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Abstract 

Background Genome-wide association studies (GWAS) have identified hundreds of loci underlying adult-onset 
asthma (AOA) and childhood-onset asthma (COA). However, the causal variants, regulatory elements, and effector 
genes at these loci are largely unknown.

Methods We performed heritability enrichment analysis to determine relevant cell types for AOA and COA, respec-
tively. Next, we fine-mapped putative causal variants at AOA and COA loci. To improve the resolution of fine-mapping, 
we integrated ATAC-seq data in blood and lung cell types to annotate variants in candidate cis-regulatory elements 
(CREs). We then computationally prioritized candidate CREs underlying asthma risk, experimentally assessed their 
enhancer activity by massively parallel reporter assay (MPRA) in bronchial epithelial cells (BECs) and further validated 
a subset by luciferase assays. Combining chromatin interaction data and expression quantitative trait loci, we nomi-
nated genes targeted by candidate CREs and prioritized effector genes for AOA and COA.

Results Heritability enrichment analysis suggested a shared role of immune cells in the development of both AOA 
and COA while highlighting the distinct contribution of lung structural cells in COA. Functional fine-mapping uncov-
ered 21 and 67 credible sets for AOA and COA, respectively, with only 16% shared between the two. Notably, one-
third of the loci contained multiple credible sets. Our CRE prioritization strategy nominated 62 and 169 candidate 
CREs for AOA and COA, respectively. Over 60% of these candidate CREs showed open chromatin in multiple cell 
lineages, suggesting their potential pleiotropic effects in different cell types. Furthermore, COA candidate CREs were 
enriched for enhancers experimentally validated by MPRA in BECs. The prioritized effector genes included many 
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genes involved in immune and inflammatory responses. Notably, multiple genes, including TNFSF4, a drug target 
undergoing clinical trials, were supported by two independent GWAS signals, indicating widespread allelic heteroge-
neity. Four out of six selected candidate CREs demonstrated allele-specific regulatory properties in luciferase assays 
in BECs.

Conclusions We present a comprehensive characterization of causal variants, regulatory elements, and effector 
genes underlying AOA and COA genetics. Our results supported a distinct genetic basis between AOA and COA 
and highlighted regulatory complexity at many GWAS loci marked by both extensive pleiotropy and allelic 
heterogeneity.

Keywords Asthma genetics, Genome-wide association studies, Fine-mapping, Functional annotations, Epigenomics, 
Cis-regulatory elements, Candidate causal genes

Background
Asthma is a common, complex lung disease with a signif-
icant genetic component [1–3]. The largest genome-wide 
association study (GWAS) of asthma to date leveraged 
data from more than 1.5 million individuals across mul-
tiple ancestries and identified more than 150 significant 
loci [4]. Genetic associations, however, do not reveal the 
molecular mechanisms underlying the pathogenesis of 
asthma. Moreover, while most people with a diagnosis of 
asthma share a similar set of symptoms, there are many 
subtypes in which individuals display unique sets of clini-
cal characteristics and biomarker measurements [5–13]. 
Age of onset is an important criteria used in differenti-
ating asthma subtypes [14], and recent GWAS of adult-
onset asthma (AOA) and childhood-onset asthma (COA) 
suggested that the clinical heterogeneity between AOA 
and COA reflected differences in their underlying genet-
ics [15, 16].

Yet, challenges remain in translating GWAS results into 
biological insights [17, 18]. Causal variants at individual 
loci are often elusive due to complex linkage disequi-
librium (LD) structures. Furthermore, most associated 
variants map within non-coding regions of the genome, 
making it difficult to know their functional effects. It 
is generally assumed that non-coding GWAS variants 
exert their effects through changes in the expression of 
nearby genes. However, identifying the causal genes tar-
geted by GWAS variants is not straightforward due to 
complexities of gene regulation, with cis-regulatory ele-
ments (CREs) often regulating more than one gene in 
more than one cell type or tissue and often over long 
distances [19, 20]. Efforts have been made to address 
these post-GWAS challenges by jointly analyzing GWAS 
results with expression quantitative trait loci (eQTLs), 
using techniques such as colocalization [21–25] and tran-
scriptome-wide association studies [24, 26–29] (TWAS). 
Nonetheless, eQTLs only explain a small fraction of the 
heritability for most complex traits [30, 31], limiting 
their utility for identifying effector genes. Some stud-
ies have explored additional molecular phenotypes such 

as alternative splicing (s)QTLs [32], chromatin acces-
sibility (ca)QTLs [33, 34], and DNA methylation (me)
QTLs [35], but these QTLs are not widely available and 
some (caQTLs and meQTLs) do not point to their tar-
get genes directly. Importantly, colocalization and TWAS 
are prone to false positive findings [36–38]. In addition, 
to our knowledge, no studies to date have systematically 
explored the genetic underpinnings of AOA and COA in 
fine-mapping studies or by integrating functional data 
from a diverse range of cell types and modalities.

