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Abstract 

Background The gut viral community has been increasingly recognized for its role in human physiology and health; 
however, our understanding of its genetic makeup, functional potential, and disease associations remains incomplete.

Methods In this study, we collected 11,286 bulk or viral metagenomes from fecal samples across large-scale Chinese 
populations to establish a Chinese Gut Virus Catalogue (cnGVC) using a de novo virus identification approach. We 
then examined the diversity and compositional patterns of the gut virome in relation to common diseases by analyz-
ing 6311 bulk metagenomes representing 28 disease or unhealthy states.

Results The cnGVC contains 93,462 nonredundant viral genomes, with over 70% of these being novel viruses 
not included in existing gut viral databases. This resource enabled us to characterize the functional diversity and spec-
ificity of the gut virome. Using cnGVC, we profiled the gut virome in large-scale populations, assessed sex- and age-
related variations, and identified 4238 universal viral signatures of diseases. A random forest classifier based on these 
signatures achieved high accuracy in distinguishing diseased individuals from controls (AUC = 0.698) and high-risk 
patients from controls (AUC = 0.761), and its predictive ability was also validated in external cohorts.

Conclusions Our resources and findings significantly expand the current understanding of the human gut virome 
and provide a comprehensive view of the associations between gut viruses and common diseases. This will pave 
the way for novel strategies in the treatment and prevention of these diseases.
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Background
The viral community in our gut, referred to as the human 
gut virome, is a key component of the gut microbial com-
munity with extensive unexplored genetic and functional 
diversity [1]. Traditional gut virology research usually 
has typically focused on some specific enteroviruses 
[2, 3], but its scope and applications have been limited 
due to the insufficient discovery of viruses. However, 
with the rapid advancement of high-throughput whole-
metagenome (bulk) sequencing and virus-like particle 
(VLP)-based virome sequencing technologies, prelimi-
nary insights into the characteristics of the gut virome 
have been gained. In general, the normal gut viral com-
position is highly individualized and influenced by fac-
tors such as sex, age, geography, and lifestyle [4–7]. 
Longitudinal studies have shown that the gut virome in 
healthy adults is temporally stable, although it can fluctu-
ate with changes in the external environment [4]. Signifi-
cant alterations in the gut virome have been observed in 
a wide range of gastrointestinal and systemic disorders, 
including colorectal cancer (CRC) [8, 9], inflammatory 
bowel disease (IBD) [10], necrotizing enterocolitis [11], 
liver disease [12, 13], autoimmune diseases [14–17], met-
abolic syndrome [18], or even infectious diseases such as 
acquired immunodeficiency syndrome (AIDS) [19] and 
COVID-19 [20, 21]. These efforts underscore the critical 
role of the gut virome in human health and highlight the 
need for an in-depth exploration of its variation pattern 
and pathophysiological roles.

Reference viral genome catalogues are essential for 
quantitative and functional analyses of the human gut 
virome [22]. Recent studies have identified a vast array of 
viruses from publicly available fecal metagenomes, lead-
ing to the creation of databases such as the Gut Virome 
Database (GVD) [6], Gut Phage Database (GPD) [1], 
and Metagenomic Gut Virus (MGV) catalogue [23], 
each containing tens of thousands of viral genomes. An 
intriguing observation is that the viral sequences identi-
fied by different catalogues substantially differ, with less 
than 50% overlap (Additional file 1: Fig. S1a). Even in the 
same catalogue, only a small proportion of viruses are 
shared between samples from different regions (Addi-
tional file 1: Fig. S1b). Although technical variations may 
account for some differences, these findings strongly sug-
gest that the gut virome is highly heterogeneous among 
populations, as supported by other studies [7, 24]. With 
the rapid expansion of bulk and VLP-based virome 
metagenomic samples, the representativeness of the gut 
viral catalogues can be significantly enhanced by utilizing 
large-scale samples from a single population and stand-
ardized, cutting-edge processing pipelines [22].

To expand the reference viral genome database and 
provide a more comprehensive understanding of the gut 

virome, we constructed a catalogue of gut viruses by pro-
cessing over 11,000 fecal bulk or VLP-based viral metage-
nomes from Chinese populations. The catalogue, termed 
the Chinese Gut Virus Catalogue (cnGVC), comprises 
93,462 nonredundant viral genomes (dereplicated from 
426,496 viruses with > 95% nucleotide similarity) with a 
majority of which never found in existing gut viral data-
bases. The cnGVC enables high-resolution functional 
characterization of the gut virome, significantly improv-
ing the recruitment of gut viruses in metagenomes (cap-
turing 22.7% of viral reads in bulk metagenomes and 
56.7% in viral metagenomes) and allowing for the assess-
ment of the sex- and age-related variations in the virome. 
In terms of disease, we profiled the gut viromes of 6311 
fecal metagenome samples representing 28 disease or 
unhealthy states and observed that most of the investi-
gated diseases were associated with significant reduc-
tions in viral richness and diversity, as well as marked 
shifts in the overall gut viral composition. Furthermore, 
we identified 4238 differential viruses through meta-anal-
ysis across all diseased and healthy individuals, demon-
strating the potential of these universal viral signatures to 
predict human health status.

Methods
Human fecal metagenomic datasets and public databases
We conducted a comprehensive review of studies based 
on human fecal metagenomic samples by searching rel-
evant keywords (e.g., “gut metagenome,” “fecal metagen-
ome,” “stool metagenome,” “viral-like particle,” and “VLP 
metagenome”) in the PubMed database. From the search 
results, we manually selected 50 studies involving Chi-
nese cohorts with publicly available metagenomic data, 
published until March 2022. These studies provided 
11,327 fecal metagenomic samples, containing over 92 
Tbp of high-throughput sequencing data. Detailed infor-
mation about these 50 studies is presented in Additional 
file 2: Table S1. These studies were designated as the dis-
covery cohorts for this investigation. Additionally, we 
incorporated data from six additional Chinese cohorts, 
which served as validation cohorts. These included five 
publicly available cohorts published after March 2022, 
covering CRC [25], chronic kidney disease (CKD) [26], 
rheumatoid arthritis (RA) [27], bipolar depression (BD) 
[28], and major depressive disorder (MDD) [29], as 
well as one newly recruited autoimmune cohort with 
metagenomic sequencing (described in the following sec-
tion). Detailed information regarding these six studies 
is provided in Additional file 2: Table S2. This study also 
incorporated five public databases of human gut viral 
and microbial genomes: (1) GVD [6]; (2) GPD [1]; (3) 
MGV [23]; (4) Cenote Human Virome Database (CHVD) 
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[30]; and (5) Unified Human Gastrointestinal Genome 
(UHGG) [31].

