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Abstract 

Unraveling the spatial configuration of the tumor microenvironment (TME) is crucial for elucidating tumor-immune 
interactions based on immuno-oncology. We present STopover, a novel approach utilizing spatially resolved tran-
scriptomics (SRT) data and topological analysis to investigate the TME. By gradually lowering the feature threshold, 
connected components (CCs) are extracted based on spatial distance and persistence, with Jaccard indices quantify-
ing their spatial overlap, and transcriptomic profiles are permutated to assess statistical significance. Applied to lung 
and breast cancer SRT, STopover revealed immune and stromal cell infiltration patterns, predicted key cell–cell 
communication, and identified relevant regions, shedding light on cancer pathophysiology (URL: https:// github. com/ 
bsung woo/ STopo ver).
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Background
One of the essential characteristics of cancer progres-
sion is acquiring an immune escape mechanism in the 
tumor microenvironment (TME) [1]. The heterogene-
ous cells in the TME constitute the landscape to evade 
the immune system, which has been regarded as a 
target for immunotherapy [2]. The most widely inves-
tigated mechanism is the immune checkpoint, which 
serves to protect normal cells from cytotoxic immune 
cells. Enhancement of either axis of immune check-
points eventually leads to impaired function or apop-
tosis of cytotoxic immune cells such as CD8 + T cells 
[3, 4]. Alternatively, MHC class I expression, which 
is responsible for the antigen presentation of cancer 
cells, is reduced [5], or cancer interacts with cancer-
associated fibroblasts (CAFs) and alters the microen-
vironment such that immune cells have more difficulty 

†Sungwoo Bae and Hyekyoung Lee authors contributed equally to this work.

*Correspondence:
Hongyoon Choi
chy1000@snu.ac.kr
Young Tae Kim
ytkim@snu.ac.kr
1 Institute of Radiation Medicine, Medical Research Center, Seoul National 
University, Seoul, Republic of Korea
2 Portrai, Inc., Seoul, Republic of Korea
3 Department of Nuclear Medicine, Seoul National University Hospital, 
Seoul, Republic of Korea
4 Department of Thoracic and Cardiovascular Surgery, Seoul National 
University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea 
03080
5 Medical Science and Engineering, School of Convergence Science 
and Technology, POSTECH, Pohang, Republic of Korea
6 Department of Nuclear Medicine, Seoul National University College 
of Medicine, Daehak-Ro, Jongno-Gu, 101 Seoul03080,, Republic of Korea

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-025-01457-1&domain=pdf
http://orcid.org/0000-0002-8895-2449
https://github.com/bsungwoo/STopover
https://github.com/bsungwoo/STopover


Page 2 of 21Bae et al. Genome Medicine           (2025) 17:33 

suppressing tumor growth [6]. Cancer immunotherapy 
targeting these mechanisms is gaining a lot of atten-
tion lately, particularly with regard to targeting PD-1, 
PD-L1, and CTLA-4. Multiple preclinical studies and 
clinical trials have demonstrated that immunotherapy 
targeting various mechanisms in the TME combined 
with conventional chemotherapy results in effective 
tumor suppression [7].

However, not all patients respond well to immuno-
therapy, even though predictive biomarkers for immune 
checkpoint inhibitors (ICIs), such as PD-L1 expression, 
microsatellite instability, and tumor mutational burden, 
have been used in the clinic [4]. As a spatial feature of the 
TME is related to the immunotherapy response, the infil-
tration pattern of immune cells in the tumor is regarded 
as a key to characterizing immune status [8]. In the case 
of an immune-excluded or immune-desert tumor where 
immune cells do not penetrate the tumor, the response to 
immunotherapy is bound to be poor. Moreover, not only 
tumor and immune cells but also stromal components in 
the tumor microenvironment (TME) influence immune 
cell action on cancer cells [9]. Given that the therapeu-
tic response of ICI is determined by complex intercellular 
interactions, including lymphocytes, myeloid cells, and 
fibroblasts in the TME, a method that simultaneously 
analyzes the spatial configuration of multiple cell types is 
needed.

With the introduction of spatially resolved transcrip-
tomics (SRT), which acquires the location of RNAs and 
their quantitative expression in the tissue, the spatial 
characteristics of cells can be comprehensively analyzed 
[10]. Because this technique provides whole gene expres-
sion data with spatial information, it has the potential to 
comprehensively analyze the spatial configuration and 
complex interactions of various cells in the TME. Several 
computational methods have been developed that utilize 
SRT to capture cell infiltration patterns in the TME and 
to estimate the key ligand-receptors of cell–cell interac-
tions. However, they cannot localize the important subre-
gions of cell infiltration and molecular interaction across 
all cell types present in the cancer tissue. Also, they do 
not provide a common analytical framework that encom-
passes both barcode and image-based SRT platforms.

Here, we propose a method, STopover, which applies 
topological analysis to SRT to extract colocalization pat-
terns between cell types in cancer tissue and to predict 
the degree of intercellular interaction. Our suggested 
new approach provides the extent of topological over-
lap between various cells, such as tumor and immune 
cells, and presents an estimate of the spatial interaction 
between cells. STopover can provide quantitative infor-
mation on spatial interactions in the TME beyond spatial 
gene expression or cell enrichment.

Methods
Dataset characteristics and details
Simulation dataset
The simulation dataset was created to test the usefulness 
of STopover in capturing locally active subregions where 
one of the features has a low value while the other has a 
high value. For simplification, the spatial map of two fea-
tures, tumor and immune cells, was created by adding a 
trimmed 2D Gaussian function multiple times to the 100 
by 100 grid with zero background.

f(x,y): trimmed 2D Gaussian function for the simulated 
feature value, M: maximum feature value in the center, cx: 
x coordinate of the center, cy: y coordinate of the center, σ: 
standard deviation.

The input values, M,  cx,  cy, and σ, were (8, 30, 30, 20), 
(8, 60, 70, 10), (2, 70, 20, 10), and (1, 90, 90, 10) in tumor 
cells and (4, 95, 85, 5), (2, 20, 20, 5), (2,70, 20, 5), (1, 70, 
70, 5), and (1, 85, 95, 5) in immune cells. Then, the noise 
was generated by random sampling from a Gaussian dis-
tribution (mean: 1 and standard deviation: 0) and mul-
tiplying the sampled values by 0.01. Last, to mimic the 
noise in the SRT dataset, two independently generated 
noise samples were added to the 2D grid of tumor and 
immune cells, and the negative values were replaced with 
zero.

Barcode‑based SRT of human lung cancer
Eleven lung adenocarcinoma (ADC) tissue samples were 
acquired from seven patients who were initially diag-
nosed with lung cancer and underwent surgical resec-
tion. The study protocol was reviewed and approved 
by the Institutional Review Board of Seoul National 
University (application number: H-2009–081–1158). 
The patient number and the tissue number were used 
to name the samples. For example, the second tissue 
obtained from patient number 18 was named spa18ca02. 
The samples were divided into two groups based on the 
PD-L1 expression level. The PD-L1 low group is com-
posed of spa01ca01, spa01ca02, spa02ca01, spa02ca02, 
spa06ca01, and spa10ca01 with PD-L1 expression of 
0. The PD-L1 high group expression group is com-
posed of spa16ca01, spa17ca01, spa17ca02, spa18ca01, 
and spa18ca02 with PD-L1 expression above 80%. The 
acquired samples were embedded in an optimal cut-
ting temperature (OCT) compound, cryosectioned, and 
processed to generate Visium spatial transcriptomic 
datasets. The diameter of the spot, the basic unit of the 
Visium spatial transcriptome, was 55  µm, and the dis-
tance between the spots was 110  µm. The number of 
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spots and genes utilized for the analysis, patient history, 
and histological information of the samples are sum-
marized in Additional file 2: Table S1 [11]. The cell type 
composition in the spot was inferred based on the refer-
ence single-cell data obtained from human lung cancer 
tissue [12, 13]. The cell types were classified into 7 large 
categories (epithelial cells, fibroblasts, endothelial cells, 
myeloid cells, MAST cells, B lymphocytes, and NK/T 
cells) and 47 cell subtypes. For example, the NK/T cells 
were divided into NK cells, naïve CD4 + T, CD4 + Th, 
CD8 + /CD4 + mixed Th, exhausted Tfh, Treg, naïve 
CD8 + T, cytotoxic CD8 + T, exhausted CD8 + T, CD8 
low T cells, and T lymphocytes_ns.

Image‑based SRT of human lung cancer
The publicly available CosMx SMI dataset [14], which 
is one of the image-based SRT platforms, was utilized 
for STopover analysis. The dataset was a formalin-fixed 
paraffin-embedded (FFPE) sample of non-small cell 
lung cancer [15]. The RNA was captured across 30 field 
of views (FOVs), and the size of each FOV was 0.985 
by 0.657  mm. The margin of the cells was segmented 
based on the immunofluorescence image, and the cell-
level count matrix was constructed. The coordinate of 
the transcript, cell assignment data of each transcript, 
cell-level expression profiles, and cell metadata files 
were utilized for the STopover analysis. The numbers 
of transcripts and cells were 30,370,769 and 100,149, 
respectively. Among the transcripts, 37,226,610 could be 
assigned to the cell and corresponded to 960 gene sym-
bols and 20 negative probes, which do not correspond 
with any sequence. The cell type annotation of the seg-
mented cells was performed with identical lung cancer 
single-cell data [12, 13], which were used for cell type 
decomposition in barcode-based SRT.

