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Abstract 

Background  Deep insights into the metabolic remodelling effects on the immune microenvironment of oesopha-
geal squamous cell carcinoma (ESCC) are crucial for advancing precision immunotherapies and targeted therapies. 
This study aimed to provide novel insights into the molecular landscape of ESCC and identify clinically actionable 
targets associated with immunosuppression driven by metabolic changes.

Methods  We performed metabolomic and proteomic analyses combined with previous genomic and transcriptomic 
data, identified multi-omics-linked molecular features, and constructed metabolic-immune interaction-based ESCC 
classifiers in a discovery cohort and an independent validation cohort. We further verified the molecular characteris-
tics and related mechanisms of ESCC subtypes.

Results  Our integrated multi-omics analysis revealed dysregulated proteins and metabolic imbalances characterizing 
ESCC, with significant alterations in metabolites and proteins linked to genetic traits. Importantly, ESCC patients were 
stratified into three subtypes (S1, S2, and S3) on the basis of integrated metabolomic and proteomic data. A robust 
subtype prediction model was developed and validated across two independent cohorts. Notably, patients classified 
under the poorest prognosis subtype (S3 subtype) exhibited a significant immunosuppressive microenvironment. We 
identified key metabolism-related biomarkers for the S3 subtype, specifically creatine and hexokinase 3 (HK3). Creatine 
accumulation and HK3 protein deficiency synergistically reprogrammed macrophage metabolism, driving M2-like 
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TAM polarization. This metabolic shift fostered an immunosuppressive microenvironment that accelerated tumour 
progression. These results highlight the potential of targeting creatine metabolism to improve the efficacy of immu-
notherapy and targeted therapy for ESCC.

Conclusions  Our analysis reveals molecular variation in multi-omics linkages and identifies targets that reverse 
the immunosuppressive microenvironment through metabolic remodelling improving immunotherapy and targeted 
therapy for ESCC.

Keywords  Oesophageal squamous cell carcinoma, Multi-omics, Creatine, Hexokinase 3, Subtypes, Proteomics, 
Metabolomics, Immunosuppressive microenvironment

Background
Oesophageal cancer (EC) is the 11th most commonly 
diagnosed cancer and the seventh leading cause of cancer 
death worldwide, with oesophageal squamous cell car-
cinoma (ESCC) accounting for approximately 90% and 
a 5-year survival rate of 20% [1]. Compared with other 
common cancer types, EC, especially ESCC, is deeply 
understudied, and there has been limited progress in 
therapeutics in recent decades. Although immune check-
point inhibitors (ICIs) show good efficacy, only 30–40% 
of patients benefit from ICIs and resistance to ICI ther-
apy is very common [2–4]. In-depth understanding of 
microenvironmental heterogeneity and immunosup-
pression mechanism has led to the identification of new 
targets for activating tumour immunity and developed 
a series of immunomodulatory agents in cancers. The 
monotherapy of these agents and combination with other 
anti-tumour therapies have been shown to overcome the 
tolerance and resistance of immunotherapy. For example, 
supplementation of arginine or arginase inhibitors treat-
ment improves cancer immunotherapy outcomes by pro-
moting the proliferation of T cells and NK cells [5]. A2aR 
antagonists have been shown to potentiate anti-tumour 
immunity in renal cell carcinoma [6], prostate cancer [7], 
and colorectal cancer [8] by inhibiting the secretion of 
immunosuppressive factors by dendritic cells (DCs).

In the last decade, hundreds of ESCCs have been ana-
lysed at a multi-omics level including genomics, tran-
scriptomics, epigenomics, single-cell RNA sequencing 
and spatial transcriptomics. These studies identified 
molecular drivers of carcinogenesis, cell lineage trajec-
tories, and prognostic subtypes [9–13], but lacked inte-
gration with metabolomics to link metabolic remodelling 
to the immune microenvironment. No agents have been 
identified to reverse the immunosuppressive microen-
vironment, specifically through metabolic remodelling, 
improving immunotherapy and targeted therapy for 
ESCC.

To address the gap in understanding metabolic-immune 
interactions in ESCC, we integrated metabolomic and 

proteomic profiling with existing genomic and transcrip-
tomic data from treatment-naive tumours and paired nor-
mal tissues. This multi-omics approach aimed to elucidate 
the metabolic abnormalities linked to multi-omics disrup-
tion and systematically map metabolic reprogramming 
modulating the tumour microenvironment. We further 
established molecular subtypes and constructed subtype 
diagnostic and prognostic models with clinical relevance, 
providing a foundation for targeted therapeutic strategies 
in ESCC.