Recruitment and metagenomic sequencing 
of the autoimmune cohort
Recruitment was conducted at the Second Affiliated 
Hospital of Dalian Medical University and the Second 
Affiliated Hospital of Guizhou University of Traditional 
Chinese Medicine. Patients with autoimmune diseases 
were enrolled based on confirmed diagnoses by licensed 
physicians, adhering to the 2019 European League 
Against Rheumatism/American College of Rheumatol-
ogy (EULAR/ACR) classification criteria [32] for anky-
losing spondylitis (AS), systemic lupus erythematosus 
(SLE), and primary Sjögren’s syndrome (pSS). Exclusion 
criteria included diabetes, severe hypertension, severe 
obesity or metabolic syndrome, IBD, cancers, abnormal 
liver or kidney function, and recent use of antibiotics or 
probiotic products within the preceding 4 weeks. Based 
on these criteria, the study included 130 AS patients, 73 
SLE patients, 66 pSS patients, and 118 healthy controls 
for further analysis. Fecal samples were collected from 
participants, temporarily stored on dry ice, and trans-
ported to the laboratory within 24 h, where they were 
stored at − 80 °C until further processing. DNA extrac-
tion was performed using the TIANamp Stool DNA Kit 
(TIANGEN, China), and DNA quality was evaluated 
using the Qubit 2.0 Fluorometer. Metagenomic sequenc-
ing libraries were prepared using the NEB Next Ultra 
DNA Library Prep Kit (NEB, USA) following the manu-
facturer’s protocol, with unique index codes assigned to 
each sample. Library quality was verified using an Agi-
lent 2100 Bioanalyzer. Indexed samples were clustered 
on a cBot Cluster Generation System using an Illumina 
PE Cluster Kit (Illumina, USA) according to the manu-
facturer’s instructions. After cluster generation, DNA 
libraries were sequenced on the Illumina NovaSeq plat-
form, producing 150 bp paired-end reads. Quality con-
trol and removal of human-derived contaminants were 
performed using the same pipeline applied to publicly 
available metagenomic datasets.

Sequence preprocessing and metagenome assembly
Raw reads were quality filtered and trimmed using fastp 
(v0.20.1) [33] with the parameters “-l 60 -q 20 -u 30 -y 
-trim_poly_g” for samples with read lengths ≤ 100 bp, 
or “-l 90 -q 20 -u 30 -y -trim_poly_g” for samples with 
read lengths > 100 bp, ensuring that the high-quality 
region accounted for at least 60% of the total read length. 
Human contamination was removed by mapping the 
quality-filtered reads to the human reference genome 
(GRCh38) using Bowtie2 (v2.4.1) [34]. The remaining 
clean reads were then de novo assembled into contigs 

using MEGAHIT v1.2.9 [35], with k-mer values selected 
based on the read length for each sample. Detailed 
information on all samples is shown in Additional file 2: 
Table S3.

Identification and decontamination of viral sequences
We performed an integrated homology- and feature-
based pipeline to identify viral sequences based on our 
previously developed methodologies [7, 36–39]. Briefly, 
we first removed assembled contigs in which prokary-
otic genes comprised more than half of the total gene 
content, and the number of prokaryotic genes exceeded 
viral genes by a factor of ten, as assessed by CheckV 
(v0.7.0) [40]. The remaining contigs were then assessed 
for viral content based on the following criteria: (1) the 
contig contained at least one viral gene, and the number 
of viral genes was greater than the number of prokary-
otic genes, as determined by CheckV (v0.7.0); (2) the 
contig had a DeepVirFinder (v1.0) [41] score > 0.90 
and a p value < 0.01; (3) the contig was identified as 
viral sequence by VIBRANT (v1.2.1) [42] using default 
options. Contigs meeting any of these criteria were iden-
tified as potential viral sequences. To further refine the 
analysis, we excluded viral sequences with a CheckV 
completeness score of < 50%, given their limited value for 
subsequent analyses. According to the previous study [6], 
we further performed a decontamination process for the 
remaining viral sequences based on the ratio of bacte-
rial universal single-copy orthologs (BUSCO ratio) [43]. 
Using the hmmsearch program [44], we searched for 
BUSCO genes within each viral sequence with default 
parameters, calculating the BUSCO ratio as the number 
of BUSCO genes divided by the total number of genes in 
the sequence. Viral sequences with a BUSCO ratio > 5% 
were removed. After this decontamination step, a total of 
426,496 highly credible viral sequences were retained for 
follow-up analysis.

Viral clustering and gene prediction
Following the clustering methodology described in our 
previous studies [36, 38], we clustered viral sequences at 
a 95% average nucleotide similarity threshold (≥ 85% cov-
erage), resulting in a nonredundant gut virus catalogue 
consisting of 93,462 viral operational taxonomic units 
(vOTUs). For each vOTUs, the longest viral sequence 
was selected as the representative virus. Approximately 
22.0 million putative protein sequences across all vOTUs 
were predicted via Prodigal (v2.6.3) [45] with the param-
eter “-p meta,” and these sequences were clustered into 
nearly 1.6 million nonredundant protein sequences using 
MMseqs2 (v12.113e3) in easy-linclust mode [46] with the 
parameters “–min-seq-id 0.9 –cov-mode 1 -c 0.8 –kmer-
per-seq 80.”
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Taxonomic classification, host assignment, and functional 
annotation
Taxonomic classification of vOTUs was performed using 
Diamond (v2.0.13.151) [47] with parameters “–id 30 –
query-cover 50 –min-score 50 –max-target-seqs 10.” 
Protein sequences were aligned against an integrated 
viral protein database derived from Virus-Host DB [48] 
(downloaded in November 2024). A vOTU was assigned 
into a known viral family when at least one of every five 
proteins matched the same family. Additionally, we also 
provided taxonomic classification results of all vOTUs 
based on the geNomad database [49], as shown in Addi-
tional file 2: Table S4.

Host assignment of vOTUs was performed by homol-
ogy to genome sequences or CRISPR spacers of the 
UHGG database [31]. For homologous alignments, viral 
sequences were aligned against prokaryotic genomes 
in the UHGG using BLASTn with the parameters 
“-evalue 1e-2 -num_alignments 999999” [50], and a host 
as assigned when more than 30% region of the viral 
sequence matched to the corresponding host genome 
with > 90% nucleotide identity and an e value < 1e − 10. 
For CRISPR-spacer matches, host CRISPR-spacers 
were detected using MinCED v0.4.2 with the parameter 
“-minNR 2” [51]. Host assignment was confirmed when 
the viral sequences aligned with the host CRISPR spacer 
via BLASTn at a bit-score > 45 and an e value < 1e − 5.

To explore the functional properties of the viral 
sequences, we annotated viral proteins using several 
functional databases: Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [52], Carbohydrate-Active enZymes 
(CAZy) [53], Virulence Factor Database (VFDB) [54], and 
a combined antimicrobial resistance databases (which 
includes CARD v3.1.0 [55], MEGARes v2.0 [56], Res-
Finder [57], and ARG-ANNOT [58]). For the KEGG and 
CAZy databases, viral proteins were assigned functional 
orthologs based on the best-hit gene in the respective 
database using Diamond with parameters “-e 1e-5 –
query-cover 50 –subject-cover 50 –min-score 50.” For the 
VFDB, proteins were assigned a virulence factor based 
on the best-hit gene using Diamond with parameters “–
query-cover 50 –id 60.” For antimicrobial resistance, viral 
proteins were aligned against the combined database 
using Diamond with the parameter “-e 1e-2.” Distinct 
thresholds for protein identity were applied depending on 
the resistance type (> 70% for multidrug resistance, > 90% 
for beta-lactamases, and > 80% for other resistance types).