Barcode‑based SRT of human breast cancer
The publicly available Visium spatial transcriptomics and 
single-cell transcriptomics data from four breast cancer 
patients (CID4290, CID4465, CID44971, and CID4535) 
were used for analysis [16–18]. The histological type 
of the tumors was invasive ductal carcinoma (IDC), 
except for CID4535, which was invasive lobular carci-
noma (ILC). CID4290 and CID4535 were classified as 
ER + tumors, while CID4465 and CID44971 were classi-
fied as TNBCs. All of the patients had not received any 
treatment prior to spatial and single-cell transcriptomic 
data acquisition. The spatial composition of cell types 
in the breast cancer tissues was predicted based on the 
corresponding single-cell data obtained from the same 
patient. All the cells were classified into nine major cell 
types as described in the paper [16]: cancer epithelial 
cells, normal epithelial cells, cancer-associated fibroblasts 

(CAFs), endothelial cells, perivascular-like cells (PVLs), 
myeloid cells, T cells, B cells, and plasmablasts. Plasma-
blasts were not present in the single-cell data for patient 
CID4290, and therefore, the fraction of plasmablasts was 
considered 0 in all spots.

Preprocessing barcode‑ and image‑based SRT
The preprocessing steps for the SRT datasets are mainly 
based on Scanpy (ver. 1.9.1) [19] running on Python 
(ver. 3.8). First, the spot-level count matrix of bar-
code-based SRT is processed for downstream analysis. 
The RNA count of each spot is normalized such that 
the total count became 10,000 and log-transformed 
[ ln (normalized count +1) ]. Cell type decomposition is 
performed by applying either CellDART [20] or Cell-
2location algorithm [21] to each Visium spatial tran-
scriptomic dataset based on the reference single-cell 
dataset. The selection of the two methods is based on a 
study comparing several cell type deconvolution meth-
ods, which showed that the performance of CellDART 
and Cell2location is the highest [20]. As a result, a spatial 
composition map of all cell types in the lung cancer tissue 
is generated. The spatial distribution of cell types is uti-
lized to calculate cell–cell colocalization patterns. Addi-
tionally, the spatial expression of LR pairs is adopted to 
estimate spatial cell–cell communication.

Second, image-based SRT data are processed to cre-
ate a grid-based count matrix, which enabled analysis 
of the data similar to the barcode-based SRT. The whole 
FOV, including all 30 small FOVs, is divided into 100 
by 100 grids based on the outermost coordinate of the 
transcript (Additional file  1:  Fig. S1a). The size of the 
unit grid is approximately 49.2 by 39.4  µm, which is 
similar to the diameter of the spot from Visium spatial 
transcriptomics. The grid-level RNA count is normal-
ized to fit the total count in each cell to 1000 and log-
transformed. The fraction of the cell assigned to each 
grid is defined by the ratio of total RNA counts in a 
portion of the cell belonging to the grid to total RNA 
counts in the cell (Additional file 1: Fig. S1b). Then, the 
cell-level count matrix is utilized to annotate the cells 
based on the reference single-cell data with the “Ingest” 
algorithm provided by Scanpy (scanpy.tl.ingest) [19] or 
“TACCO” algorithm [22] (Additional file  1:  Fig. S1c). 
The tool maps the reference single-cell expression data 
into the spatial single-cell embedding using principal 
component analysis and the k-nearest neighbor search 
method suggested in the uniform manifold approxima-
tion and embedding algorithm [23]. After the anno-
tation of cell types, the grid-level abundance of cell 
types is calculated by summing the fraction of all cells 
in the grid corresponding to the cell type (Additional 
file  1:  Fig. S1d). Of note, cell type-specific expression 



Page 4 of 21Bae et al. Genome Medicine           (2025) 17:33 

is calculated by extracting the transcripts belonging to 
the specific cell types and performing log-transforma-
tion of the summed normalized count. Finally, a spa-
tial map of cell type abundance is utilized to calculate 
spatial cell–cell colocalization and grid-level log-nor-
malized counts are applied to compute spatial cell–cell 
interactions.

STopover: extracting colocalized patterns of a feature pair
STopover applies Morse filtration and the dendrogram 
smoothing algorithm [24], one of the topological analysis 
methods, to extract connected components (CCs) from 
the given feature pair and calculate the overlap between 
the CC pairs (Fig. 1 and Additional file 1: Fig. S2). First, 
to reduce the intrinsic sparsity of features in SRT, a 

Fig. 1 Schematic image of STopover. STopover is a tool that utilizes spatially resolved transcriptomics (SRT) and applies topological analysis 
to extract colocalization patterns between cell types and estimate spatial cell–cell interaction in the tumor microenvironment. a The spatial map 
of features such as cell fraction or gene expression in each spot was utilized. The spatial distribution of cell types is given as inputs to the STopover 
model when analyzing cell–cell colocalization. The LR pairs from the CellTalkDB database [26] are provided as inputs when estimating spatial cell–
cell communication mediated by ligand-receptor (LR) interactions. b, c By utilizing Morse filtration and dendrogram smoothing processes, the key 
locations of the overlapping spatial domain are extracted as connected components (CCs). d After removing CCs with low average feature values, 
the Jaccard indices are calculated for every CC pair between the two features and named Jlocal.e The CC pairs with a large Jlocal indicate important 
tissue subregions where the two features are highly colocalized. Additionally, all CCs from each feature are aggregated, and the Jaccard index 
between the two aggregated CCs is calculated and named Jcomp.Jcomp measures the extent of spatial overlap of the two features on a global scale
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Gaussian smoothing filter is applied to the spatial feature 
map. The filter with a full-width half maximum (FWHM) 
of 2.5 times the unit central distance between spots or 
grids is applied for smoothing. This parameter ensures 
a balance between smoothing the data and retaining sig-
nificant spatial features, facilitating more accurate detec-
tion of spatial overlaps. Next, CCs are calculated for all 
thresholds while lowering the value from the highest 
feature value in the tissue to the lowest value using the 
algorithm suggested by NetworkX [25]. The existing CCs 
from the higher threshold were gradually merged or new 
CCs are defined based on the spatial distance from the 
newly added spot or grid to the existing CCs. This hier-
archical clustering process is summarized with a den-
drogram. Each vertical bar in the dendrogram represents 
the start and end of threshold values that a certain CC 
is continuously observed, and each horizontal bar links 
the existing CCs (child) with merged or new CCs (par-
ent) from the lower threshold value. Then, the dendro-
gram is smoothed such that the hierarchical structure 
of the spatial feature map can be simplified. The vertical 
bars are selected in the order of the longest length to the 
shortest length, and if the connected children CCs of the 
selected bar have a smaller size than the minimum size 
of CCs, then their elements are removed and aggregated 
to the parent. Additionally, the start point of the vertical 
bars is updated to have the maximum feature value in the 
CC. The process is iterated until all of the vertical bars 
are selected and the uppermost bars of the dendrogram, 
reconfigured CCs, represent locally activated regions of 
the given feature. Next, the average feature value is com-
puted within each CC region, and CCs, which are pre-
sumed to capture noise due to a low average value below 
a certain percentile, are deleted. Then, the Jaccard index 
is calculated for all possible pairs of reconfigured CCs 
from the two features and named Jlocal. The CC pair with 
a high Jlocal value indicates the tissue subregion where the 
extent of overlap between two features is high. Addition-
ally, all CCs of each feature are aggregated, and the Jac-
card index between the two aggregated CCs is calculated 
and named Jcomp. The Jaccard index is calculated in two 
different ways: using set-based and weighted methods. 
The set-based method binarizes the patterns of the fea-
ture pair as CCs and finds the overlap between the two 
features. The Jaccard index from the set-based method 
is computed by dividing the size of the intersection of 
two CCs by the union of the CCs. On the other hand, 
the weighted method considers the feature values inside 
CCs. The index from the weighted method is calculated 
by scaling the feature values between 0 and 1 in the whole 
tissue and then dividing the sum of the minimum scaled 
feature values inside CCs between the two features by the 
sum of the maximum scaled values. The formulas below 

provide further details on how the Jaccard indices are 
calculated.

JS: Jaccard index calculated by the set-based method, 
Jw: Jaccard index calculated by the weighted method, 
CCxi: set including spots or grids belonging to the ith 
connected component of feature x, CCyj: set including 
spots or grids belonging to the jth connected component 
of feature y, xs: scaled value of feature x in the spot s, ys: 
scaled value of feature y in the spot s (if the spot is not 
included in CCxi, then xs is 0, and if not included in CCyi 
then ys is 0).