In this study, we used a combination of computational 
and experimental approaches to systematically fine-map 
genetic loci associated with AOA and COA [15]. Our 
innovative pipeline [39] identified putative causal vari-
ants at these loci, nominated and validated candidate 
CREs that are likely disrupted by putative causal vari-
ants, and prioritized effector genes supported by multiple 
lines of genetic evidence (Fig. 1). Collectively, our analy-
ses highlighted distinct genetic bases of AOA and COA 
while revealing pervasive pleiotropy and allelic heteroge-
neity at asthma GWAS loci.

Methods
Study subjects
Genetic association studies were conducted using indi-
viduals from the UK Biobank (UKB), a population-based 
prospective study which has collected phenotypic infor-
mation, biological samples, health records, and genetic 
data from over 500,000 participants [40]. We identi-
fied 20,702 AOA cases, 9613 COA cases, and 308,537 
shared controls following the same inclusion/exclusion 
criteria and phenotype definitions described in our pre-
vious study [15] (Additional file 1: Table S1). Briefly, we 
excluded related individuals with poor-quality genotypes 
and ambiguous sex assignments. AOA cases were sub-
jects diagnosed of asthma between 26 and 65  years of 
age, COA cases were subjects diagnosed of asthma before 
12  years of age, and controls were subjects aged older 
than 38 years with no reported asthma. Individuals with 
chronic obstructive pulmonary disease (COPD), chronic 
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bronchitis, and emphysema were further excluded from 
the AOA cases and controls.

GWAS of AOA and COA
We performed GWAS of AOA and COA [41] using an 
updated version of the imputed genotypes from the UKB 
following the same quality control and analysis pipeline 
described in our previous study [15]. Briefly, associations 
between 9,738,009 autosomal single-nucleotide polymor-
phisms (SNPs) and AOA/COA status were tested using 
logistic regression implemented in Hail 0.2 [42], with sex 
and the first 10 genetic principal components included as 
covariates.

Heritability enrichment analysis
We performed ATAC-seq in airway smooth muscle cells 
[43] (ASMCs) and harmonized chromatin accessibil-
ity data in 19 lung and seven blood cell types from three 
published studies [44–46] (Additional file  1: Table  S2; 
Additional file 2: Supplementary Methods). Using strati-
fied LD score regression [47] (S-LDSC), we estimated 
the heritability enrichment of open chromatin regions 
(OCRs) in individual cell types and cell lineages. We 
adjusted for annotations included in the baseline LD 
model [48] in all S-LDSC analyses.

Statistical fine‑mapping
Functional fine-mapping was implemented through a 
two-step procedure. In the first step, we used an empiri-
cal Bayesian model, TORUS [49], to estimate a prior 
probability (functional prior) for each SNP using GWAS 
summary statistics and a set of input functional annota-
tions (i.e., OCRs in cell lineages significantly enriched for 

AOA/COA heritability). Next, we used the summary sta-
tistics version of “sum of single effects” (SuSiE) [50, 51] 
model to fine-map LD blocks at GWAS loci. For each 
SNP, SuSiE estimates a posterior inclusion probability 
(PIP), which reflects the strength of evidence supporting 
it as a causal variant. To integrate functional annotations 
with fine-mapping, we specified the prior probabilities 
of individual SNPs using the functional priors computed 
by TORUS in the first step. For comparison, we also per-
formed fine-mapping without using functional informa-
tion (i.e., using uniform priors). See Additional file  2: 
Supplementary Methods for details.

We considered AOA and COA credible sets at the 
same LD block as shared if they shared more than half 
of their SNPs or if the total PIP of the shared SNPs was 
greater than 50% of the PIP of either credible set. If these 
criteria were not met, the credible set was considered to 
be AOA- or COA-specific.

Mapping candidate CREs and computing ePIPs
To map candidate CREs, we merged the ATAC-seq peaks 
across 20 lung and seven blood cell types [44, 45] using 
the bedtools [52] version 2.30.0 merge command with the 
-d option set to −1. The output was a set of non-overlap-
ping OCRs, each of which was considered as a candidate 
CRE. The element PIP (ePIP) of a candidate CRE was 
defined as the sum of the PIPs of the credible set SNPs 
within the CRE.

Linking candidate CREs to target genes
We used four features to nominate likely target genes for 
each candidate CRE: (1) the nearest gene to the candidate 
CRE; (2) if the SNP with the highest PIP in the candidate 

Fig. 1 Study workflow. For each step, the input data and assay are shown in brackets. UKB: UK Biobank, OCR: open chromatin region, CRE: 
cis-regulatory element, MPRA: massively parallel reporter assay, eQTL: expression quantitative trait locus
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CRE was an eQTL [21, 25, 53–55] for that gene; (3) if the 
candidate CRE interacted with the promoter of a gene by 
Promoter Capture Hi-C (PCHi-C) [46, 56–58], defined 
as ≥ 50% physical overlap between the candidate CRE and 
the non-promoter end of PCHi-C loops; and (4) if a regu-
latory element in the activity-by-contact (ABC) dataset 
[59] had ≥ 50% physical overlap with the candidate CRE, 
in which case the gene with the highest ABC score was 
considered as a putative target gene. For each candidate 
CRE, we only used eQTL, PCHi-C, and ABC data col-
lected from tissues and/or cell types matching the CRE’s 
cell lineage(s) to identify likely target genes (Additional 
file  1: Table  S2). Gene annotations were curated using 
mapgen R package [60] version 0.5.9, and we restricted 
our analysis to protein-coding genes.