Phylogenetic analysis
We performed genome-based phylogenetic analyses 
for vOTUs with CheckV completeness > 90% using ViP-
TreeGen (v1.1.2) [59] with default parameters. The phy-
logenetic tree was visualized using iTOL (v6) [60]. In 

addition, we calculated the phylogenetic diversity (PD) of 
each viral family using the pd function in the R picante 
[61] package based on the proteomic tree generated by 
ViPTreeGen [59].

Taxonomic profiles
To characterize the gut virome composition, clean reads 
from each metagenome were mapped to the vOTUs in 
the cnGVC database using Bowtie2 with the parameters 
“–end-to-end –fast –no-unal -u 5,000,000.” For each 
sample, the read count for each vOTU was normalized 
by dividing by its genomic size. The normalized read 
count was then divided by the total of all normalized read 
counts in the sample to define the relative abundance of 
each vOTU. The relative abundances of vOTUs within 
the same viral family were summed to generate family-
level profiles.

Statistical analysis
Statistical analyses and data visualization were carried 
out via R language (v4.0.3).

Alpha diversity
Two alpha diversity estimates (i.e., the Shannon index and 
the observed number of vOTUs) were measured based 
on the relative abundance profiles at the vOTU level. The 
Shannon index was estimated using the diversity function 
within the vegan package [62]. The observed number of 
vOTUs was calculated as the count of vOTUs with a rela-
tive abundance greater than 0 in each metagenome.

Multivariate statistics
Bray–Curtis distances between samples were calculated 
based on relative abundance profiles at the vOTU level 
using the vegdist function from the vegan package. Prin-
cipal coordinate analysis (PCoA) was carried out based 
on between-sample Bray–Curtis distances using the pcoa 
function within the ape package. Permutational multi-
variate analysis of variance (PERMANOVA) was imple-
mented using the adonis function, and the resulting R2 
values were adjusted using the RsquareAdj function.

Correlation analyses
Correlation coefficients between metadata and viruses-
associated variables were estimated using the cor.test 
function with the parameter “method = pearson.” Smooth 
curves were plotted using the geom_smooth function 
with default parameters.

Statistical tests
Wilcoxon rank-sum tests were performed to compare 
virome diversity and viral relative abundances between 
controls and patients across studies using the wilcox.test 
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function. Additionally, we performed random-effects 
meta-analysis to identify universal viral signatures of 
common diseases following recent methodologies [63, 
64]. Specifically, we first applied an arcsine square root 
transformation to the relative abundances of vOTUs, 
then used Hedges’ g effect sizes to evaluate the differ-
ence in transformed values between controls and patients 
using the escalc function with the parameter “meas-
ure = SMD.” Study heterogeneity was quantified based on 
I2 statistics and tested by Cochran’s Q-test via the rma 
function within the metafor package. For comparison 
analyses of occurrence rates of viral auxiliary metabolic 
genes (AMGs) between disease- and control-enriched 
vOTUs, the occurrence rate of AMG was calculated as 
the number of vOTUs with AMG divided by the total 
number of vOTUs within each group, and statistical sig-
nificance was tested using the fisher.test function.

Classification models
We built the random forest model to assess the pre-
dictive ability of gut viral signatures in distinguish-
ing human health status using the train function in the 
caret package. An example of the parameters used is as 
follows: train(Class ~ ., data = Data, method = “rf”, met-
ric = “ROC”, trControl = trainControl(classProbs = TRUE, 
summaryFunction = twoClassSummary, method = “cv”, 
number = 10, repeats = 10, sampling = “down”, allowPar-
allel = TRUE)). For discovery cohorts with fewer than 30 
samples in any group, we applied threefold cross-vali-
dation repeated 10 times to account for the small sam-
ple size. For other discovery cohorts, standard tenfold 
cross-validation repeated 10 times was used. To address 
potential information leakage in independent validation 
cohorts, we ensured that, prior to testing each validation 
cohort, samples from the corresponding disease-type 
cohort in the discovery dataset were excluded from the 
training set. The model was then retrained using the 
remaining samples, and predictions were generated for 
the validation cohort. Receiver operating characteristic 
(ROC) analysis was performed using the pROC package, 
and the area under the ROC curve (AUC) was calculated 
accordingly.

Microbial signature‑based disease risk stratification
Utilizing universal gut viral signatures, we categorized 
the common diseases into two groups based on the gross 
relative abundances of control-enriched vOTUs (tenta-
tively termed “protective viruses”) and disease-enriched 
vOTUs (proposed as “harmful viruses”). High-risk dis-
eases were defined by a significant depletion of protective 
viruses coupled with an expansion of harmful viruses. 
Conversely, low-risk diseases exhibited no statistically 
significant alterations in either viral community.

Results
Construction of the gut virus catalogue in Chinese 
populations
To expand resources for gut virome research, we down-
loaded and reanalyzed raw data from a collection of 
10,159 fecal bulk metagenomes and 1127 fecal viral 
metagenomes deriving from 50 previously published 
studies (Additional file  1: Fig. S2a; Additional file  2: 
Tables S1 and S3). This dataset contained samples span-
ning 18 provincial-level administrative regions of China 
(Fig. 1a), representing the current largest fecal metagen-
omic dataset available for Chinese populations. After 
processing with a unified pipeline, the dataset yielded 
92.0 Tbp of high-quality non-human metagenomic data 
and produced a total of 290 million long contigs (≥ 5 kbp; 
total length 2.3 Tbp) via de novo metagenomic assembly 
for each sample. We identified 426,496 highly credible 
viral sequences (estimated completeness ≥ 50%) from the 
contigs using an integrated homology- and feature-based 
pipeline (see Methods), henceforth referred to as the 
cnGVC. The viral sequences ranged in length from 5000 
to 504,568 bp, with an average length of 37,961 bp and an 
N50 length of 44,025 bp (Additional file  1: Fig. S3). We 
assessed the completeness and contamination of these 
viral genomes using the CheckV algorithm [40], revealing 
that 15.7% were complete, 31.8% had high completeness, 
and 52.5% had medium completeness (Fig. 1b). Notably, 
99.3% of these viral genomes showed no contamination 
(Additional file  1: Fig. S3b), confirming the absence of 
microbial-specific genes at the genome termini.

Next, we clustered the viral sequences at a 95% aver-
age nucleotide similarity threshold (≥ 85% coverage), 
resulting in a nonredundant virus catalogue consist-
ing of 93,462 vOTUs (Additional file  2: Table  S4). Of 
these, 17.5% contained a complete representative virus 
as estimated by CheckV [40], while 39.6% and 42.9% 
had high- and medium-completeness representative 
viruses, respectively (Fig.  1b). Interestingly, only 37.6% 
(35,098/93,462) of vOTUs contained two or more viral 
members, while the remaining 62.4% were singletons. We 
also estimated the accumulation of vOTUs as a function 
of viral genome number to evaluate viral space cover-
age. The accumulation curve for vOTUs had not yet pla-
teaued, while the curve for no-singleton vOTUs appeared 
to approach an asymptote (Fig.  1c). These findings sug-
gest that, although a significant portion of common gut 
viruses has been uncovered in this sample, many rare 
virome members remain to be discovered.