The main parameters in the models are the minimum 
size of CCs ( smin ) expressed as the number of spots or 
grids and the percentile threshold to remove the CCs 
with low average feature values ( pt ). Increasing both smin 
and pt is expected to remove the noise. However, if smin 
is too large, then too many CCs are aggregated, and if pt 
is too large, then many CCs unrelated to noise will dis-
appear, which impairs the performance of the STopover. 
The spatial expression patterns of genes with low aver-
age expression exhibit sparse distributions, which may 
result in a different optimal parameter range compared 
to dense features like genes with high expression or cell 
type proportion. To evaluate the optimal parameter 
range for different feature types, both sparse and dense 
distributions, we conducted tests to observe how Jcomp 
values change across various parameters (Additional 
file 1: Fig. S3). First, for the dense distributions, Jcomp was 
measured between tS2 (tumor cell type) and T cells in 
barcode-based ST data of the lung cancer across different 
smin and pt values (Additional file 1: Fig. S3a-c). The two 
cell types were chosen because the range of Jcomp value 
is wide across the 11 lung cancer tissues, making it easy 
to investigate the influence of the parameters on Jcomp. 
For the sparse distributions, Jcomp was computed between 
one of the ligand-receptor pairs related to the T-cell acti-
vation (CD274-PDCD1), which shows abundant zero 
values in the spots (Additional file 1: Fig. S3d, e). During 
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the evaluation, FWHM of the Gaussian smoothing fil-
ter was fixed to 2.5 times the central distance between 
spots or grids to minimize the effects of noise and vari-
able changes of the features (genes or cell types) within 
small subregions. When smin and pt were set to 20 and 30, 
Jcomp remained most stable when smin was set to 20 and 
effectively highlighted differences between tissues when 
pt was set to 30. The smin of 20 corresponds to diameters 
of approximately 479.3 and 295.3 µm in circular CCs of 
barcode- and image-based SRTs, which are the refer-
ence sizes for the smallest regions where local interac-
tions occur. Because the spot in the barcode-based SRT 
and the grid in the image-based SRT are similar in size, 
the optimal values of smin and pt in both datasets could be 
shared. In the case of the simulation dataset, the optimal 
smin and pt values to reduce the noise and better repre-
sent the spatial feature map were 20 and 80, respectively 
(Additional file 1: Fig. S4).

STopover: estimating cell–cell interaction patterns in tumors
Cell–cell communication is estimated based on the 
assumption that cell–cell interactions mediated by LR 
interactions occur within a range of few spots or grids. 
CellTalkDB or Omnipath [26, 27], the curated LR data-
base, is selected, and the spatial colocalization pattern of 
all LR expressions is searched. The LR pairs with a high 
colocalization score (Jcomp) are presumed to show high 
interaction in the tissue subregions represented by CCs. 
The most meaningful LRs are selected by filtering out 
those with a Jcomp below the threshold of 0.200 (in some 
cases, 0.150). GO analysis [28, 29] is performed for the 
filtered ligand and receptor gene sets using gseapy (ver-
sion 0.10.8) [30, 31] in Python or clusterProfiler (version 
4.2.2) [32] in R. The overrepresented biological process 
terms are extracted to comprehend the functional role of 
the dominant LR interaction in the given tissue. Also, dif-
ferential LR interaction analysis is performed to compare 
the strength of cell–cell communication between the 
two groups of tissues. The average Jcomp values are calcu-
lated across the tissues within each group, and the fold 
change of Jcomp is used to determine the degree of differ-
ence in LR interaction. When identifying differential LR 
interactions that are increased in group 2 compared to 
group 1, LR pairs with an average Jcomp in group 2 greater 
than 0.200 and a fold change of Jcomp greater than 2 are 
selected. For LR interaction that shows a decrease in 
group 2 compared to group 1, LR pairs with an average 
Jcomp in group 1 greater than 0.200 and a fold change of 
Jcomp less than 0.500 are selected.

To search cell type-specific LR interactions in barcode-
based SRT, modified CCs are defined as intersecting 
subregions between CCs obtained from LR interaction 
analysis and the colocalized tissue domain of the two cell 

types extracted by STopover. Jlocal and Jcomp are calcu-
lated between the modified CCs of the two features. In 
the case of image-based SRT, the cell type-specific (cell 
types A and B) log-normalized count is first computed, 
and spatial overlap patterns between ligand expression 
of cell type A and receptor expression of cell type B are 
extracted to predict spatial cell–cell interactions.

STopover: calculating the statistical significance of detected 
colocalization
There is no definitive threshold for deciding whether 
the observed spatial colocalization between a pair of 
features is statistically significant. To address this issue, 
whole transcriptome profiles in each spot or grid (spot: 
barcode-based SRT; grid: image-based SRT) were shuf-
fled while keeping the spatial coordinates fixed, result-
ing in the loss of local distribution patterns. The Jcomp 
between pairs of CCs was calculated in all 1000 cases of 
permutation, generating a null distribution of Jcomp. The 
proportion of cases where Jcomp from the null distribution 
exceeded that from the original SRT was defined as the 
p-value. P-values less than 0.05 were considered statisti-
cally significant.

Comparison with other methods for investigating spatial 
heterogeneity of tumors
Other computational tools that analyze tumor hetero-
geneity using SRT were applied to lung cancer tissues 
and compared with STopover. The first tool, ATHENA, 
builds a graph based on the spatial distance between cells 
in image-based SRT [33]. It calculates infiltration scores 
to determine the overall extent of tumor infiltration and 
identify subregions of cancer where immune cells are 
infiltrated. In ATHENA, cells are treated as nodes, and 
cells within a distance of approximately half the size of the 
grid defined in the STopover analysis are connected with 
edges. The cell type annotations obtained during the pre-
processing of the CosMx SMI data were also used in the 
ATHENA analysis. The infiltration score for a particular 
cell type A is calculated as the ratio of the number of con-
nections between the tumor and A cells to the number 
of connections between A cells only. Global scores are 
obtained from a graph that encompasses the entire tissue, 
while local scores are obtained from a subgraph contain-
ing only one-hop neighbors. The second tool, Squidpy 
[34, 35], calculates the LR interaction in image-based SRT 
by randomly shuffling cell labels and calculating the mean 
of the average expression of the receptor in the receiver 
cell cluster and the ligand in the sender cell cluster. The 
null distribution generated by the random shuffling was 
used as a reference to calculate the statistical significance 
of the LR interaction. In addition to the LR interaction, 
the neighborhood enrichment score between cell type X 
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and Y is calculated by counting the pair of proximal cells 
belonging to X and Y. Then, the cell labels were randomly 
shuffled while maintaining the cell connectivity based on 
spatial distance, and the Z-score was calculated for sta-
tistical evaluation. The default parameters suggested in 
the user guide were applied for the above analyses. The 
third tool, spatialGE, segments cancer cell regions in the 
tissue and computes spatial heterogeneity scores from 
the high-resolution spatial map of each cell type using 
barcode-based SRT [36]. The cell composition predicted 
by CellDART was directly applied to spatialGE, and high-
resolution spatial maps of the tumor and other cell types 
were created and visualized to assess the immune pheno-
type of the given cancer tissue. The fourth tool, SpaCET 
ranks the degree of cell–cell colocalization in barcode-
based SRT using Spearman’s correlation coefficient and 
finds the colocalized regions by selecting the spots with 
cell fraction within the top 15% [37]. In addition, it calcu-
lates the top ligand-receptor interaction of the cell type 
pair by calculating correlation coefficient of ligand and 
receptor expression inside colocalized region of the cell 
type pair. The cell fraction predicted from reference sin-
gle-cell dataset was used and the cell–cell colocalization 
results were compared between SpaCET and STopover. 
The final tool, stLearn, calculates cell type diversity and 
ligand-receptor coexpression scores in each spot of the 
barcode-based SRT and then incorporates both scores 
to capture areas with a high probability of intercellular 
interaction [38].

Results
STopover captures colocalized regions of a feature pair 
in a simulation dataset
STopover was designed to quantify the topological colo-
calization of two given features using Morse filtration 
(Fig. 1 and Additional file 1: Fig. S2). The method gradu-
ally reduces the threshold of features in tissue regions to 
identify CCs based on spatial proximity, and after refin-
ing and analyzing these CCs with set-based and weighted 
approaches, it visualizes the spatial interactions between 
different cell types using both barcode- and image-based 
SRT data. However, there is no clear threshold exists 
for determining whether spatial colocalization scores 
observed between CCs indicate significant colocaliza-
tion. To address this issue, we simulated a scenario in 
which local distribution patterns of the features were lost 
and compared colocalization scores from this simula-
tion to the original SRT data. By shuffling transcriptomic 
profiles and considering feature values in the tissue unit 
region (spots or grids) as separate observations, a null 
distribution of spatial overlap scores was generated. The 
significance of colocalization, represented by p-values, 

was calculated as the proportion of shuffled scores in the 
null distribution that exceeded the original score.