Methods
Clinical sample acquisition
In this study, two cohorts of ESCC patients were recruited 
from Shanxi Cancer Hospital, with Cohort 1 (ESCC cases 
for metabolomics and proteomics study) as the discovery 
cohort and Cohort 2 (52 cases for immunohistochemis-
try and targeted metabolomics analysis) as the validation 
cohort. In cohort 1, 136 tumour tissues and 136 paired 
normal adjacent tissues (NATs) were used for metabo-
lomics study, of which 127 tumour tissues and 128 paired 
NATs underwent proteomic analysis. Informed con-
sent was obtained from all subjects, and the study was 
approved by the ethical committees of the Shanxi Medi-
cal University. NATs were collected with a minimum 
distance of 5 cm from the tumours. None of the patients 
received radiotherapy, chemotherapy or other therapy 
before the operation. Post-resection, the tissue speci-
mens were rapidly frozen using liquid nitrogen within 30 
min and preserved in a freezer at − 80 °C. Every patient 
was categorized based on the pTNM system’s eighth edi-
tion as per the American Joint Committee on Cancer 
(AJCC). Haematoxylin and eosin (H&E)-stained sections 
were reviewed by at least three independent pathologists 
to confirm that the tumour specimen was consistent with 
ESCC and that the NATs contained no tumour cells. The 
detailed clinicopathological information of all patients 
is summarized in Table  S1 (Additional file  2). Among 
the tumour-NAT pairs in cohort 1, 120 tumour-NAT 
pairs had previously been included in other multi-omics 
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studies. Among them, 80 pairs with transcriptome and 
whole-genome sequencing (WGS) data came from our 
previous study of PMID:36584672 [13, 14], and 40 pairs 
with transcriptome and whole-exome sequencing (WES) 
data from our another previous study of PMID: 38803565 
[15, 16].

Mice
Hk3 knockout C57BL/6 mice were purchased from Cya-
gen Biosciences, Inc. (Jiangsu, China). Three- to four-
week-old female C57BL/6 mice and 6-week-old female 
NTG mice were used. These mice were purchased from 
SPF (Beijing) Biotechnology Co., Ltd. The animal experi-
ments were approved by the Ethics Committee of Shanxi 
Medical University (SYDL2023040).

Cell lines
The ESCC cell lines (KYSE-150, TE-1 and mEC25) were 
kindly provided by Professor Qimin Zhan (Peking Uni-
versity, Beijing, China) and Professor Li Fu (Shenzhen 
University, Shenzhen, China). RAW264.7 cells were pur-
chased from Procell Life Science & Technology Co., Ltd. 
(Wuhan, China). KYSE-150 and TE-1 were maintained 
in RPMI 1640 (VivaCell, #C3001 - 0500), 10% foetal 
bovine serum, and 1 × penicillin/streptomycin (VivaCell, 
#C3420 - 0100). mEC25 and RAW264.7 were main-
tained in DMEM (VivaCell, #C3103 - 0500), 10% foetal 
bovine serum, and 1 × penicillin/streptomycin. All cells 
were kept in a 5% CO2, 37 ℃ incubators. All cell lines 
were routinely verified using short tandem repeat analy-
sis and were tested for mycoplasma before their use in 
experiments.

Data‑independent acquisition (DIA) proteomics analysis
Tissues were homogenized in a centrifuge tube con-
taining SDS L3 and EDTA buffer. Subsequently, the 
specimens were cooled on ice and combined with DTT 
to achieve a concentration of 10 mM. The tissue was 
crushed via a grinder operating at 60 Hz for 2 min. Post-
centrifugation, the supernatant was discarded, followed 
by the addition of DTT to achieve a concentration of 10 
mM. Following a 1 h incubation at 56 °C in a water bath, 
IAM was introduced to achieve a concentration of 55 
mM, after which the samples were kept in darkness for 45 
min. Subsequently, chilled acetone was introduced into 
the protein mixture, underwent centrifugation, and the 
resulting supernatant was disposed of. After the samples 
were air-dried, lysis buffer was added, followed by cen-
trifugation, and the resulting supernatant was carefully 
gathered. The quality of the extracted proteins underwent 
quality assurance via Bradford quantification and SDS‒
PAGE. In the process of protein enzymatic hydrolysis, a 

mixture of 2.5 μg of trypsin enzyme and 100 μg of protein 
solution was prepared at a 40:1 ratio, followed by a 4 h 
digestion at 37 °C. The peptides were desalted via a Strata 
X column and vacuum-dried.

Peptides were extracted, pooled, and diluted in 
mobile phase A (5% ACN, pH 9.8) for high-pH reverse-
phase separation. A Shimadzu LC-20 AD liquid phase 
system with a 5 μm 4.6 × 250 mm Gemini C18 column 
was used to separate all the samples. The sample was 
then eluted at a flow rate of 1 mL/min by a gradient: 
5% mobile phase B (95% ACN, pH 9.8) for 10 min, 5% 
to 35% mobile phase B for 40 min, 35% to 95% mobile 
phase B for 1 min, and flow phase B for 3 min and equi-
libration for 10 min in 5% mobile phase B. Throughout 
the process, elution peaks were meticulously monitored 
at a wavelength of 214 nm, with components being sys-
tematically collected every minute. The amassed com-
ponents were partitioned into a total of 10 fractions and 
subsequently subjected to freeze-drying procedures.