Of the nonredundant vOTUs, 25.2% (23,594/93,462) 
could be robustly assigned to a known viral family. Sev-
eral families, including Microviridae, Aliceevansviridae, 
Herelleviridae, and Guelinviridae, accounted for the 
majority of the taxonomically assigned vOTUs (Fig. 1d). 
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Other viral families included Salasmaviridae, Peduoviri-
dae, Autographiviridae, Inoviridae, and some eukary-
otic viruses (e.g., Retroviridae and Metaviridae). Based 
on sequence similarity or CRISPR spacer matches in the 
comprehensive UHGG database [31], 46.2% of the 93,462 
vOTUs could be assigned into one or more prokaryotic 
hosts. The most common identifiable hosts of Aliceev-
ansviridae and Herelleviridae members were Firmicutes 
species, though their family-level hosts varied consider-
ably (Fig.  1d). The most frequent hosts of Microviridae 
were Bacteroidota species, with a significant portion of 
viruses in this family predicted to infect Bacteroidaceae. 
Additionally, 2.8% (1228/43,188) of the annotated vOTUs 
had hosts from two or more bacterial phyla, and 11.2% 
(4816/43,188) vOTUs had hosts across different families, 

suggesting a relatively narrow host range of most gut 
viruses.

Comparison with existing gut viral databases
We compared the nonredundant viruses in the cnGVC 
with three available human gut viral catalogues (i.e., GVD 
[6], GPD [1], and MGV [23]) and the gut viruses from 
CHVD (CHVD-gut) [30]. All four existing catalogues 
were filtered to retain high- and medium-quality viruses 
(estimated completeness ≥ 50%) and dereplicated using 
the same thresholds as for the cnGVC. Following this 
processing, MGV and GPD contained the largest num-
ber of vOTUs, with 50,341 and 47,689 vOTUs, respec-
tively, while CHVD-gut and GVD contained only 18,646 
and 8882 vOTUs, respectively (Additional file 1: Fig. S4). 

Fig. 1 Overview of the cnGVC. a Map of China showing the geographic distribution of metagenomic samples used to construct the gut virus 
catalogue. b Pie plots showing the estimated completeness of all viruses (left panel) and nonredundant vOTUs (right panel) in cnGVC. c Rarefaction 
curves of the number of vOTUs and no-singletons as a function of the number of all viral genomes. d Distribution of taxonomic annotation 
and host assignment of the cnGVC. The vOTUs are grouped at the family level, and the prokaryotic host taxa are shown at the phylum (upper panel) 
and family (bottom panel) levels. The number of vOTUs that had more than one predicted host is labeled by red color
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Pooling all databases revealed that 73.2% (68,435/93,462) 
of the vOTUs in the cnGVC were not found in other 
catalogues (Fig.  2a). These results indicate that, despite 
the presence of several existing gut viral catalogues, the 
cnGVC harbors a large number of novel viruses, likely 
due to the substantial representation of Chinese samples 
in the database. Furthermore, we found that the cnGVC 
covered 44.4% of the vOTUs from the Asia samples in 
MGV, but only 18.9% of the vOTUs from the non-Asia 
samples (Fig.  2b), suggesting that the cnGVC is more 
representative of Asian than Western populations.

To further illustrate the novelty of the cnGVC in phy-
logenomic terms, we compared all high completeness 
viruses (≥ 90%) between the cnGVC and the existing gut 
viral catalogues at the family level. For nearly all fami-
lies, the cnGVC greatly expanded the content of known 
high-completeness viruses from the human gut (Fig. 2c). 
It increased the number of gut-derived vOTUs by 58.2–
224.5% (average 111.2%) for the top five dominant fami-
lies (Microviridae, Aliceevansviridae, Herelleviridae, 
Guelinviridae, and Peduoviridae). Notably, 385 high-
completeness viruses belonging to Retroviridae were 
uniquely found in the cnGVC. Additionally, the cnGVC 
included 198 viruses belonging to Metaviridae, whereas 
only 1 high-quality Metaviridae virus existed in the 
other catalogues. In contrast, vOTUs of the small cir-
cular ssDNA viral family Anelloviridae were predomi-
nantly found in the existing catalogues but were rare in 
the cnGVC. Phylogenetic analyses based on genome 
sequences for five dominant families revealed that the 

newly found vOTUs in the cnGVC are broadly distrib-
uted across major taxonomic lineages within the phyloge-
netic trees (Additional file 1: Fig. S5), suggesting that they 
may help fill gaps in the viral tree of life in the human 
gut. Moreover, we calculated the phylogenetic diversity 
(PD) based on phylogenetic trees for each viral family 
and found that the cnGVC-specific viruses accounted for, 
on average, 43.5% of the PD in the trees for all families 
(Fig.  2d). Taken together, these findings underscore the 
comprehensiveness and novelty of the cnGVC and high-
light its contribution to the global understanding of the 
human gut virome, particularly within large-scale Chi-
nese populations.

Functional configuration of the gut viruses
Our extended viral catalogue may enable a high-res-
olution functional analysis of the gut virome. For this 
purpose, we predicted approximately 22.0 million pro-
tein-coding genes from the 426,496 viral genomes of 
cnGVC and clustered them into 1,595,487 nonredundant 
genes with an average amino acid identity (AAI) of 90% 
(Fig.  3a). The nonredundant gene catalogue contained 
96.6% of complete genes, making it, to our knowledge, 
the largest and most comprehensive viral gene database 
for the human gut. Rarefaction analysis showed that the 
accumulation curve of no-singleton genes of the viral 
gene catalogue had approached an asymptote, indicating 
that further sampling would yield only minimal additions 
(Fig. 3b).

Fig. 2 Comparison between cnGVC and other existing databases. a UpSet plot showing the number of vOTUs shared by existing gut viral 
catalogues. The vOTUs that are uniquely found in cnGVC are labeled by red color. CHVD-gut, gut viruses from the Cenote Human Virome Database; 
GVD, Gut Virome Database; GPD, Gut Phage Database; MGV, Metagenomic Gut Virus. b Venn plot showing the sharing relationship of vOTUs 
in the cnGVC and MGV catalogues. Viruses in MGV are divided by their origin in Asia or non-Asia samples. c Comparison of vOTUs between cnGVC 
and other existing databases at the family level. d Contribution of phylogenetic diversity (PD) by the viruses from cnGVC and other existing 
databases. Phylogenetic trees are constructed for each viral family, and the PDs are calculated for cnGVC-specific vOTUs, existing-catalogue-specific 
vOTUs, and shared vOTUs accordingly
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To further demonstrate the functional specificity of 
the gut virome, we first compared the viral genes with 
the gut prokaryotic gene catalogue UHGP-90 (the uni-
fied human gastrointestinal protein database clustered 
at 90% AAI) [31]. Although UHGP-90 was derived from 
an extensive collection of global gut prokaryotic genomes 
[31], it covered only 12.6% of the viral genes in cnGVC 
(Fig.  3c). This finding highlights a substantial dispar-
ity in gene contents between gut viruses and prokary-
otes, underscoring that the gene/functional specificity 

of the gut virome has likely been underestimated in the 
past. However, only 9.4% of the virus-specific genes were 
functionally known under the KEGG database, which is 
significantly lower than the proportions for prokaryote-
specific genes (60.5%) and shared genes (30.8%) (Fig. 3d). 
Consistent with the previous studies [23, 40], virus-spe-
cific genes were predominantly involved in replication 
and repair, transcription, prokaryotic defense system, 
and the metabolism of amino acids and nucleotides. We 
then focused on viral auxiliary metabolic genes (AMGs), 