First, the utility of STopover, which extracts topograph-
ically overlapping tissue domains between the cell type 
pairs, was examined in a simulation dataset and com-
pared with the conventional threshold-based approach. 
As an example of the threshold-based approach to delin-
eating the overlapping tissue regions of the two cell 
types, a threshold filter that removes the value below 
20% of the maximum was applied to segment the main 
tissue domain where the two cell types are colocalized. 
The threshold-based method could capture cancer and 
immune cell overlap in the region where both cell types 
showed high abundance (Region A in Fig.  2a, b). How-
ever, that method could not accurately delineate the key 
location where cancer cells are scarce while immune 
cells are highly abundant (Region B in Fig. 2a, b). Thus, 
the arbitrary threshold to localize cell type-rich regions 
can miss the locally active regions of cancer and immune 
interactions. In contrast, STopover could precisely cap-
ture the colocalized tissue domains between cancer and 
immune cells (Region B in Fig. 2a, c). Moreover, as quan-
titative information, STopover could rank the degree of 
overlap (Jlocal) between the CCs of cancer and immune 
cells with the Jaccard index and indicate subregions 
where high cancer-immune interactions are expected 
(Fig.  2d). There were no significant differences between 
the set-based and weighted methods of the Jaccard index 
in ranking the top locations of the tumor-immune colo-
calization (Fig.  2 and Additional file  1: Fig. S5). Jaccard 
indexes were consistently lower in the weighted method, 
and the difference between Jlocal values in the top first 
and second subregions was larger (Fig. 2d and Additional 
file  1:  Fig. S5b). This implies that while the weighted 
method considers the spatial patterns inside the captured 
subregions represented by CCs, noise in the features can 
result in an overall reduction in the Jaccard index.

STopover reveals spatial overlap patterns between lung 
cancer cell types in barcode‑based SRT
To assess the effectiveness of the method in cancer tis-
sues, STopover was applied to the human lung ADC 
Visium data. First, reference single-cell data obtained 
from human lung cancer tissue [12] were integrated with 
spatial data using CellDART [20] to estimate the spatial 
distribution of the major cell types. Then, the localization 
patterns of the tumor cell type (‘tS2’), which is related to 
lung ADC progression [12], and other main cell types 
(‘Fibroblasts’, ‘Endothelial cells’, ‘Myeloid cells’, ‘MAST 
cells’, ‘B lymphocytes’, and ‘NK_T cells’) were extracted 
by STopover. The composite overlap score was calcu-
lated by measuring the set-based Jaccard index between 
the combined CC aggregates between the two cell types 
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(Jcomp) (Fig. 1). In addition, the local overlap score (Jlocal) 
was computed by measuring the set-based Jaccard index 
between every CC pair of the two cell types. Jcomp repre-
sents the degree of global overlap between the two cell 
types, while Jlocal shows tissue subregions where the cell 
distribution is highly colocalized.

Two representative slides were selected among 11 
tissue sections to evaluate whether STopover accu-
rately extracts the spatial overlap patterns of cells in the 
TME. One of the tissues (‘spa06ca01’) had low PD-L1 

expression (0%) and showed immune-excluded pat-
terns by visual inspection (Additional file  1:  Fig.  6a). 
The other tissue (‘spa18ca02’’) had high PD-L1 expres-
sion (100%) and presented immune-inflamed patterns 
(Additional file  1:  Fig. S6b). When the spatial distri-
bution of cell types was extracted as CCs and mapped 
to the tissues, the CC distribution was concordant 
with spatial cell type patterns (Fig. 3 and Fig. S6). The 
spatial overlap pattern between cell types in two lung 
ADC samples exhibited disparate patterns of tumor, 

Fig. 2 STopover reveals a subregional colocalization pattern in the simulation dataset. A simulation dataset was created to examine the ability 
of STopover to capture small but highly colocalized subregions. Trimmed 2D Gaussian functions were applied multiple times to a 100 by 100 grid, 
and the activity of tumor and immune cells was simulated. a The spatial maps of tumor and immune cell activity were visualized with a colormap. 
b A threshold-based approach was applied, and the regions where the activity was above 20% of the maximum were filtered to segment the key 
regions of the tumor (yellow) and immune cells (blue). Then, spatially overlapping domains between the two cell types are highlighted in green. 
c STopover was applied to segment the main patterns of tumor (yellow) and immune cell (blue) activity as CCs. The CCs for the tumor (yellow) 
and immune cells (blue) and the intersecting subregions (green) between the two aggregated CCs were visualized on the grid. The set-based 
Jaccard index was computed between these combined CCs (Jcomp).d The top 4 CC pairs between tumor and immune cells showing the highest 
spatial overlap represented by the Jlocal score were visualized. The CCs from the tumor (yellow), immune cells (blue), and intersecting subregions 
(green) were visualized on the grid. The set-based Jaccard indexes were computed for each CC pair (Jlocal). Overall, STopover was superior 
to the conventional threshold-based method in capturing locally active subregions where tumor cell activity is low but immune cell activity is high 
(Region B).
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immune, and stromal distribution (Fig. 3). In the PD-L1 
low tissue, the spatial patterns of the tumor cell type 
(tS2) and immune cells, including MAST and NK/T 
cells, were highly exclusive (Fig.  3a). Accordingly, the 
immune cell subtypes were among the top 2 cell types 
with the lowest Jcomp values. In contrast, in the PD-L1 
high tissue, the patterns of the tumor cell type (tS2) and 
MAST or NK/T cells overlapped in several tissue sub-
regions (Fig. 3b), with Jlocal ranging from 0.108 to 0.848 

in MAST cells and 0.024 to 0.632 in NK/T cells (Addi-
tional file 1: Fig. S7). The tissue subregions with the top 
Jlocal scores were shared between the two immune cell 
types. In addition, MAST and NK/T cells belonged to 
the top 2 cell types with the highest Jcomp (Fig. 3b), with 
MAST cells showing significant spatial overlap with 
tumor cells (p < 0.001; marked with a white asterisk). 
Notably, in the PD-L1 low tissue, fibroblasts colocal-
ized with the tumor cell type (tS2) at the border of the 

Fig. 3 STopover explains the spatial configuration of the TME in lung cancer tissues using barcode-based SRT. STopover was applied 
to barcode-based SRT of lung cancer tissues with high PD-L1 expression (spa06ca01, 0%) and low PD-L1 expression (spa18ca02, 100%). The spatial 
colocalization patterns between tS2, one of the cancer epithelial subtypes associated with the progression of cancer, and other main cell types 
(fibroblasts, endothelial cells, myeloid cells, MAST cells, B lymphocytes, and NK/T cells) were investigated in both tissues. a The set-based Jcomp 
values between the tumor cell type (tS2) and the other cell types inspa06ca01 tissue were visualized as a bar plot in the top left corner of the plot. 
Additionally, the aggregated CCs for tS2 (yellow) and other main cell types (blue) were mapped to the tissue, and the intersecting tissue domain 
was highlighted in green. b The set-based Jcomp values for tS2 and other cell types in spa18ca02 tissue were also visualized with a barplot, 
and the CC locations were mapped to the tissue. In both barplots in a and b, statistically significant colocalization between tS2 and other cell types 
is visualized as a white asterisk (p<0.05). The two selected PD-L1 high and low tissues showed converse patterns of cell infiltration in the tumor, 
and the extent of infiltration could be measured as Jcomp
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tumor defined by CCs of tS2; however, in PD-L1 high 
tissue, the two cell types showed little overlap.

To further dissect the tumor and T cell interactions 
in PD-L1 high and low tumors, the spatial relationship 
between tumor cells and T cell subtypes was investi-
gated. Spatial overlap patterns of the tumor cell type 
(tS2) with T cell subtypes, including naïve CD4 + T 
cells, CD4 + helper T cells (Th), CD8 + /CD4 + mixed 
Th cells, exhausted follicular Th (Tfh) cells, regulatory 
T cells (Treg), naïve CD8 + T cells, cytotoxic CD8 + T 
cells, exhausted CD8 + T cells, CD8low T cells, and other 
nonspecified T cells (T lymphocytes_ns), were calcu-
lated. Overall, PD-L1 low tumors did not show signifi-
cant spatial overlap between various T cell subtypes and 
tS2 (Jcomp: 0.000–0.142), except for exhausted T cell sub-
types, which were colocalized at the border of tS2 (Fig. 
S8a, c). Conversely, PD-L1 high tumor, naïve, effector, 
and exhausted T cell subtypes were highly colocalized 
with tS2 (Jcomp: 0.318–0.530) (Additional file 1: Fig. S8b, 
d). Interestingly, Tregs showed the lowest overlap with 
tS2 (Jcomp: 0.101), while cytotoxic CD8 + T cells presented 
the highest overlap with tS2 (Jcomp: 0.530). This finding 
implies that the TME is less suppressive to T cells in the 
selected PD-L1 high tissue (spa18ca02) compared to the 
PD-L1 low tissue (spa06ca01).

