]. While our analy-
ses provided important new insights into genome-wide 
trends, they were mostly underpowered to identify spe-
cific DNAm sites at a genome-wide level of significance; 
as such, larger studies are needed to reliably characterize 

epigenetic changes in associations for individual sites. 
Finally, expanding analyses to other outcomes should be 
pursued in future research.

Conclusions
Overall, our results suggest developmentally-specific 
associations between DNAm and child health out-
comes, when assessing DNAm at birth vs childhood. 
This implies that EWAS results from one timepoint are 
unlikely to generalize to another (at least based on birth 
vs childhood comparisons). This is a consequential find-
ing, given that most research to date examines DNAm at 
a single assessment time-point. Longitudinal studies with 
repeated epigenetic assessments are direly needed to 
shed light on the dynamic relationship between DNAm, 
development and health, as well as to enable the creation 
of more reliable and generalizable epigenetic biomarkers. 
More broadly, this study underscores the importance of 
considering the time-varying nature of DNAm in epi-
genetic research and supports the potential existence of 
epigenetic “timing effects” on child health.
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