Prioritizing effector genes
To prioritize candidate genes, we utilized both candidate 
CREs and exonic variants, which may disrupt protein-
coding sequences. The derived gene scores summarized 
the total genetic evidence supporting the role of a gene 
in AOA or COA. The score of a gene g , Sg , was the sum 
of the contributions of all variants that support g . We 
defined genes with gene score ≥ 0.95 as high-confidence 
candidate causal genes for AOA or COA. See Additional 
file 2: Supplementary Methods for details. To attribute a 
gene’s score to individual credible sets, we grouped the 
variants linked to the gene by credible sets and calculated 
the total contribution of each credible set to the gene.

Results
Leveraging functional annotations to fine‑map AOA 
and COA GWAS loci
To identify causal variants of asthma, we statistically fine-
mapped AOA and COA loci from GWAS in UKB (Meth-
ods; Additional file 2: Fig. S1). We employed a functional 
fine-mapping approach, which leveraged chromatin 
accessibility data from blood and lung cell types rel-
evant to asthma pathogenesis to improve the resolution 
of fine-mapping. Using ATAC-seq peaks (Additional 
file 1: Table S2), we first mapped OCRs of each cell type. 
Because OCRs in cell types from the same cell lineage 
shared similar heritability enrichments (Additional file 2: 
Fig. S2), we pooled OCRs by lineage for assessing herit-
ability enrichment and for all subsequent analyses (Meth-
ods). Both AOA (p = 6.98 ×  10−5) and COA (p = 6.13 × 
 10−9) risk variants were significantly enriched in OCRs of 
lymphocytes (Fig. 2A). COA risk variants were also sig-
nificantly enriched in OCRs of epithelial cells (p = 0.02) 
and mesenchymal cells (p = 0.02).

Next, we integrated OCRs of enriched cell lineages 
using a Bayesian hierarchical model [49] (Additional 
file 1: Table S3) and performed functional fine-mapping 

[50, 51] for all LD blocks harboring at least one genome-
wide significant SNP (p < 5 ×  10−8) (Methods; Additional 
file  2: Supplementary Methods). For comparison, we 
also performed fine-mapping [50, 51] under the default 
setting that assumes all SNPs are equally likely to be 
causal a priori (Fig. 2B). To quantify the effect of incor-
porating functional information in fine-mapping, we 
assigned variants into one of three categories by their 
PIP: low-confidence (0.1 < PIP ≤ 0.5), mid-confidence 
(0.5 < PIP ≤ 0.8), and high-confidence (PIP > 0.8) (Addi-
tional file  1: Table  S4). For AOA, functional fine-map-
ping led to a 30% increase in low-confidence variants, no 
change in mid-confidence variants, and a 50% increase in 
high-confidence variants. For COA, we observed 7, 120, 
and 33% increase in low-confidence, mid-confidence, and 
high-confidence variants, respectively.

Fine-mapping identifies groups of variants (i.e., cred-
ible sets) that contain at least one causal variant with 95% 
confidence. We discovered 21 and 67 credible sets among 
the 16 and 48 LD blocks that were fine-mapped for AOA 
and COA, respectively (Additional file  1: Table  S5). 
About one-third of the LD blocks (5 AOA and 16 COA) 
had more than one credible set (Additional file 2: Fig. S3), 
suggesting multiple independent causal signals within 
these blocks. The number of SNPs within a credible set 
varied widely, ranging from 1 to 136, with median values 
of 10 for AOA and 4 for COA (Fig. 2C). Among all cred-
ible sets, only 16% were shared between AOA and COA 
(Fig. 2D).

Identifying cell types and CREs mediating genetic risk 
of asthma
The enrichment analysis above revealed genome-wide 
cell type heritability enrichment patterns but did not pro-
vide information on the relevant cell types for individual 
credible sets. To assess the evidence supporting a cell lin-
eage for each credible set, we calculated the proportion 
of PIPs of variants that were within OCRs of each lineage 
(Additionalfile 2: Supplementary Methods). This propor-
tion can be understood as the probability that the causal 
variant acts on the phenotype through a lineage. Using 
this strategy, we found that among AOA credible sets, 
75% of the PIPs on average were attributed to lympho-
cytes (Fig.  3A). In contrast, the COA credible sets had 
higher proportions of PIPs attributed to epithelial cells 
(19%) and mesenchymal cells (17%), in addition to lym-
phocytes (46%) (Fig. 3B).