Then, STopover analysis was performed across 11 lung 
ADC data, and the spatial configuration of the TME in 
various lung cancer tissues was explored. A total of 6 
tissues (spa01ca01, spa01ca02, spa02ca01, spa02ca02, 
spa06ca01, spa10ca01) had low PD-L1 expression 
(0% in all samples), and the other 6 tissues (spa16ca01, 
spa17ca01, spa17ca02, spa18ca01, spa18ca02) had 
high PD-L1 expression (range: 80–100%) (Additional 
file 2: Table S1). First, the correlation between pseudob-
ulk expression of ICI response biomarkers (PD-L1 and 
MHC class I) and spatial overlap of the tumor cells (tS2) 
and T cells represented by set-based Jcomp as a quantita-
tive value for representing topological T cell infiltration 
was examined. The expression of HLA-B and HLA-C, 
which encode MHC class I, showed a significant positive 
correlation with Jcomp; however, CD274, which encodes 
PD-L1, and PDCD1, which encodes PD-1, did not show 
a significant correlation (Additional file  1:  Fig. S9). Sec-
ond, Jcomp was calculated between the tumor cells (tS2) 
and other main cell types and was visualized with a heat-
map (Fig. 4a). Among the 7-cell types, MAST and NK/T 
cells showed a similar trend of Jcomp values across the tis-
sue samples and were clustered together. Meanwhile, the 
11 tissue samples were clustered into two groups (“Clus-
ter 1” and “Cluster 2”) according to the trend of spatial 

Fig. 4 STopover clusters multiple lung cancer tissues based on the cell colocalization pattern in the TME using barcode-based SRT. The 
barcode-based SRTs of eleven lung cancer tissues were analyzed with STopover. The extent of spatial overlap between the tumor cell type 
(tS2) and other main cell types was represented by the set-basedJcomp scores. aJcomp values between tS2 and other main cell types in 11 lung 
cancer tissues were visualized with a heatmap. The Pearson correlation distances were computed across all cell type pairs and all tissue pairs, 
and hierarchical clustering was performed. The tissues were classified into two clusters: Clusters 1 and 2. In the heatmap, statistically significant 
colocalization between tS2 and other cell types is visualized as a blue asterisk (p<0.05).b The Jcomp values were compared between Clusters 1 and 2 
in every cell type and visualized with a boxplot. Wilcoxon rank-sum tests were performed, and the Bonferroni method was applied for multiple 
comparison corrections. In summary, STopover could classify multiple tissues into two distinct TME profiles. ns: not significant
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overlap between tS2 and other cell types. The significance 
of colocalization was determined by performing a per-
mutation and calculating the p-value based on the null 
distribution. In the case of Cluster 1, two tissues with 
significant cell types commonly showed significant colo-
calization between tumor and MAST cells (spa16ca01, 
p = 0.011; spa18ca02, p < 0.001), whereas in Cluster 2, 
one tissue with significant cell types showed colocali-
zation between tumor-myeloid (spa02ca02, p = 0.016) 
and tumor-endothelial (spa02ca02, p = 0.015) cell pairs 
(Fig.  4a; marked with blue stars). Furthermore, com-
pared to Cluster 1, Cluster 2 showed higher median Jcomp 
scores in MAST, B, and NK/T cells and lower scores in 
fibroblasts, endothelial cells, and myeloid cells (Fig. 4b). 
Thus, Cluster 2 represents the TME with high infiltration 
of lymphocytes, especially MAST cells, and low involve-
ment of myeloid cells and fibroblasts. Lastly, to quantify 
subregional cell infiltration patterns in TME within each 
CC, the weighted Jaccard index was additionally applied. 
The weighted Jaccard index exhibited a strong positive 
correlation with the set-based Jaccard index between 
tumor cells and other cell types. The differences in the 
extent of cell infiltration were more pronounced across 
the 11 lung cancer tissues when using the weighted Jac-
card index (Additional file  1:  Fig. S10). In summary, 
STopover can describe and quantify the spatial relation-
ship between cancer-immune and cancer-stromal com-
ponents in lung cancer, particularly in barcode-based 
SRT.

STopover estimates spatial cell–cell interactions 
in barcode‑based SRT of lung cancer
STopover can be applied to capture the overlapping 
location of ligand-receptor (LR) expression. Based 
on the assumption that LR interaction mostly occurs 
between cells in proximity, the colocalized tissue domain 
extracted between LR pairs can be considered a key loca-
tion for cell–cell interaction. The LR gene pairs provided 
by CellTalkDB [26] and their expression profiles were uti-
lized to estimate the key location and extent of the cell–
cell interaction. Last, the strength of the interaction was 
ranked by Jcomp values between LR pairs. A representa-
tive tissue slide with high PD-L1 expression (spa18ca02) 
was selected, and the top LR pairs with Jcomp over 0.200 
were extracted (Additional file  2: Table  S2). The top 3 
significant LR pairs with the highest ligand gene expres-
sion and Jcomp were B2M-TFRC (p < 0.001), B2M-KLRC1 
(p < 0.001), and B2M-CD3G (p = 0.005) (Fig. 5a and Addi-
tional file 1: Fig. S11). The main location of the LR pairs 
corresponded more to myeloid cells than to the tumor 
cell type (tS2) distribution (Additional file  1:  Fig. S12). 
Next, an enrichment analysis was performed for the 
extracted LR pairs with significant p-values (p < 0.05), and 

the top 10 Gene Ontology (GO) terms associated with 
LR pairs were extracellular matrix, ECM organization, 
and MAPK/ERK pathway (Fig.  5b), which are closely 
related to cancer cell proliferation and metastasis [39]. 
To comprehend the common and distinct LR interactions 
in 11 lung ADC tissues, the common LR interactions 
within Clusters 1 and 2 were calculated and compared. 
In the case of Cluster 1, the top 10 GO terms related to 
LR interaction were ECM organization and kinase sign-
aling, while in Cluster 2, ECM organization was promi-
nent along with cell–matrix adhesion and cell migration 
(Additional file 1: Fig. S13). The common LR interaction 
between Clusters 1 and 2 was SPINT4-ST14. Since cell–
cell interaction analysis relies on prior information from 
LR databases, we applied a different database, OmniPath 
[27], to investigate how the choice of database affects the 
ranking of the top LR pairs. Similar to the results derived 
from CellTalkDB, LR pairs with Jcomp over 0.200 were 
associated with GO terms such as protein phosphoryla-
tion and cytokine-mediated signaling pathway. However, 
it also revealed slightly different GO terms, including 
regulation of the apoptotic process and protein ubiqui-
tination (Fig. 5b and Additional file 1: Fig. S14a). While 
a larger LR database may yield more reliable results by 
considering all possible LR pairs, the top 10 LR pairs with 
the highest ligand expression were similar between the 
two databases (Additional file 1: Fig. S14b and Additional 
file 2: Table S2).

To focus on the tumor-immune interaction in the 
selected high PD-L1 tissue, LR pairs related to T cell 
activation or suppression were chosen [40]. The CCs for 
the selected LR pairs were computed, and Jcomp was cal-
culated for the spots corresponding to the tissue region 
where tS2 and NK/T cells were colocalized. Among the 
LR pairs related to T cell action, CD274-CD80 (Jcomp: 
0.141, p = 0.383), PDCD1LG2-PDCD1 (Jcomp: 0.134, 
p = 0.231), B2M-CD3G (Jcomp: 0.128, p = 0.121), and 
CD86-CTLA4 (Jcomp: 0.087, p = 0.495) were the top gene 
pairs estimated to have high spatial overlap (Fig. 5c and 
Additional file  1: Fig. S15), although none of the pairs 
showed statistically significant colocalization. This find-
ing suggests that T cell activation and inhibition signals 
both exert action at the T cell infiltrating tissue domain 
of the selected PD-L1 high tissue. In short, STopover 
can provide unbiased information on dominant spatial 
cell–cell interactions in lung cancer tissue and list the key 
components of cancer and T cell interactions.

STopover extracts the spatial configuration of the lung 
cancer TME in image‑based SRT
To prove the scalability of STopover in image-based SRT, 
the method was applied to the CosMx SMI platform in 
which the predefined RNA transcripts are detected by 
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fluorescence signal, and cell-level RNA expression is 
calculated by cell segmentation. Lung cancer tissue was 
selected to investigate the TME. For convenience, the 
FOV of CosMx data was divided into 100 by 100 grids, 
and RNA transcripts were assigned to each grid based 
on the 2D coordinates (Additional file  1:  Fig. S1a). The 

fraction of a certain cell in a grid was determined by the 
ratio of RNA counts in each grid belonging to the cell to 
the total count across the grids that the cell encompasses 
(Additional file 1: Fig. S1b). Then, by utilizing a cell-level 
RNA count matrix and a reference lung cancer single-cell 
dataset [12], each cell could be classified into cell types 