Metabolic profiling
The extraction of metabolites was carried out primar-
ily according to methods previously reported [17]. 
By pooling the same volume of each sample, a qual-
ity control sample (QC) was prepared. Separation and 
detection of metabolites were conducted using a tan-
dem Q Exactive HF high-resolution mass spectrom-
eter (Thermo Fisher Scientific, USA) from Waters 2D 
UPLC. Samples were analysed with a Waters 2D UPLC 
coupled to a Q Exactive mass spectrometer controlled 
by Xcalibur [18] software (v 2.3, Thermo Fisher Sci-
entific, USA). A Waters ACQUITY UPLC BEH C18 
column (1.7 μm, 2.1 mm × 100 mm) was used for 
chromatographic separation. A positive mode mobile 
phase consisted of 0.1% formic acid and acetonitrile, 
and a negative mode mobile phase consisted of 10 mM 
ammonium formate and acetonitrile.

Compound Discoverer software [19] (v3.1) was used 
to process the raw LC–MS/MS data that was gathered 
in both positive and negative ion modes. The process-
ing included extracting peaks, retention time adjust-
ment, additive ion pooling, filling in missing values and 
labelling background peaks. The metabolites were iden-
tified using the mzCloud [20] database (https://​www.​
mzclo​ud.​org/), ChemSpider [21] (data source from 
HMDB [22], KEGG [23], and LipidMaps [24]) data-
bases (https://​www.​chems​pider.​com/), and the stand-
ard library built in-house by BGI. MetaX [25] was used 
for subsequent processing. To determine the relative 
peak area, the data were normalized using probabil-
istic quotient normalization (PQN). In order to cor-
rect the batch effect, a robust LOESS signal correction 

https://www.mzcloud.org/
https://www.mzcloud.org/
https://www.chemspider.com/


Page 4 of 25Gao et al. Genome Medicine           (2025) 17:44 

(QC-RLSC) based on quality control is used. All QC 
samples were calculated for their coefficient of varia-
tion (CV), and compounds with CVs greater than 30% 
were excluded.

Differential abundance (DA) score
The differential abundance (DA) score indicates a path-
way’s ability to have greater amounts of metabolites than 
a control group. To compute the DA score, a nonpara-
metric differential abundance test was first applied to all 
of the metabolites contained in a particular pathway. 
Following the assessment of metabolites that markedly 
altered their levels, the DA score was established in the 
following manner [26]:

The maximum number of the DA score is 1, and the 
minimum score is − 1. An increase in abundance of all 
metabolites in a pathway indicates a DA score of 1, while 
a decrease in abundance indicates a DA score of − 1.

Differential expression analysis
The R package ‘DEP’ [27] was utilized to identify differ-
entially expressed proteins (DEPs). DEPs were defined 
based on a minimum |fold change| of 1.5 and an adjusted 
P value below 0.05. For the identification of differentially 
abundant metabolites, the R package ‘MetaboAnalystR’ 
[28] was used. The criteria were a minimum |fold change| 
of 1.2 or more, and an adjusted P value below 0.05. Differ-
entially expressed genes (DEGs) were identified by the R 
package ‘edgeR’ [29], based on criteria of a |fold change| 
of 2 or more and an adjusted P value below 0.05.

Survival analysis
Survival outcomes, including overall survival and pro-
gression-free survival, were analysed using Kaplan–
Meier curves and log-rank tests. Specifically, all survival 
analyses were conducted using the ‘survival’ [30] and 
‘survminer’ [31] packages in R software. This approach 
ensured robust statistical evaluation of the survival data, 
with Kaplan–Meier curves providing visual representa-
tion of time-to-event distributions and log-rank tests 
enabling comparisons between groups. ‘Surv_cutpoint’ 
function of ‘survminer’ package in R software was used to 
calculate the cut-off value between high/low groups [32, 
33].

Expression quantitative trait loci (eQTL) analysis
One hundred twenty patients from cohort 1 who had 
undergone WGS or WES in our previous studies were 

DA score =
Number of metabolites increased− Number of metabolites decreased

Number of measured metabolites in pathway

included in the eQTL analysis. VCFtools [34] and the 
R package ‘vcfR’ [35] were used to extract and integrate 
genotype information from these patients. The eQTL 
analysis of single nucleotide polymorphisms (SNPs) was 
performed using the R package ‘MatrixEQTL’ [36]. In 
general, eQTLs can be categorized into two main types: 
(1) cis-eQTLs, which refer to eQTLs located in close 
proximity to the regulated gene, within a 1 Mb region 
upstream or downstream of the gene; and (2) trans-
eQTLs, which are eQTLs located further away from the 
regulated gene.