We next sought to nominate specific CREs that may 
be mediating the genetic effects of causal variants. We 
ranked candidate CREs by their ePIPs, which can be 
interpreted as the expected number of causal SNPs tar-
geting the CRE (Methods). Using this approach, we 
identified 62 AOA and 169 COA candidate CREs with 
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nonzero ePIPs (Fig. 3C; Additional file 1: Table S6). Nota-
bly, 64% of these candidate CREs were defined by OCRs 
of multiple cell lineages (Fig.  3D), indicating potential 
pleiotropic effect of asthma risk variants.

To experimentally assess regulatory activities of candi-
date CREs and variants, we performed massively parallel 
reporter assay (MPRA) in a human bronchial epithelial 
cell [61] (BEC) line, 16HBE14o-, to examine enhancer 
activities and allele-specific effects of 2034 SNPs chosen 
from AOA and COA GWAS loci (Additional file 2: Sup-
plementary Methods). Among those, 438 SNPs were in 
sequences that tested positive for enhancer activity in 
a bronchial epithelial cell line, and 34 of those showed 
allele-specific effect on enhancer activity (Additional 
file  1: Table  S7). We then used the MPRA results to 
assess the CREs selected by our ePIP strategy (Additional 
file 2: Supplementary Methods). The validated sequences 
in MPRA  (MPRA+ set) had significantly higher ePIPs 
than sequences tested negative in MPRA  (MPRA− set) 

for COA (p = 5.74 ×  10−5, Fig.  3E). In contrast, we did 
not observe a significant difference in ePIPs for AOA 
(p = 0.21, Fig.  3E). Taken together, the MPRA results 
suggest that the COA candidate CREs were distinctly 
enriched for enhancer activities in BECs.

Linking candidate CREs to target genes and prioritizing 
asthma risk genes
We next aimed to link candidate CREs to their target 
genes and identify likely causal genes for AOA and COA. 
Using functional genomics data that capture long-range 
regulation, including chromatin interactions and eQTLs 
from asthma-relevant tissues and cell types (Methods; 
Additional file 1: Table. S2), we nominated 107 putative 
target genes for 62 AOA candidate CREs and 253 putative 
target genes for 169 COA candidate CREs. Notably, 53 
and 118 candidate CREs were linked to at least two dif-
ferent genes in AOA and COA, respectively (Additional 

Fig. 2 A Heritability enrichment estimates for OCRs in asthma-relevant cell types. Lymphoid: lung B cells, lung T cells, lung NK cells, blood B cells, 
blood T cells, blood NK cells; Myeloid: lung macrophage, blood myeloid dendritic cells, blood plasmacytoid dendritic cells, blood monocytes; 
Epithelial: alveolar type 1 cells, alveolar type 2 cells, pulmonary neuroendocrine cells, lung basal cells, lung ciliated cells, lung club cells, bronchial 
epithelial cells; Mesenchymal: lung matrix fibroblasts, lung myofibroblasts, lung pericytes, airway smooth muscle cells; Endothelial: lung arterial 
cells, lung capillary cells, lung lymphatic cells. Confidence intervals are ± 2 standard errors. B PIPs for SNPs in adult-onset asthma (left panel) 
and childhood-onset asthma (right panel) fine-mapping, with SNPs weighted by functional annotations (y-axis) or by uniform weights (x-axis). C 
Distribution of the number of SNPs in the adult-onset asthma and childhood-onset asthma credible sets. D Distribution of the number of shared 
and specific credible sets
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file  2: Fig. S4), thus underscoring the challenge of pre-
cisely identifying target genes for specific CREs.

To address this challenge, we developed a scoring 
strategy to prioritize asthma effector genes by aggre-
gating causal evidence from variants linked to the same 
gene (Methods). Using this strategy, we identified 76 
AOA genes and 203 COA genes with nonzero gene score 
(Additional file  1: Table  S8). Of these, 10 and 35 genes 
were considered as high-confidence candidate causal 
genes for AOA and COA, respectively (Fig. 4A, B). The 
most significant genes were often supported by mul-
tiple lines of evidence, with the greatest contributions 
coming from variants potentially targeting their nearest 
genes and variants linked to the genes by ABC models. 
All AOA candidate causal genes were targeted by SNPs 
from a single credible set, while 11 COA candidate causal 
genes were supported by SNPs from more than one cred-
ible set (Additional file 2: Fig. S5).

To understand the biological functions of the prior-
itized genes, we assessed the enrichment of Biological 

Process Gene Ontology (GO) terms [62, 63] for can-
didate risk genes (Additional file  2: Supplementary 
Methods). A total of nine and 56 Biological Process GO 
terms were significantly enriched for AOA and COA 
candidate genes (FDR < 0.05), respectively, with eight of 
these shared between AOA and COA (Additional file 1: 
Table S9). The top enriched GO terms in both AOA and 
COA were associated with cytokine production and 
inflammatory response (Fig. 4C).