Fig. 5 STopover predicts dominant cell–cellinteractionsin lung cancer tissue using barcode-based SRT. Based on the presumption that cell–
cell communication mediated by LR interaction occurs in close proximity, spatial overlap patterns between the LR pairs were searched based 
on the CellTalkDB database [26]. The top LR pairs showing a high overlap score represented by the set-based Jcomp were considered dominant 
cell–cell interactions in the given tissue. The LR pairs with a Jcomp score over 0.2 were selected. a Among the filtered LR pairs, the location of CCs 
for the top 3 pairs showing the highest average ligand gene expression in the tissue and the highest Jcomp value was mapped to the tissue. CC 
locations for features x and y are colored yellow and blue, respectively, and intersection locations are shown in green. In the spatial plots, statistically 
significant colocalization between tS2 and other cell types is visualized as a red asterisk (p<0.05).b Gene Ontology (GO) analysis was performed 
for all of the filtered LR pairs, and the enriched biological process terms are listed in ascending order of adjusted p values. To further investigate 
the cell–cell communication that occurs specifically between tS2 and T cells, 15 LR pairs closely related to T cell action were chosen, and their 
spatial colocalization patterns were extracted with STopover. Then, extracted CCs for LR pairs were intersected with the colocalized domain 
between tS2 and NK/T cells, and the modified CCs were presumed to represent key locations for interaction between tS2 and NK/T cells. c The 
set-based Jcomp scores were calculated between the modified CCs, and the 15 LR pairs were listed in descending order of Jcomp. As a result, STopover 
could be adopted as a tool to screen dominant cell–cell interactions and their functional implications in cancer tissue
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defined from the single-cell data (Additional file  1:  Fig. 
S1c). The abundance of a certain cell type was obtained 
by collecting the cells belonging to the cell type on each 
grid and calculating the sum of the cell fractions (Addi-
tional file  1:  Fig. S1d). Additionally, cell-type-specific 
expression was estimated by extracting the RNA tran-
script in each grid corresponding to the cell type. As a 
result, the image-based SRT was converted to grid-based 
expression data, and similar strategies were applied as 
with barcoding-based SRT to calculate overlapping spa-
tial domains of feature pairs.

First, the spatial abundance of cell types (Additional 
file  1:  Fig. S16) and spatial colocalization patterns 
between the tumor cell type (tS2) and major lung cancer 
cell types (Fig. 6a) were computed and visualized. Over-
all, the extracted CCs matched the spatial distribution 
pattern of cell types. When calculating the global over-
lap score, Jcomp, the scores were consistently low for all 
cell types, with fibroblasts exhibiting slightly higher Jcomp 
than NK/T cells (Fig. 6a). Furthermore, none of the cell 
types showed statistically significant colocalization with 
tumor cells. Additional STopover analysis was performed 
between tS2 and T cell subtypes (Additional file  1:  Fig. 
S17). Jcomp scores were low across all cell subtypes, and 
CD8 + T cells, including naïve CD8 + T cells and cyto-
toxic CD8 + T cells, showed the lowest overlap with tS2 
(Jcomp: 0.007 and 0.022).

STopover predicts NK/T cell‑specific cell–cell interactions 
in image‑based SRT of lung cancer
STopover was applied to the lung cancer CosMx SMI 
dataset, and tumor cells (tS2) and NK/T cell-specific 
cell–cell interactions in the TME were explored. The 
list of LR pairs was refined by searching the intersec-
tion between genes present in the CosMx dataset and 
those from CellTalkDB. Then, ligand gene expression 
in tS2 cells and receptor gene expression in T cells were 
utilized to predict tumor-immune-specific interactions. 
The analysis revealed 12 key interactions between tumor 
and T cells with a Jcomp score over 0.150 (Fig.  6b and 
Additional file  2: Table  S3). Among the pairs, COL1A1-
DDR1 had the highest average ligand expression in the 
tissue, followed by EFNA1-EPHA2, COL18A1-ITGA3, 
VTN-ITGA3, and EFNA5-EPHA2. However, none of the 
interactions were statistically significant, indicating low 
interaction between tumor and NK or T cells. The spatial 
interaction pattern between tS2 and NK/T cells was com-
pared across the 12 LR pairs. Overall, the estimated loca-
tion of the interaction between tS2 and NK/T cells was 
highly overlapped across the top 5 selected LR pairs with 
high average ligand expression (Fig.  6b and Additional 
file 1: Fig. S18). In summary, STopover can be extensively 

used in image-based SRT to decipher the spatial patterns 
of the lung cancer microenvironment and rank the strong 
interaction specific to the tumor and NK/T cells.

STopover unveils spatial characteristics of breast cancer 
TME using barcode‑based SRT
Although breast cancer is generally considered a less 
immunogenic tumor, recent studies have highlighted that 
certain cancer tissues show high levels of immune infil-
tration and respond well to ICIs [41]. To comprehend the 
heterogeneity of immune profiles in breast cancer, STop-
over was applied to barcode-based SRT and spatial inter-
action was compared across several cancer tissues. The 
immune phenotype was explored in two different cancer 
subtypes: estrogen receptor-positive (ER +) and triple-
negative breast cancer (TNBC). The spatial composition 
of cancer, immune, and stromal cells was predicted based 
on reference single-cell dataset [16], and the colocaliza-
tion pattern between cancer epithelial cells and other 
cell types was analyzed. Two ER + samples displayed low 
immune infiltration and exhibited distinct spatial pat-
terns of TME compared to the TNBC samples (Fig. 7a). 
Among all cell types, the average fold change of Jcomp was 
the highest for myeloid cells between the ER + and TNBC 
subtypes (fold change ratio of Jcomp in TNBC to ER + : 
23.511). Besides, myeloid cells showed statistically signif-
icant colocalization with cancer epithelial cells in one of 
the TNBC tissue (p < 0.001). Myeloid cells and cancer epi-
thelial cells were highly exclusive in ER + tissues, whereas 
myeloid cells infiltrated inside cancer epithelial cells in 
TNBC (Fig. 7b).

Then, the dominant spatial LR interaction and their 
key niche were predicted in the breast cancer tissues. 
Differentially upregulated or downregulated LR pairs in 
ER + compared to TNBC were found (Additional file  2: 
Table  S4), and the enrichment analysis was performed. 
The top 5 GO terms were identified and the correspond-
ing LR pairs were presented in heatmaps (Additional 
file  1:  Fig. S19a, b). In ER + tissues, the top upregulated 
LR interaction (LAMB2-RPSA) was associated with the 
organization of the extracellular matrix. In contrast, in 
TNBC tissues, the top LR interaction (IL18-IL1RL2) was 
related to the positive regulation of kinase activity and 
positive regulation of cell adhesion. The main site of the 
LAMB2-RPSA interaction was more restricted to the 
cancer-associated fibroblast (CAF) niche than to the can-
cer cell niche (Additional file 1: Fig. S20a, c), represented 
by the fold change (FC) of the average Jcomp of CAF to 
cancer cell niche in ER + tissues of 2.763. The IL18-
IL1RL2 showed a similar level of interaction in both the 
CAF and cancer cell niche (Additional file 1: Fig. S20b, d), 
with the FC of CAF to cancer cell niche in TNBC tissues 
of 1.133. In short, IL18-IL1RL2, the most upregulated 
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LR interactions in TNBC, showed an expanded interac-
tion over the CAF region, compared to LAMB2-RPSA. 
To further explore the top LR interactions upregulated 
in ER + and TNBC tissues that were more specific to the 
cancer cell niche than the CAF niche, we calculated the 

FC of Jcomp between the two niches, in ER + and TNBC 
tissues, respectively, and ranked the FC values. For the 
LR pairs upregulated in ER + tissues, the pairs with the 
higher interaction in the cancer cell niche (FC > 1) were 
associated with the bone morphogenic protein (BMP) 

Fig. 6 STopover captures cell colocalization patterns and estimates tumor and NK/T cell crosstalk in lung cancer tissue using image-based SRT. The 
STopover was applied to image-based SRT of lung cancer tissue and deciphered spatial patterns of the cell types and their overlap. a The set-based 
Jcomp scores were calculated between the tumor cell type (tS2) and other main cell types and were visualized with a bar plot at the top left corner. 
The locations of CCs for tS2 (yellow) and other cell types (blue) were mapped to the tissue, and the overlapping domain is highlighted in green. 
The cell type-specific RNA counts were extracted from image-based SRT, and LR analyses were implemented using tS2-specific ligand expression 
and NK/T cell-specific receptor expression. In the bar plot, statistically significant colocalization between tS2 and other cell types is visualized 
as an asterisk (p<0.05).b The set-based Jcomp scores were computed for the LR pairs, and the results are presented in a bar plot in descending order 
of Jcomp. The average expression of ligand in tS2 was color-coded on the bar plot. Additionally, the location of CCs for tS2-specific ligand and NK/T 
cell-specific receptor and their overlapping subregions were visualized on the tissue. In short, STopover can be flexibly applied to image-based SRT 
to calculate cell–cell colocalization patterns and predict key intercellular communications
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signaling pathways (top 1: GDF9-BMPR1B). Conversely, 
for the pairs upregulated in TNBC tissues, the pairs with 
the highest FC were associated with ECM organization 
and kinase signaling mediated cell proliferation (top 1: 
DLL3-NOTCH2). This comparative analysis is instru-
mental in identifying functional similarities and differ-
ences within the cancer niche according to the cancer 
subtypes, thereby enhancing our understanding of cell–
cell interactions across different breast cancer subtypes. 
In brief, STopover could be utilized to characterize the 
TME landscape in diverse tumor tissues with different 
molecular profiles.