Fig. 3 Overview of the viral functions of cnGVC. a Construction of a nonredundant gene catalogue from the cnGVC viral genomes. b Rarefaction 
curves of the number of nonredundant viral genes and no-singletons as a function of the number of all viral genomes. c Venn plot showing 
the sharing relationship between gut viral genes and prokaryotic genes. d Functional composition of the virus-specific genes, prokaryotes-specific 
genes, and shared genes. Functions are categorized at the KEGG pathway level B. e Composition of viral auxiliary metabolic genes (AMGs) for each 
viral family. AMGs are grouped at the KEGG pathway level B and sulfur-related metabolism. The bar plot (upper panel) shows the overall proportions 
of AMGs versus the number of annotated genes for all viruses, and the heatmap (bottom panel) shows the proportions of AMGs versus the number 
of annotated genes for each family. Distribution of virus-encoded carbohydrate-active enzymes (CAZymes) (f), virulence factor genes (VFGs) (g), 
and antibiotic resistance genes (h) for each family. For CAZymes and VFGs, only the top 30 enzymes are shown
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as these genes play a key role in reprogramming host 
metabolic functions, directly influencing the gut ecosys-
tem [65, 66]. Nearly one-fifth (19.8%) of the KEGG-anno-
tated genes, corresponding to 2.4% of all nonredundant 
genes, were identified as AMGs based on a previously 
curated list [42]. Metabolism of amino acids, nucleotides, 
and sulfur compounds were the most popular auxiliary 
metabolic functions, and these were encoded by almost 
all viral families, with some exceptions: Retroviridae and 
Inoviridae lacked sulfur metabolism genes, and Meta-
viridae lacked genes for amino acid and sulfur metabo-
lism (Fig. 3e). Viruses from Microviridae, Guelinviridae, 
and Salasmaviridae had a comparatively high propor-
tion of genes involved in peptidoglycan biosynthesis and 
degradation.

Additionally, we identified 20,070 auxiliary carbohy-
drate-active enzymes (CAZymes), 694 virulence factor 
genes (VFGs), and 161 antibiotic resistance genes (ARGs) 
from the viral nonredundant gene catalogue (Fig. 3f–h). 
The majority of (> 70%) the CAZymes were involved in 
the binding and hydrolyzing of bacterial peptidogly-
cans, likely associated with the degradation of bacterial 
cell wall during viral infection [67]. Many virus-encoded 
CAZymes belonged to glycoside hydrolase families that 
are involved in the decomposition of complex polysac-
charides (Fig. 3f ), and a large number of these genes were 
also validated through three-dimensional protein struc-
tural modeling, showing their role in the hydrolysis of 
bacterial polymers such as pectin, cellulose, and xylan. 
These results align with previous studies in environmen-
tal viral communities, highlighting the importance of 
polysaccharide decomposition in viral ecology [68, 69]. 
Notably, Aliceevansviridae and Herelleviridae viruses fre-
quently encoded polysaccharide-degrading enzymes sug-
gesting ecological specificity for these viruses. Regarding 

VFGs, the most common genes encoded enzymes 
involved in capsule synthesis (VF0144), lipopolysac-
charide (LPS) synthesis (VF0124), and PblA (VF1089, a 
streptococcal phage-encoded protein that mediates bind-
ing to human platelets in the pathogenesis of infective 
endocarditis [70]) (Fig. 3g). In particular, VF0124, a LPS 
synthesis factor, was primarily encoded by Straboviridae 
and Casjensviridae, suggesting that these families may be 
high pathogenic.

Gut virome profiling and sex‑ and age‑related variations
To demonstrate the utility of cnGVC in quantitative 
analyses of the gut viral community, we profiled the 
composition of 93,462 vOTUs across 11,286 bulk and 
viral metagenomic samples based on reads mapping. 
On average, 22.7% (interquartile range [IQR] = 20.2–
25.2%) of bulk-metagenome reads were recruited by 
cnGVC, significantly higher than any other gut viral 
catalogues (Fig.  4a–b; Additional file  1: Fig. S6a). In 
viral metagenomic samples, cnGVC recruited an aver-
age of 56.7% (IQR = 17.9–92.6%) of the reads, which 
represented a substantial increase compared to exist-
ing catalogues (Fig. 4b; Additional file 1: Fig. S6b). For 
both bulk and viral samples, a large proportion of viral 
relative abundances (an average of 82.0% for bulk and 
18.7% for viral samples) were composed of family-level 
unclassified viruses. Viruses belonging to Herelleviri-
dae, Winoviridae, Suoliviridae, Aliceevansviridae, and 
Intestiviridae were the most dominated members in 
bulk metagenomic samples, with average relative abun-
dances exceeding 1% (Fig.  4a). In viral metagenomic 
samples, viruses belonged to Microviridae were the 
most dominant members, followed by Straboviridae, 
Intestiviridae, Herelleviridae, and Suoliviridae (Fig. 4b). 
The substantial higher level of Microviridae viruses in 

Fig. 4 Proportion of metagenomic reads mapped into the cnGVC. Bar plot showing the accumulated read mapping ratio of bulk metagenomes (a) 
and viral metagenomes (b) used in this study. Inset pie plots show the overall read proportions at the viral family level
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viral metagenomes is likely due to the preference the 
VLP technology for targeting free viral particles, which 
aligns with previous studies [6, 71].

Leveraging the large datasets, we sought to explore 
whether host sex and age influenced the gut virome. This 
analysis was based on viromes from bulk metagenomes 
of 4261 healthy subjects or subjects with low-risk dis-
eases (see Methods for the definition), to void the con-
founding effects of high-risk diseases (Additional file  1: 
Fig. S2b). PCoA analysis based on Bray–Curtis distances 
of the vOTU-level community composition revealed 
that both host sex and age contributed modestly but sig-
nificantly to the gut virome (Fig.  5a–b). Likewise, PER-
MANOVA analysis showed that sex and age explained 
0.24% (adonis p < 0.001) and 0.40% (adonis p < 0.001) of 
the overall virome variability, respectively (Fig. 5c). These 
effect sizes remained significant after adjusting for study 
heterogeneity, host location, and body mass index (BMI).

Using the vOTU profiles, we evaluated the gut 
viral richness (estimated by the observed number of 
vOTUs) and diversity (Shannon index) across differ-
ent age groups. Consistent with previous studies [71], a 
strong correlation between the virome and bacteriome 
was observed in both richness and diversity in the bulk 
metagenomic samples (r > 0.80), whereas the correlation 
was weaker in the VLP metagenomic samples (Addi-
tional file  1: Fig. S7). Overall, females exhibited higher 
viral richness and diversity than males (Wilcoxon rank-
sum test p < < 0.001 for both indexes), with this difference 
primarily observed in the 30–39 and 40–49 are groups 
(Fig.  5d; Additional file  1: Fig. S8). Across the lifespan, 
we observed that female viral richness and diversity 
increased until age 40 (richness, r = 0.135, p = 0.0038), 
but decreased after 40 (richness, r = 0.135, p = 4.5 ×  10−9; 
diversity, r = 0.151, p = 7.3 ×  10−9) (Additional file  1: Fig. 
S9a). In contrast, for males, gut viral richness and diver-
sity were relatively stable until age 30, after which they 
increased (richness, r = 0.091, p = 7.6 ×  10−5; diversity, 
r = 0.163, p = 1.3 ×  10−12; Additional file 1: Fig. S9b).