Functionally assaying candidate CREs and causal variants
Based on our integrative analyses, we selected six 
candidate CREs at both shared and specific loci for 
further functional validation using luciferase assays 
in 16HBE14o- cells (Additional file  2: Supplemen-
tary Methods): three were high-confidence candidate 
enhancers, two were candidate enhancers whose top 
SNP overlapped with an  MPRA+ sequence, and one 
was in a promoter region (Additional file 1: Table S10). 
The results are described in the following sections.

Fig. 3 A Cellular contexts of adult-onset asthma credible sets based on OCRs. The proportion of the total PIP in each credible set is attributed 
to OCRs of each of the five cell lineages or to none. Each horizontal bar corresponds to a credible set, which is labelled in parentheses by the nearest 
gene to the SNP with the highest PIP; the length of bars of different colors shows the proportion of PIPs assigned to each lineage. Because not all 
SNPs in the credible sets overlapped with an OCR, some were not assigned to a cell lineage (gray bars). B Cellular context of childhood-onset 
asthma credible sets. C Adult-onset asthma and childhood-onset asthma candidate CRE ePIP distributions. D Distribution of the number of cell 
lineages underlying candidate CREs. E Adult-onset asthma and childhood-onset asthma ePIP distributions of candidate CREs (from panels C and D) 
that overlapped with bronchial epithelial cells  MPRA+ and  MPRA− sequences. The p-values were computed using Wilcoxon rank-sum test
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Candidate enhancers at a COA‑specific locus at chromosome 
1q25.1
We identified one credible set containing two SNPs at 
a COA-specific locus at chromosome 1q25.1 (Fig.  5A; 
Additional file  1: Table  S5, COA cs5). The most sig-
nificant SNP in COA GWAS and the most likely causal 
SNP, rs11811856 (PIP = 0.95), mapped within an intron 
of TNFSF4 and overlapped with an OCR in epithelial, 
endothelial, mesenchymal, and myeloid cells in lung and 
lymphocytes in blood. The distance from the OCR mid-
point to the TNFSF4 transcription start site (TSS) was 
4966  bp. This OCR physically contacted the promoters 
of several genes based on PCHi-C of blood immune cells 
[56]: TNFSF18, CENPL, and DARS2. To complement the 
PCHi-C results, we checked ABC scores in relevant cell 
types (Additional file 1: Table S2). Interestingly, TNFSF4 
is the most likely target of the OCR based on the ABC 
scores in immune cells, fibroblasts, and endothelial cells 
[59]. We also identified a distal candidate enhancer that 
looped to the promoter of TNFSF4 in PCHi-C of blood 
immune cells, BECs, and ASMCs (distance = 460,760 bp) 
harboring a high-PIP SNP rs78037977 (PIP = 0.92; 

Additional file  1: Table  S5, COA cs4). This OCR over-
lapped with an  MPRA+ sequence, supporting its regula-
tory activity. While this enhancer also contacted dozens 
of other gene promoters according to PCHi-C, TNFSF4 
was a top gene by ABC scores in immune cells, epithelial 
cells, and fibroblasts. Taken together, these observations 
suggested that TNFSF4 is likely a COA risk gene, possibly 
with two independent causal signals targeting this gene.

Luciferase assay showed enhancer activity only for the 
rs11811856-C allele, the non-risk allele (Additional file 2: 
Fig. S6, left), for the candidate enhancer in the TNFSF4 
intron, suggesting allele-specific effects of rs11811856-C 
vs. rs11811856-G (p = 0.02). In contrast, the distal candi-
date enhancer did not show regulatory effect in the lucif-
erase assay (Additional file 2: Fig. S6, right), possibly due 
to cell type-specific regulation in a different cell type.

A candidate enhancer at a COA‑specific locus at chromosome 
19q13.11
One credible set (Additional file  1: Table  S5, COA 
cs67) at a COA-specific locus at chromosome 19q13.11 
(Fig.  5B) had two putative causal SNPs, rs118013485 

Fig. 4 A Adult-onset asthma high-confidence candidate causal genes (N = 10), listed in descending order. The intensity of color shows 
the score contributed by each category. Nearest: variants whose nearest gene is the candidate gene; ABC: variants linked to the candidate gene 
by the ABC model; PCHi-C: variants linked to the candidate gene by PCHi-C; eQTL: variants linked to the candidate gene by eQTL; Exon: variants 
in the candidate gene’s exonic regions. The number in the parentheses indicates the number of variants linked to the corresponding gene. B 
Childhood-onset asthma high-confidence candidate causal genes (N = 35), listed in descending order. C Top Biological Processes GO terms enriched 
among AOA (top) and COA (bottom) high-confidence candidate causal genes, generated by WebGestalt’s weighted set cover algorithm
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(PIP = 0.46) and rs117710327 (PIP = 0.52). The two SNPs 
were in nearly perfect LD, with only two haplotypes 
(rs118013485-G/rs117710327-C and rs118013485-A /
rs117710327-A) observed in the 1000 Genomes Euro-
pean populations [64, 65]. Both SNPs resided in the 
same OCRs in cell types from all five lineages. The 
ePIP of this candidate sequence was 0.99, suggesting 
that it mostly likely mediates the effect of the under-
lying causal variant(s). Although none of the eQTL 
datasets identified any target gene(s) for this candi-
date enhancer, PCHi-C in BECs [46] indicated that this 
candidate CRE only contacted the promoter of CEBPA 
(distance = 66,853 bp). In blood immune cells, this can-
didate enhancer looped to the promoters of CEBPG 
and CEBPA, both of which are CCAAT enhancer-bind-
ing proteins. Moreover, CEBPA had the highest ABC 
score in immune cells. We observed different levels of 
enhancer activities (rs118013485-A/rs117710327-A vs. 
rs118013485-G/rs117710327-C, p = 0.04) in luciferase 
assays between the two haplotypes (Additional file  2: 
Fig. S7), with decreased activity associated with the hap-
lotype carrying the COA risk alleles.