Comparison with other methods for spatial 
characterization of the TME
A few computational tools have been developed to ena-
ble unbiased profiling of the spatial heterogeneity of 
the tissue based on SRT. Among the available methods, 
ATHENA, Squidpy, spatialGE, SpaCET, and stLearn were 
compared with STopover in terms of their functionality 
or performance [33, 35–38].

As the cell infiltration score estimated by ATHENA 
uses the neighbors of each cell instead of overlapping cell 

density scores in barcode-based ST, it can only be used 
in image-based SRT data that directly define cell types 
[42]. ATHENA could rank the cell types that are colocal-
ized with tumor cells, and visualize the key location of 
the cell–cell overlap (Additional file 1: Fig. S21a, b). The 
global and local infiltration patterns of cell types into the 
lung cancer were estimated using ATHENA. MAST cells 
were identified as the top infiltrating cell type by both 
ATHENA and STopover (Fig.  6a and Additional file  1: 
Fig. S21a). However, ATHENA faced difficulties in cap-
turing subregions characterized by low tumor density 
but high immune cell concentration (Fig.  6a and Addi-
tional file 1: Fig. S16, S21b). Also, it was unable to detect 
molecular interactions that specifically occurred between 
tumor and immune cells.

In the case of Squidpy, cell colocalization patterns 
and LR interactions were analyzed in image-based SRT 
by shuffling the cell labels. In the lung cancer dataset, 
Squidpy revealed that NK_T cells (− 134.32), B lympho-
cytes (− 119.07), myeloid cells (− 102.47), fibroblasts 
(− 61.57), endothelial cells (− 51.47), and MAST cells 
(−30.65) exhibited increasing colocalization with tumor 
cells, all with negative Z-scores (Fig.  6a and  Additional 

Fig. 7 STopover characterizes spatial heterogeneity of breast cancer tissues using barcode-based SRT. The barcode-based SRTs of breast cancer 
tissues were analyzed using STopover. First, cell–cell colocalization patterns were extracted and compared across the tissues. a The set-based Jcomp 
values between the cancer epithelial cells and other main cell types in four breast cancer tissues were visualized with a heatmap. The Pearson 
correlation distances were calculated between all cell type pairs and all tissue pairs, and hierarchical clustering was performed. In the heatmap, 
statistically significant colocalization between cancer epithelial cells and other cell types is visualized as a black asterisk (p<0.05).b The CCs 
of the epithelial cancer cells (yellow) and other cell types (blue), and the intersecting subregions (green) between the two aggregated CCs were 
visualized on the tissue
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file 1: Fig.S21c). Furthermore, none of the LR interactions 
between tumor cells and NK_T cells were significant 
(Fig.  6b). Overall, STopover produced similar results to 
Squidpy, further highlighting the low immune cell infil-
tration in the lung cancer tissue. However, Squidpy was 
not applicable to barcode-based SRT, where the spot is 
composed of a mixture of cells.

Meanwhile, with the use of spatialGE, the tumor 
regions in lung cancer could be distinguished, and the 
immune phenotypes of lung cancer tissues with high or 
low PD-L1 expression could be visualized using barcode-
based SRT (Additional file  1:  Fig. S21d, e). However, 
spatialGE is limited in its ability to quantify the extent 
of subregional immune infiltration, investigate molecu-
lar interaction, and be applied to the image-based SRT 
platform.

In the case of SpaCET, it reveals the locations of the 
colocalization between cell type pairs and highlight 
dominant LR interactions between theses cell types. 
However, SpaCET evaluates the intensity of cell–cell 
colocalization utilizing Spearman’s correlation, without 
taking into account the spatial distances between spots in 
barcode-based ST. Consequently, it might not precisely 
identify the spatially clustered distribution patterns of 
cells, potentially resulting in noisier estimations of cell–
cell colocalization regions. For instance, in lung cancer 
datasets, both STopover and SpaCET captured the over-
all colocalization patterns between tumor cell type (tS2) 
and NK/T cells (Fig. 3 and Additional file 1: Fig. S22a, b). 
Nevertheless, SpaCET failed to identify some of the sub-
regions where NK/T cells were densely concentrated in a 
small area.

Finally, with stLearn, it is possible to extract spatial 
colocalization and LR interaction patterns between spe-
cific cell type pairs in barcode-based ST. The top LR 
interaction was B2M-HLA-F, HLA-B-CANX, and B2M-
LILRB1, and associated biological processes were similar 
with those derived from STopover (Fig.  5b and Addi-
tional file  1: Fig. S22c, d). However, the ligand-receptor 
coexpression locations predicted by stLearn tend to 
exhibit more noise compared to the predictions made by 
STopover (Additional file  1:  Fig. S22e, f ). STopover not 
only captures global colocalization patterns but also iden-
tifies and rank subregions, pinpointing where cell–cell or 
ligand–receptor interactions are most likely to take place.

Discussion
Decoding the spatial relationship between tumor, 
immune, and stromal cells in the TME is crucial to 
understanding the immune cell action on cancer cells 
and predicting responses to immunotherapy. Recent 
advances in SRT techniques have allowed for the screen-
ing of spatial patterns of multiple cell types and their 

gene expression in heterogeneous cancer tissue. In the 
case of barcoding-based spatial transcriptomics, the tis-
sue is divided into small unit regions, and genome-wide 
RNA expression is investigated. This technique has been 
widely utilized because it can screen RNA expression 
across a wide range of tissues without predefined RNAs 
of interest [43–48]. Meanwhile, image-based spatial tran-
scriptomics allows for spatial profiling of RNA expres-
sion in units of cells by identifying the RNA sequence, 
specifying the location using a fluorescence signal, and 
drawing the cell boundary [49–54]. If the two comple-
mentary spatial transcriptomic technologies are adopted, 
the spatial composition of the various cells constituting 
the tissue can be explored, and the complex interaction 
between the cells can be estimated.

In this regard, we developed STopover, which utilizes 
barcodes and image-based SRTs to summarize the topo-
logical colocalization pattern between cell types and LR 
pairs from CCs acquired by Morse filtration. By quan-
tifying and visualizing the overlap between CC pairs, 
we compared the tumor infiltration of fibroblasts and 
immune cells in multiple cancer tissues. We utilized two 
different methods to measure the extent of cell infiltra-
tion: set-based Jaccard index, which assesses binary cell 
overlap, and the weighted Jaccard index, which consid-
ers subregional distribution patterns. The key locations 
for cell infiltration were highlighted by ranking the local 
overlap of CCs between the feature pair. In addition, 
given that cell–cell interactions mediated by LR interac-
tions occur in close proximity, major intercellular com-
munication in cancer tissue could be estimated by finding 
the colocalization pattern of LR pairs. As an example, by 
utilizing cell type-specific RNA counts obtained from 
image-based SRT, STopover could list key spatial com-
munication between tumor and T cells in lung cancer 
tissue.

One of the key features of STopover is capturing 
locally active regions of cell–cell colocalization in the 
TME. Based on the functionality, STopover could dissect 
immune-excluded and immune-inflamed environments 
in one of the PD-L1 low and high lung cancer tissues, 
respectively (Fig.  3). The TME of the two tissues was 
characterized by contrastive spatial overlap patterns of 
tumor-stromal and tumor-immune cells. Also, in breast 
cancer tissues, STopover was able to capture the distinct 
immune phenotypes present in ER + and TNBC tumors, 
with ER + tissues exhibiting immune-excluded patterns 
and TNBC showing immune-inflamed patterns (Fig.  7). 
This is consistent with previous reports indicating that 
the TNBC subtype is more likely to be immunogenic 
and contains a higher amount of T cells and myeloid cell 
population than other subtypes [41, 55]. The STopover 
was applicable not only in barcode-based SRT but also 
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in image-based SRT platforms to understand the TME 
(Fig. 6). Moreover, the cross-cell type colocalization pat-
terns in the tumor were represented by the global overlap 
score, Jcomp, and the lung cancer tissues could be classi-
fied into two clusters with distinct TME profiles (Fig. 4). 
The two clusters did not completely match the group 
divided by PD-L1 expression, implying that STopover can 
describe the configuration of the TME independently of 
PD-L1 levels in cancer. In addition, STopover offers bio-
logically relevant information regarding immunotherapy 
response. As an example, the Jcomp score across the 11 
lung cancer tissues was positively correlated with the 
expression of genes coding MHC-class I protein (B2M, 
HLA-A, HLA-B, and HLA-C) (Additional file 1: Fig. S9), 
which are among the biomarkers for immunotherapy 
response [5].