Sex- and age-related trajectories of the gut virome 
at the family level revealed several notable trends. For 
instance, in both females and males, two of the most 
dominant families, Winoviridae and Aliceevansviridae, 
exhibited distinct age-related patterns. Winoviridae 
showed an overall decline with increasing age, while Ali-
ceevansviridae first decreased (reaching its lowest point 
around 20 years) before showing an upward trend in 
middle-aged and elderly individuals (Fig.  5e). Besides, 
Microviridae was significantly higher in males aged 
30–39 compared to females (Wilcoxon rank-sum test 
q < 0.05), but no significant differences were found in 
other age groups (Additional file 1: Fig. S10). Conversely, 
Aliceevansviridae was higher in females aged 30–39 than 

in males, but significantly lower in elderly individuals 
(50–59, 60–69, and 70–79).

Diversity and compositional patterns of the gut virome 
across common diseases
After cataloguing and profiling the gut virome, we next 
wanted to explore the associations between the gut 
virome and common diseases based on 36 case–control 
studies (Additional file  1: Fig. S2b). For each surveyed 
study, samples were filtered according to exclusion cri-
teria such as (1) non-standard disease definitions, (2) 
abnormal BMI (for samples with available phenotypic 
data), and (3) low metagenomic data amount or extreme 
virus proportion (see Methods). This process resulted 
in a total of 6311 fecal samples spanning 28 disease or 
unhealthy statuses across 40 case–control comparisons 
(Additional file 2: Table S1). Among these diseases, car-
diometabolic (7 diseases from 10 studies) and immune (8 
diseases from 9 studies) disorders were most common, 
followed by digestive (3 diseases from 4 studies), infec-
tious (3 diseases from 3 studies), and psychiatric (2 dis-
eases from 3 studies) disorders, and cancers (2 diseases 
from 4 studies).

Within-sample diversity analysis revealed a significant 
decrease in viral richness in the patient groups of 14 out 
of 40 case–control comparisons. Similarly, viral diver-
sity significantly decreased in patients from 15 of the 
40 case–control comparisons (Fig.  6a–b). Diseases such 
as Crohn’s disease (CD), pulmonary tuberculosis (PT), 
COVID-19 infection, as well as several immune (i.e., AS, 
Graves’ disease [GD], gout, and SLE) and cardiometabolic 
(i.e., hypertension, metabolic unhealthy obesity) diseases 
exhibited decreased in viral richness and diversity. Con-
versely, only 3 of 40 case–control comparisons, covering 
atrial fibrillation (AF) and Parkinson’s disease, showed a 
significant increase in viral richness or diversity.

PERMANOVA analysis revealed that 28 of the 40 case–
control comparisons, spanning 21 disease or unhealthy 
statuses, significantly altered the overall structure of the 
gut virome (adonis p < 0.05) (Fig.  6c). Patients with CD, 
AF, and polycystic ovarian syndrome (PCOS) showed the 
greatest variations in their gut virome, with effect sizes 
of 7.2%, 6.8%, and 5.1%, respectively. We further carried 
out random forest classification to distinguish cases from 
controls within each study based on their gut viral pro-
files. The classifiers achieved high discriminatory ability 
(AUC > 0.80) in 17 out of 40 case–control comparisons 
and moderate discriminatory ability (AUC = 0.70–0.80) 
in 11 comparisons (Fig.  6d). These findings underscore 
substantial shifts in the gut viral composition across 
diseases with varying clinical manifestations and patho-
genesis. In contrast, combining the diversity, PER-
MANOVA, and random forest results, we identified 7 
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diseases, including carotid atherosclerosis (CA), bone 
mass loss (BL), irritable bowel syndrome (IBS), Behcet’s 
disease, RA, Vogt-Koyanagi-Harada disease (VKH), and 

schizophrenia, that showed minimal change in both viral 
diversity and composition. These diseases are likely con-
sidered low-risk diseases within the gut virome scope.

Fig. 5 Sex- and age-related variations of the gut virome. Principal coordinates analysis of the gut viromes of 4261 healthy subjects or subjects 
with low-risk diseases grouped by their sex (a) and age stages (b). Samples are shown at the first and second principal coordinates (PC1 and PC2), 
and the ratio of variance contributed by these two PCs is shown. The below and left boxplots show the sample scores in PC1 and PC2 (boxes show 
medians/quartiles; error bars extend to the most extreme values within 1.5 interquartile ranges). Wilcoxon rank-sum test: *, p < 0.05; **, p < 0.01; ***, 
p < 0.001. c Permutational multivariate analysis of variance showing the effect size of sex, age, and other confounding factors on the gut virome 
of all investigated samples. For each factor, the raw effect size (adonis R2) and the effect size after adjusting for other factors (adjusted adonis R2) 
are shown. Adonis analysis with 1000 permutations: *, p < 0.05; **, p < 0.01; ***, p < 0.001. d Scatter plots showing the sex-related trajectories of gut 
virome richness (upper panel) and diversity (bottom panel) at different ages. e Scatter plots showing the sex-related trajectories of the top 4 
dominant viral families at different ages. For d and e, points indicate samples grouped by females (red) and males (green), and smooth curves are 
formed based on the diversity indexes and the ages of the samples using the geom_smooth function in the R platform
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Fig. 6 Alterations of the gut virome across common diseases. Bar plot showing the fold changes of gut virome richness (a) and diversity (b), 
the disease-related effect size (c), and the within-study AUCs (d) of 40 case–control comparisons. Diseases are colored by the disease types. For a 
and b, Wilcoxon rank-sum test: *, p < 0.05; + , p < 0.01. For c, adonis analysis with 1000 permutations: *, p < 0.05; + , p < 0.01. For d, the dashed line 
shows an AUC of 0.50, and the error bars show the 95% confidence interval of the AUC values. e Heatmap showing the fold changes of each viral 
family within 40 case–control comparisons. Fold change > 0, enriched in cases; fold change < 0, enriched in controls. Wilcoxon rank-sum test: *, 
q < 0.05; + , q < 0.01. The disease types of each case–control comparison are shown by bottom colors (legend following a–d)
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To further uncover gut viral signatures, we compared 
the gut viromes of patients and controls for each disease 
at the family level. Using the Wilcoxon rank-sum test, 
we found that the Aliceevansviridae was significantly 
enriched in patients with atherosclerotic cardiovascular 
disease (ACVD), AF, and liver cirrhosis (LC) (q < 0.05) 
compared to healthy controls, but reduced in patients 
with AS (only in the study ZhouC_2020, q < 0.05; Fig. 6e). 
Winoviridae was significantly decreased in patients with 
ACVD, AF, and obesity, but increased in COVID-19 
patients. Similarly, Microviridae was notably reduced 
in ACVD and AF patients but increased in COVID-19 
and gout patients. Interestingly, several viral families 
exhibited similar patterns across multiple diseases. For 
example, Retroviridae was significantly enriched in the 
patients from 11 case–control comparisons spanning 
9 diseases, while Tectiviridae and Fervensviridae were 
depleted in patients from 8 and 7 different diseases, 
respectively. Phycodnaviridae was depleted in 9 diseases 
and enriched in 1. A random-effects meta-analysis sup-
ported that these 4 families showed significant differ-
ences in relative abundance in patients vs. controls across 
all diseases (q < 0.05; Additional file 1: Fig. S11), suggest-
ing the existence of shared viral signatures for health.