Candidate enhancers at an AOA and COA shared locus 
at 5q31.1
At a shared locus at 5q31.1, we discovered two credible 
sets shared by AOA and COA (Additional file 1: Table S5, 
AOA cs7 and COA cs24, AOA cs8 and COA cs25), and 
one credible set that was specific to COA (Additional 
file 1: Table S5, COA cs23). Nominating the true causal 
SNPs from these credible sets was difficult, as none of the 
SNPs in the five credible sets had a PIP > 0.5. Therefore, 
we selected the AOA credible set containing the fewest 
SNPs for functional validation studies (AOA cs7; Fig. 6A). 
Among the four SNPs in cs7, rs1023518 (PIP = 0.35) and 
rs3857440 (PIP = 0.30) were captured by one candidate 
enhancer, while SNP rs3749833 (PIP = 0.27) resided in a 
separate candidate enhancer, both of which were repre-
sented by OCRs in all five blood and cell lineages. These 
three SNPs together accounted for 97% of the total PIP in 
the credible set. Furthermore, rs1023518 and rs3749833 
overlapped with different sequences that each demon-
strated enhancer activity in MPRA, whereas the sequence 
containing rs3857440 did not show enhancer activity in 
MPRA.

Fig. 5 A A childhood-onset asthma-specific locus at chromosome 1q25.1. From top to bottom, the first two tracks show the −log10 p-values 
from GWAS and PIPs from fine-mapping, respectively. Each point is a SNP, and assayed SNPs are denoted by larger squares. Different colors are used 
in the PIP track to represent different LD blocks. The two SNPs in candidate enhancers, rs78037977 and rs11811856, are highlighted in red. The 
next five tracks display chromatin accessibility from (sn)ATAC-seq of different cell lineages, with each dark blue vertical bar showing the location 
of an OCR. The next three tracks show chromatin interactions from PCHi-C of different cells, where the loops from the distal candidate enhancer 
to TNFSF4 promoter in all three cell types are highlighted in red. The last track shows the genes at the locus. BICs: blood immune cells, ASMCs: 
airway smooth muscle cells, BECs: bronchial epithelial cells. B A childhood-onset asthma-specific locus at chromosome 19q13.11. The PCHi-C loops 
from the candidate enhancer to the CEBPA promoter in blood immune cells and bronchial epithelial cells are highlighted in red
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In luciferase assays, the sequence harboring rs1023518 
and rs3857440 tested negative (Additional file 2: Fig. S8, 
left), but the sequence containing rs3749833 was vali-
dated as an allele-specific enhancer (Additional file  2: 
Fig. S8, right). Moreover, although another genome-
wide significant SNP rs11748326 was located within the 
same luciferase construct as rs3749833, only rs3749833 
showed significant allelic effects (Additional file  2: Fig. 
S8, right). These observations indicated that rs3749833 
is likely a causal variant exerting its effect in BECs. We 
also looked at eQTLs and chromatin interaction data to 
determine the likely target genes of this enhancer. While 
the GTEx eQTL data nominated PDLIM4 as the putative 
target gene in skin and SLC22A5 as the putative target 
gene in whole blood, lung, and skin, this enhancer only 
interacted with the promoter of IRF1 in PCHi-C of blood 
immune cells. Additionally, IRF1 had the highest ABC 
score in immune cells. These findings suggest that one or 
more of these genes are regulated by this enhancer.

A candidate promoter at an AOA and COA shared locus 
at 12q13.2
We evaluated an OCR located 2  kb upstream of RPS26 
that was characterized by ATAC-seq peaks in all 27 
blood and lung cell types. The AOA and COA ePIPs of 
this OCR were 0.71 and 0.51, respectively, attributed 
to two SNPs in a pair of shared credible sets: rs705704 
(AOA PIP = 0.41; COA PIP = 0.38) and rs705705 (AOA 
PIP = 0.29; COA PIP = 0.13) (Additional file  1: Table  S5, 

AOA cs19 and COA cs50). We observed extensive chro-
matin interactions at this locus in BECs and ASMCs, 
potentially indicating a high level of regulatory activities 
in these cell types (Fig. 6B).