Another important functionality of STopover is that it 
can predict spatial tumor-immune interactions by rank-
ing coexpression patterns of LR pairs in the whole tissue. 
One similar approach inferred cell–cell communication 
from the curated LR database by searching LR coexpres-
sion in the neighboring regions and measuring the num-
ber of distinct cell types [38]. Other approaches split the 
variability of gene expression into multiple factors [56, 
57] or use graph neural networks [58, 59] to model spa-
tial cell–cell interactions. Compared to the suggested 
methods, STopover is a platform-agonistic method that 
can be utilized in both image- and barcode-based SRT 
and segment the key regions of the top-ranked cell–cell 
interaction. In this regard, STopover was applied to both 
lung and breast cancer tissues and elucidated spatial cell–
cell communication underlying the tumor heterogeneity 
at the molecular level. In one of the barcode-based SRT 
datasets for lung cancer, the top LR pairs with high spa-
tial overlap were enriched with GO terms related to the 
development of the TME [39] (Fig. 5b). In particular, the 
top 3 pairs were explained by cell–cell interactions via 
MHC class I molecules (Fig. 5a), and their main location 
of interaction was highly overlapped with the domain of 
myeloid cells but exclusive to tS2 (Additional file 1: Fig. 
S12). This finding implies that the MHC class I-mediated 
process, which is one of the most activated cell–cell com-
munications, occurs primarily at the myeloid cell niche. 
In the case of the image-based SRT dataset of lung can-
cer, tumor- and T cell-specific expression profiles could 
be extracted, and the tumor and T cell interaction could 
be more specifically investigated (Fig.  6b). A total of 12 
LR pairs were selected as meaningful interactions, and 
several interactions were reported to be regulators of 
TME. Integrins and discoidin domain receptor 1 (DDR1) 
expressed on T cells interact with collagen and induce T 
cell migration or an inflammatory response [60]. Besides, 
EphrinA (EFNA), which binds to EphA receptors, is 

associated with immune cell infiltration in the tumor 
[61]. Meanwhile, the main location for tumor and T cell 
communication was redundant across the top LR interac-
tions (Fig. 6b), suggesting the tumor-T cell interaction in 
the constrained subregions. Lastly, in breast cancer data-
sets, molecular interaction was explored, and ER + and 
TNBC subtypes had a different spatial predominance of 
interaction. The top interaction present in ER + tumors 
is closely related to the ECM and it is localized in fibro-
blast regions where the ECM is actively being formed 
(Additional file 1: Fig. S20c). On the other hand, the main 
interaction in TNBC is associated with kinase activity, 
cell adhesion, and phosphorylation and is not restricted 
to fibroblast regions, but extended to cancer regions 
where cell proliferation is ongoing (Additional file 1: Fig. 
S20d). This is consistent with previous studies indicating 
that cancer cell growth is more enhanced in TNBC than 
in ER + cancers [41]. The results imply that the molecular 
interaction captured by STopover well reflects the spatial 
predominance of these interactions.

The primary limitation of the study lies in the absence 
of longitudinal clinical data, making it impossible to 
directly analyze the association between the spatial inter-
action of cells characterized by STopover and the clini-
cal progression of cancer. Nevertheless, a correlation was 
found between cell infiltration patterns and interactions, 
and the molecular profiles of cancer tissue. The discov-
eries in lung and breast cancer tissues link established 
molecular-phenotypic associations with spatial interac-
tion profiles, indirectly validating the results. Looking 
ahead, STopover could be broadly applied to search for 
biomarkers that faithfully capture the intricate spatial 
interaction patterns across heterogeneous cancer tissues.

There are several points to consider when applying 
STopover to dissect the TME in terms of cell–cell inter-
actions. Care must be taken when interpreting the top 
cell–cell interaction extracted by STopover in barcode-
based SRT. Because the LR interaction is searched for all 
the cell types present in the unit domain of the tissue, the 
highlighted location does not indicate the specific interac-
tion between the two cell types. An alternative approach 
to estimate cell type-specific interactions might be con-
straining the CCs of LR pairs to the spatial overlapping 
niche between the two cell types of interest. When this 
alternative approach was applied to image-based SRT, 
the regions of cell-type-specific interaction were limited 
to the location of colocalized T cells within the tumor 
(Additional file 1: Fig. S23a), which is more restricted to 
small subregions than the actual cell type-specific inter-
action patterns (Additional file 1: Fig. S23b). In addition, 
there is a possibility that highly expressed LR pairs are 
more likely to be selected during LR interaction analysis. 
To address this concern, regions with high or low feature 
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values are given equal weights when calculating the Jac-
card score between two features. The top LR interactions 
were consistent with those obtained by other methods of 
LR analysis (Additional file  1: Fig. S22c, d), supporting 
the biological relevance of results. Nevertheless, caution 
should be exercised as the bias towards highly expressed 
genes may not be completely eliminated and further 
experimental validation is required. It is also important 
to note that STopover focuses on the LR interaction and 
does not consider the downstream signaling pathways, 
similar to many LR analysis methods using SRT. The 
methods generally assume that highly colocalized expres-
sion of two features indicates a high level of interaction 
via those feature pairs. However, there may be false posi-
tives where two cells have high expression of the two fea-
tures due to secondary causes or coincidence. Extending 
this analysis to downstream pathways involves multiple 
assumptions, which increases the susceptibility to false 
positives; therefore, we focused on LR interaction only.

Meanwhile, when dealing with barcode and image-
based SRTs, STopover relies on cell type proportions 
or cell type annotations predicted by external methods. 
The choice of the methods can influence the cell–cell 
colocalization results in both SRT platforms. In the case 
of barcode-based SRT for lung cancer, the spatial pat-
terns of NK/T cells varied when utilizing different cell 
type deconvolution methods, consequently modifying 
the cell–cell colocalization ranking estimated by STopo-
ver (CellDART and Cell2location) (Additional file 1: Fig. 
S24a-d) [20, 21]. Nonetheless, except for NK/T cells, 
overall immune cells estimated by Cell2location showed 
higher overlap with tumor cells (tS2) as shown in STop-
over using CellDART. However, in image-based SRT 
for lung cancer, the cell infiltration pattern and ranking 
were not significantly different depending on cell annota-
tion methods (Ingest and TACCO) (Additional file 1: Fig. 
S24e, f ) [19, 22]. It is advisable to apply STopover after 
comparing the results of several tools and verifying their 
accuracy, although we believe that the core algorithm of 
STopover is computing the co-localization patterns of 
features rather than estimating the feature distribution. 
Notably, it is compatible with a variety of cell type decon-
volution methods, allowing for the analysis of cell type 
colocalization patterns following deconvolution.

Regarding the choice of the colocalization index, one 
might ask which of the Jaccard indices, set-based or 
weighted index, is most optimal for quantifying cell infil-
tration. Both methods yield similar ranking of cell infil-
tration into the tumor with a strong positive correlation. 
Notably, the weighted method allows for more sensitive 
detection of differences in cell infiltration patterns among 
cancer tissues (Additional file 1: Fig. S10), although it may 
be influenced by noise, as demonstrated in the simulation 

examples (Additional file  1:  Fig. S5). Furthermore, Jcomp 
is one of parameters generated by STopover, and it is 
possible to derive different values in different cases. For 
example, when evaluating the degree of infiltration by 
immune cells (CC1) into the tumor (CC2), it is also pos-
sible to have the proportion of overlapped regions among 
the regions in CC2 as a measure, which is a factor that 
can be determined thematically according to its biologi-
cal and clinical significance.

In the barcode-based SRT platform, lateral diffusion, 
which refers to the diffusion of RNA molecules to adja-
cent spots, is another issue that degrades the data quality 
and affects STopover analysis. While STopover employs 
dendrogram smoothing to mitigate noise arising from the 
experimental process, it is crucial to rigorously evaluate the 
influence of RNA diffusion on the analysis. To this end, we 
utilized SpotClean, a tool devised to counteract the effects 
of RNA diffusion, and compared LR interaction analysis 
results before and after implementing the correction. This 
strategy allowed us to critically assess and illustrate the 
robustness of STopover in the context of potential RNA dif-
fusion artifacts in spatial transcriptomic data (Additional 
file 1: Fig. S25) [62]. The overall spatial patterns generated 
by STopover remained consistent, and there was a positive 
correlation between Jcomp before and after the correction 
(R = 0.600), suggesting that RNA diffusion has no signifi-
cant impact on the analysis (Additional file 1: Fig. S25d).

Finally, STopover is primarily a method that focuses on 
the interaction and colocalization of cells in infiltrated, 
closely packed structures. However, it is limited in its abil-
ity to capture all cell–cell interactions. For example, it may 
not reflect certain interactions that occur at the borders 
of different cells, especially at the borders of cancer cells 
and immune cells, or paracrine effects that may occur 
over long distances. However, since the diameter of the 
spot, the basic unit of the Visium dataset, is 55 µm and the 
size of the generated grid in the CosMx dataset is 49.214 
by 39.376 µm, long-range interactions in the CellTalkDB 
database, such as cytokine and receptor signaling (char-
acteristic length scale: ~ 100 µm) [63], were presumed not 
to exceed the range of a few spots or grids. Nonetheless, 
STopover needs to be considered in conjunction with 
other existing LR interaction methods utilized in single-
cell RNA-seq to gain a thorough understanding.

Conclusions
STopover is a robust tool that utilizes SRT and topologi-
cal analysis to analyze the spatial infiltration patterns of 
the TME and highlights the key niche of tumor–immune 
and tumor–stromal interactions. The proposed tool 
is expected to be applicable to elucidate immune eva-
sion mechanisms and guide patient-specific strategies to 
enhance the efficacy of immunotherapy in cancer.
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