Universal viral signatures of common diseases
Given that most of the investigated diseases exhibited 
significant alterations in the overall gut viral communi-
ties and in certain viral families, we aimed to identify 
the universal viral signatures of these diseases at the 
vOTU level. A total of 4238 vOTUs that differed in rela-
tive abundances across 36 case–control studies were 
identified through a combination of meta-analysis and 
direct comparison between all case and control sub-
jects (random effects meta-analysis q < 0.01, I2 < 50%, 
and cases vs. controls q < 0.01; Fig.  7a; Additional 
file 2: Table S5). Among these, 1328 differential vOTUs 
were more abundant in subjects with diverse diseases, 
while 2910 were enriched in healthy individuals. Both 
disease-enriched and control-enriched vOTUs were 
mainly composed of family-level unclassified members, 
with small proportions of Herelleviridae and Aliceev-
ansviridae. Consistent with our findings at the family 
level, members of Peduoviridae (disease-enriched vs. 
control-enriched vOTUs, 102 vs. 0) and Retroviridae 
(14 vs. 0) were frequently enriched in disease subjects, 
whereas Herelleviridae (45 vs. 266) predominantly 
appeared in control-enriched vOTUs (Fig.  7b; Addi-
tional file  1: Fig. S12a). When we assigned the differ-
ential vOTUs to their prokaryotic hosts, we found that 
the control-enriched vOTUs had a large proportion 
of members that were predicted to infect Ruminococ-
caceae (18.2% of 2910 control-enriched vOTUs) and 

Butyricicoccaceae (1.3%), whereas only 0.15% and 0% 
of disease-enriched vOTUs were members of these 
two families, respectively (Fig. 7b; Additional file 1: Fig. 
S12b). Notably, a large proportion of Ruminococcaceae-
hosted vOTUs were predicted to infect bacteria from 
the Faecalibacterium genus (n = 350 vOTUs; Additional 
file  1: Fig. S12c), a well-known short-chain fatty acid 
(SCFA)-producing taxon with beneficial effects in mul-
tiple common disorders [72, 73], suggesting a poten-
tial link between Faecalibacterium phages and health. 
Conversely, disease-enriched vOTUs contained a high 
proportion of viruses predicted to infect Enterobacte-
riaceae (15.4% of 1328 disease-enriched vOTUs), Tan-
nerellaceae (2.1%), Erysipelatoclostridiaceae (2.0%), 
Fusobacteriaceae (1.0%), and Erysipelotrichaceae 
(0.8%), while phages targeting these bacteria were 
rarely appeared in control-enriched vOTUs. At the 
genus level, Escherichia phages were most frequent in 
disease-enriched vOTUs (Additional file 1: Fig. S12c).

To further elucidate the functional and metabolic 
capabilities of the gut viral signatures associated with 
common diseases, we compared the profiles of AMGs 
between disease-enriched and control-enriched vOTUs 
at the enzyme level (Additional file  2: Table  S6). Pre-
liminary comparison revealed that control-enriched 
vOTUs encoded a higher frequency of AMGs com-
pared to disease-enriched vOTUs (Additional file 1: Fig. 
S13a), suggesting that these viruses may play a role in the 
metabolism of more substances in the human gut. Spe-
cifically, 42 of the 50 most frequent AMGs differed in fre-
quency between disease-enriched and control-enriched 
vOTUs (Fig. 7c). The control-enriched vOTUs exhibited 
a higher frequency of enzymes involved in biosynthesis 
of nicotinamide adenine dinucleotide (NAD +) (n = 6 
enzymes, Additional file  1: Fig. S13b), cytosine/methio-
nine metabolism (DNA cytosine-5-methyltransferase 
K00558/K17398 and S-adenosylmethionine synthetase 
K00789), folate metabolism (thymidylate synthase 
K03465/K00560 and methylenetetrahydrofolate dehy-
drogenase K01491), and assimilatory sulfate reduction 
(phosphoadenosine phosphosulfate reductase K00390 
and sulfate adenylyltransferase K00957) compared to 
disease-enriched vOTUs. On the other hand, enzymes 
related to LPS biosynthesis, such as polyisoprenyl-phos-
phate glycosyltransferase K20534 and D-sedoheptulose 
7-phosphate isomerase K03271, were more frequent in 
disease-enriched vOTUs. We also observed a higher level 
of viral-encoded NAD + synthesis capacity in the gut 
virome of patients with chronic kidney disease (CKD) 
[39], probably linked to phage DNA replication and 
exploitation of host metabolic pathways and biochemical 
processes during infection [74], which needs to be vali-
dated by subsequent studies.
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Gut viral signatures as a predictor of health status
Finally, we tested the ability of gut viral signatures to 
predict human health status. A random forest classi-
fier was trained using the abundances of 4238 universal 
viral signatures and tested with a tenfold cross-valida-
tion approach. This classifier achieved an AUC score of 

0.682 (95% confidence interval [CI], 0.668–0.697) for 
classifying all case and control samples. It reached an 
AUC of 0.737 (95% CI, 0.718–0.755) in distinguishing 
patients with high-risk diseases from their correspond-
ing controls, demonstrating the strong predictive power 
of the gut virome for these patients. Interestingly, a 

Fig. 7 The disease-associated viral signatures. a Scatter plot of median relative abundances of vOTUs in all investigated disease and control 
individuals. Gray points represent vOTUs not differentially abundant between two groups, and red and green points represent differentially 
abundant vOTUs. b Distribution of taxonomic annotation and host assignment of the disease-enriched and control-enriched vOTUs. The vOTUs 
are grouped at the family level, and the prokaryotic host taxa are also shown at the family level. The number of vOTUs that had more than one 
predicted host is labeled by red color. c Occurrence rate of most frequent AMGs in all disease-associated vOTUs. The functional categories of AMGs 
are shown by colored squares. Statistical test was performed using Fisher’s exact test: *, q < 0.05; **, q < 0.01; ***, q < 0.001
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new classifier trained by a subset of the most important 
vOTUs generated improved discriminatory power, with 
an AUC of 0.698 (95% CI, 0.684–0.712) for classifying all 
samples and 0.761 (0.742–0.778) for distinguishing high-
risk diseases versus controls (Fig.  8a; Additional file  1: 
Fig. S14). This minimal set of gut viral signatures could 
serve as a more feasible indicator for health status.