We performed luciferase assays for the two haplotypes 
comprised of the two SNPs in 1000 Genomes European 
populations (rs705704-G/rs705705-G and rs705704-A/
rs705705-C). In line with our expectations for a pro-
moter, we observed strong regulatory effect of both 
haplotypes on the luciferase activity, with fold change 
compared to the control ranging from ~ 50 times to > 300 
times across experimental replicates (Additional file  2: 
Fig. S9). In addition, the asthma-associated rs705704-A/
rs705705-C haplotype showed significantly lower lucif-
erase activity than the rs705704-G/rs705705-G haplotype 
(rs705704-A/rs705705-C vs. rs705704-G/rs705705-G, 
p = 0.01), suggesting haplotype-specific regulation.

Discussion
Personalized risk prediction and treatment strategies 
for common, complex diseases are the aspirations of 
precision medicine [66]. The extraordinary heterogene-
ity of asthma makes these goals particularly challeng-
ing. Having a more refined understanding of the shared 
and distinct molecular genetic mechanisms underlying 
different asthma subtypes could lead to the discovery 
of new therapeutic targets as well as identifying indi-
viduals who would most likely benefit from therapies. 
Indeed, a recent study [67] estimated that drugs targeting 

Fig. 6 A A shared locus at chromosome 5q31.1. See Fig. 5 figure legend. The PCHi-C loop from the candidate enhancer to IRF1 promoter 
is highlighted in red in blood immune cells. B A shared locus at chromosome 12q13.2
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genes with genetic support had 2.6 times greater prob-
ability of achieving clinical success than those targeting 
genes without genetic support. Our GWAS of AOA and 
COA [15] serves as a first step toward characterizing 
the underlying molecular mechanisms and nominating 
causal genes for these two important asthma subtypes.

In this study, we coupled computational and experi-
mental methods to systematically uncover putative causal 
variants, candidate CREs, and effector genes for AOA 
and COA. Utilizing chromatin accessibility data in mul-
tiple cell types, we showed that both AOA and COA 
GWAS signals were concentrated in regulatory regions of 
immune cells. In contrast, the enrichment of GWAS loci 
in lung structural cells was a distinctive feature of COA, 
consistent with results in our previous GWAS [15] based 
on gene expression data. Leveraging functional fine-map-
ping, we uncovered a plethora of causal signals that fur-
ther highlighted the distinct genetic bases underlying risk 
for AOA and COA. Our multi-level analyses revealed 
two broad patterns: first, most candidate CREs of asthma 
were in OCRs across multiple cell lineages, suggesting 
that most genetic variants of asthma have pleiotropic 
effects across cell types. Second, allelic heterogeneity was 
common. This was supported by both the presence of 
more than one credible set at many loci, and by the fact 
that many of the candidate genes were supported by two 
independent causal signals. Overall, our results under-
score the complexity of the molecular mechanisms link-
ing genetic variants of asthma pathogenesis.

Many of the genes prioritized by our scoring sys-
tem had strong prior evidence supporting their roles in 
asthma. To highlight a few examples: (1) BACH2, the 
highest-ranked AOA risk gene, is a key regulator of T-cell 
and B-cell differentiation [68–70]. (2) SMAD3, the high-
est-scoring COA effector gene, is a crucial transcription 
factor in the transforming growth factor beta signaling 
pathway [71], a central mediator of airway remodeling in 
asthma [72]. (3) GATA3, the third highest-scoring AOA 
effector gene and a COA candidate risk gene, is a mas-
ter regulator [73, 74] that modulates the expression and 
production of the type 2 cytokines that play a prominent 
role in both AOA and COA [75, 76]. (4) The prioritized 
causal genes of COA included several epithelial function-
related genes. OVOL1, a transcription factor involved in 
epithelial cell differentiation [77], regulates the expres-
sion of FLG in normal human epidermal keratinocytes 
[78]. The OVOL1-FLG axis contributes to the patho-
genesis of atopic dermatitis, an allergic condition that 
is often comorbid with asthma and has shared genetics 
with asthma [79], likely mediated by disrupting barrier 
function [80]. (5) The two prioritized toll-like receptor 
(TLRs) genes, TLR1 and TLR10, are both expressed in 
airway epithelium [81]. Together with other TLRs, they 

orchestrate response against microbes through the acti-
vation of TLR signaling pathways in epithelial cells [82, 
83]. (6) Finally, HDAC7, the fifth highest scoring gene for 
AOA, resides at an AOA-specific GWAS locus. HDAC7 
is a histone deacetylase involved in transcriptional regu-
lation. This gene plays a key role in the function of regu-
latory T cells [84] and has been shown to potentially play 
a role in asthma and allergic diseases through epigenetic 
modifications [85].

The effectiveness of our analytical strategy was sup-
ported by the successful validation of selected can-
didate CREs by luciferase assays: four out of the six 
selected candidate CREs displayed regulatory activity 
and allelic effects in vitro. The genes likely regulated by 
these validated CREs were among the top genes prior-
itized by our gene scores and have known relationships 
to the pathogenesis of AOA and/or COA. For example, 
TNFSF4 encodes OX40 ligand (OX40L). By binding 
to the OX40 receptor, OX40L on antigen-presenting 
cells activates the OX40 costimulatory molecule on T 
cells. Importantly, the OX40-OX40L pathway has been 
shown to play a key role in the differentiation of Th2 
cells and the activation of memory Th2 cells [86]. A 
recent Phase 2b clinical trial, STREAM-AD, showed 
that amlitelimab, a non-T cell depleting monoclonal 
antibody that blocks OX40L on antigen-presenting 
cells, exhibited sustained treatment effects on patients 
with atopic dermatitis [87]. A Phase 2 study exam-
ining the efficacy of amlitelimab on asthma patients 
is underway [87]. Another candidate effector gene, 
CEBPA, is a key regulator of lung epithelial cell devel-
opment [88, 89]. Previous studies showed that CEBPA 
expression was absent in cultured ASMCs from sub-
jects with asthma [90, 91]. The lack of CEBPA expres-
sion was associated with the failure of glucocorticoids 
to inhibit ASMC proliferation [90], suggesting that it 
could play a role in steroid-resistant asthma. Consist-
ent with this observation, the enhancer potentially 
regulating CEBPA displayed lower activity in luciferase 
assays in the 16HBE14o- cell line with the risk allele 
for COA (rs117710327-C) compared to the non-risk 
rs117710327-A allele. Another putative causal gene, 
IRF1, encodes a transcription factor that regulates the 
activity of interferon and is involved in various aspects 
of adaptive and innate immune responses to patho-
gens [92–94]. IRF1 is upregulated by rhinovirus (RV) 
in epithelial cells [95]. RV-associated wheezing illness 
in early life is one of the most significant risk factors 
for COA [96, 97] and is strongly associated with asthma 
exacerbations and hospitalizations throughout life [98]. 
In addition, IRF1 has been identified as a key driver of 
lipopolysaccharide (LPS)-induced interferon responses 
at birth [99]. Based on these and other data [100–102], 
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impaired immune responses to microbial infections 
is thought to be a key mechanism underlying asthma 
onset and severity [103]. These findings are also con-
sistent with our observation of reduced enhancer activ-
ity associated with the asthma risk allele (rs3749833-C).

We recognize several limitations of our study. First, 
our analysis primarily relied on open chromatin as 
functional annotations, missing other mechanisms of 
gene regulation (e.g., alternative splicing). Second, in 
regions with extensive LD, many SNPs will receive small 
PIPs, often making it impossible to distinguish likely 
causal SNP(s). Both possibilities may explain why the 
most significant COA locus at chromosome 17q12-q21 
was not among those prioritized by our pipeline. This 
locus is characterized by extensive LD over ~ 150 kb in 
populations of European ancestry and the likely causal 
SNPs affect splicing (rs11078928) of GSDMB and/or 
encode a missense mutation (rs2305480) in GSDMB 
[104]. Third, the epigenomic and gene expression data 
used in our studies were in unstimulated cells. It is 
possible that cells stimulated with asthma-promoting 
cytokines or viruses, as examples, will induce context-
specific CREs that were missed by the current study. 
Fourth, we applied a heuristic method to score and rank 
the genes and different kinds of evidence linking a CRE 
with a gene were weighted equally. A better approach 
may be to assign weights differently, putting more 
emphasis on datasets more likely to support functional 
relationships. Fifth, to maximize detection power, we 
used summary statistics from AOA and COA GWAS 
for fine-mapping. We therefore were not able to include 
individual-level comorbidities as covariates in our anal-
yses, nor were we able to stratify our analyses by clini-
cal features. As a result, we may have missed signals 
that are specific to severe asthma [105] or asthma asso-
ciated with other disorders [106, 107]. Finally, our study 
included only UKB individuals who self-identified as 
White British and, therefore, our fine-mapping results 
reflect the specific LD and allele frequency patterns of 
this population. A recent study [108] has shown that 
fine-mapping can greatly benefit from including indi-
viduals of diverse genetic backgrounds, which can 
uncover putative causal variants that are more frequent 
in non-European populations. Additionally, the distinct 
haplotype structures among different populations can 
help disentangle SNPs that are in high LD in one popu-
lation but not in others. Taken together, increasing the 
genetic diversity of future fine-mapping studies, along 
with rigorous analytical approaches and more precise 
phenotype definitions, is critical for expanding our 
understanding of the genetic architecture of complex 
traits across various populations.

Conclusions
By combining experimental and computational 
approaches, our study provides the most thorough fol-
low-up of AOA and COA GWAS discoveries to date. We 
identified numerous risk variants, regulatory elements, 
and candidate genes and uncovered key insights into the 
genetic architecture of AOA and COA. Our datasets pro-
vide a valuable resource for future functional studies to 
understand the biological mechanisms underlying the 
genetics of asthma with onset in both childhood and later 
in life.
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