To validate the reliability of the signatures in external 
data, we curated fecal metagenomes from several inde-
pendent cohorts, including those involving CRC, CKD, 
RA, BD, and MDD, as well as a newly recruited cohort 
comprising 269 patients of autoimmune diseases (i.e., 
AS, SLE, and pSS) and 118 healthy controls from China 
(Additional file  2: Table  S2). Using these large cohorts, 
we quantified the relative abundances of 4238 disease-
associated vOTUs and compared them between cases 
and controls in the new cohorts. The results showed that 
most vOTUs exhibited a consistent trend in mean abun-
dance between patients and controls within each disease 
compared with the observation in the original datasets. 
For example, in CKD patients versus controls, 70.7% 
(2998/4238) of vOTUs were more abundant in either 
patients or controls, consistent with the original data-
sets, and 34.7% (1444/4238) of vOTUs were significantly 
enriched (Additional file 1: Fig. S15). Moreover, the dis-
criminatory power of the original random forest classifier 
on these new cohorts yielded AUC scores of 0.892, 0.700, 
0730, 0.626, and 0.566 for CRC, CKD, RA, BD, and MDD 
patients versus controls, respectively (Fig. 8b). Similarly, 
for the newly sequenced autoimmune patient cohort 
versus controls, the AUC scores were 0.566, 0.586, and 
0.621 for AS, SLE, and pSS, respectively. These findings 
suggest that the generalized disease-associated gut viral 

signatures identified in this study can accurately classify 
multiple diseases from health.

Discussion
Viruses represent in number the largest component of 
the human gut microbial community, yet much about 
their genome, function, and role in certain diseases 
remains unknown [75]. In this study, we report the crea-
tion of the cnGVC, which contains over 93,000 nonre-
dundant viral sequences exhibiting high completeness 
(approximately 60% of viruses have ≥ 90% completion) 
and representativeness. To our knowledge, this is the 
current largest viral genome catalogue for fecal metage-
nomes from a single population. Notably, it is 95% and 
85% larger than the GPD and MGV, respectively, even 
though these databases were compiled from large-scale 
populations across multiple countries. Remarkably, when 
comparing various gut virus catalogues, over 70% of the 
viruses in the cnGVC were newly discovered. This find-
ing is not only due to technical differences (e.g., inclusion 
criteria and use of VLP datasets) but also highlights the 
specificity of the gut virome within the Chinese popula-
tion. Overall, the construction of the cnGVC underscores 
the significant research value of viral identification within 
a single population.

We also constructed a gene catalogue from the cnGVC, 
which includes nearly 1.6 million nonredundant viral 
genes. The majority of these genes were not found in gut 
prokaryotic genomes, corroborating previous observa-
tions in other environments [76–78], and further high-
lighting the functional specificity of the gut virome in 
the context of future holistic microbiome research. In 
addition, we identified numerous AMGs, CAZymes, as 
well as some VFGs and ARGs in the viral gene catalogue. 

Fig. 8 Prediction of health status using the viral signatures. a Receiver operating characteristic (ROC) analysis of the classification of case/
control status using the random forest model trained by 4238 universal viral signatures. b ROC analysis of the classification of case/control status 
in independent cohorts. The classification performance of the model was assessed by the area under the ROC curve (AUC). The AUC values and 95% 
confidence intervals (CIs) are shown
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These resources may serve as valuable tools for future 
research aiming to decode important viral functions such 
as complex polysaccharide degradation and antibiotic 
resistance mechanisms.

Using massive fecal metagenome datasets, we investi-
gated the impact of sex and age on the gut virome and 
uncovered significant sex- and age-related alterations. A 
previous study suggested a decline in gut viral diversity 
in older individuals compared to adults [6], but this pat-
tern was not evident in our data. We observed that both 
gut viral diversity and the compositions of certain domi-
nant viral families (e.g., Microviridae) in females have 
greatly changed at the age of 40–49. These findings are 
consistent with observations in the gut bacteriome and 
may be linked to the physiological changes that occur 
in women around menopause (e.g., changes in sex hor-
mones or metabolism) [79, 80]. Based on our results, we 
hypothesize that the gut virome may play a role in human 
physiology, immunity, or metabolism, and further inves-
tigation into this idea is warranted.

The gut virome has been implicated in various human 
diseases; however, integrating and comparing viral signa-
tures across different diseases remains challenging. From 
our large-scale datasets, we found that the viral richness 
and diversity were often reduced in several diseases, 
though they were increased in a few cases. Decreased gut 
viral diversity has also been reported in other single-dis-
ease studies, such as those involving T2D [81] and liver 
disease [12]. Similarly, a reduction in diversity is a typi-
cal feature of the gut bacteriome during disease states, 
possibly reflecting low resilience and dysbiosis within 
the microbiological ecosystem [82, 83]. Moreover, our 
analysis revealed that most of the investigated diseases 
are associated with substantial alterations in their viral 
communities, and the degree of virome alteration var-
ies. These findings (1) align with previous studies show-
ing substantial changes in the virome in conditions such 
as IBD, CRC, and other diseases, (2) reinforce the con-
nection between the gut virome and immune/cardio-
metabolic diseases, and (3) propose new diseases, such 
as Parkinson’s disease, autism spectrum disorder, and 
PCOS, that may also exhibit virome alterations. Follow-
up exploration on these findings could generate test-
able hypotheses for disease-specific studies aimed at 
understanding the etiologies and developing therapeutic 
strategies.

Meta-analysis across all diseases investigated revealed 
extensive gut viral signatures at both the family and 
vOTU levels. The most significant disease-associated 
viral families were Retroviridae, which were significantly 
enriched in the gut of patients with 9 different diseases. 
Almost all gut retroviruses were newly discovered by the 
cnGVC, and their functions remain under exploration. 

Other universal viral signatures included numerous 
disease-enriched vOTUs predicted to infect Enterobac-
teriaceae, Fusobacteriaceae, Erysipelotrichaceae, and 
Erysipelatoclostridiaceae. Pathogenic Enterobacteriaceae 
bacteria are well-known opportunistic pathogens [84, 
85], and their phages may interact with host bacteria to 
influence disease outcomes. The other bacterial taxa 
were found to have pathogenic roles in certain diseases 
(e.g., Fusobacteriaceae in CRC) [86, 87], suggesting that 
their phages may function somewhat independently of 
the bacteria, exerting roles in human diseases. Moreover, 
functional analyses revealed that some viral functions, 
such as NAD + synthesis, are widely associated with 
diseases, highlighting the relevance of viral functions in 
common diseases. We also found that gut viral signa-
tures have high predictive power for disease status across 
all samples, with performance comparable to recent 
bacterial-level studies [64, 88]. On the test datasets, we 
observed that these signatures demonstrated high repro-
ducibility across multiple external populations. Collec-
tively, the broad and universal viral signatures identified 
in this study hold promise for future research into disease 
mechanisms, interventions, and phage therapy efforts.

Conclusions
In this study, we unveiled the vastness and specificity of 
the gut virome, with a particular focus on the Chinese 
population, by presenting the cnGVC—the largest viral 
genome catalogue to date. Our findings highlight the 
high functional specificity of the virome and its poten-
tial roles in human physiology, immunity, and metabo-
lism. We also observed significant alterations in the gut 
virome across various diseases, emphasizing its potential 
involvement in disease etiologies. Notably, our meta-
analysis identified broad and universal viral signatures, 
which could be pivotal for future disease mechanism 
studies, interventions, and phage therapy efforts. This 
research lays a solid foundation for further exploration 
into the gut virome’s role in human health and disease.
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