Somatic copy number alterations (CNAs) analysis
One hundred twenty patients from cohort 1 who had 

undergone WGS or WES in our previous studies were 
included in the CNAs analysis. CNAs were identified 
using BIC-seq2 [37], and the amplified genomic regions 
and the deleted genomic regions were identified using 
GISTIC2.0 (GenePattern) [38]. A default q value thresh-
old of 0.25 of GISTIC2.0 was applied to determine sig-
nificantly amplified regions or deleted regions, both at 
the focal levels and arm levels. Regarding the focal-level 
CNA analysis, G-scores were computed for significant 
genomic regions and gene-coding regions based on the 
frequency and magnitude of amplification or deletion 
impacting all genes.

Integrated analysis of the genome and transcriptome 
with the metabolome
The R package ‘multiOmicsViz’ [39] was used to display 
CNAs that influence mRNA and protein levels in either 
‘cis’ (within the same aberrant locus) or ‘trans’ (remote 
locus) modes. All mRNA-CNA pairs for 18,155 genes 
and for all protein-CNA pairs for 4423 genes were used 
to compute spearman’s correlation coefficients and 
their corresponding adjusted P values for multiple tests. 
Recon3D, an escalating and expanding network of human 
metabolites reconstruction, was utilized to identify 
gene–metabolite pairs [40]. This dataset provided exten-
sive information on biochemical reactions, including 
substrates, products, reaction reversibility, and related 
catalysing genes. The R package ‘cosmosR’ [41] was used 
to determine the interconnections between genes and 
metabolites in the Recon3D database.

In exploring the associations between somatic muta-
tions and the prevalence of metabolites in ESCC, linear 
regression models (controlling for confounding factors) 
were applied following a previous study [42]. We adjusted 
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for gender, tumour size, number of lymph node metas-
tasis, age, and TNM stage to account for confounding 
effects. Each regression model included only one metab-
olite as a covariate along with the confounding factors. 
The formula used for the model was as follows:

logit(π(Y = 1)): the mutation status of one gene; the range 
is from zero to one.

Only genes known to be related to cancer and mutated 
in at least 6% of our cohort were included in the analy-
sis. A binary indication (1/0) was established for every 
single mutation variable. Then use t-statistics and asso-
ciated P-values to assess the correlation. The P-values 
were adjusted using Benjamini–Hochberg false discov-
ery rate (FDR) correction. The mutation features were 
ranked based on their associations with every single 
metabolite, allowing for comparisons based on statistical 
significance.

Identification of molecular subtypes and immune cell 
infiltration analysis
One hundred twenty-six tumour samples overlapping 
between metabolomics and proteomics datasets were 
used for molecular subtyping. Molecular subtyping based 
on integrated proteomic and metabolomic analysis was 
performed using similarity network fusion [43] (SNF). 
Proteomic and metabolomic data were pre-processed 
using the R package ‘SNFtool’ [43]. Then, the Euclidean 
distance matrix for the sample level of the two omics 
datasets was calculated. The distance matrix was used to 
create the sample similarity matrix network, and then a 
similar network fusion of the two networks was carried 
out. Finally, the fusion network of the samples in the two 
groups was obtained. Complex heatmaps showing the 
proteomic and metabolomic clustering results generated 
by the R package ‘ComplexHeatmap’ [44]. The relative 
infiltration expression of 28 kinds of immune cells in the 
TME was quantified by an enrichment score in single-
sample gene set enrichment analysis (ssGSEA, R package 
‘GSVA’ [45]). The tumour purity, immune score, and stro-
mal score were computed by the estimate method [46] (R 
package ‘Estimate’).

Subtype diagnostic model for ESCC with machine learning 
methods
A total of 126 samples in molecular subtypes were 
divided into training and test cohorts at a 7:3 ratio. The 
least absolute shrinkage and selection operator (Lasso) 
method was used to select the most useful predictive fea-
tures. Tenfold cross-validation was performed to identify 

logit(π(Y = 1)) = β0+β1∗(abundance of metabolite)+β2∗(gender)+β3∗(tumour size)+β4∗(number of lymph node metastasis)+β5∗(age)+β6∗(stage)

the lambda value that produced the lowest test mean 
squared error (MSE). The predictive ability of ESCC sub-
types was evaluated by the area under the ROC curve 
(AUC). The LASSO regression was performed by the R 
package ‘glmnet’ [47], and the R package ‘pROC’ [48] was 

used to determine the ROC curve and AUC.
Each predictor’s contribution in the LASSO regression 

model was defined by:

Multiplex immunofluorescence (MIF)
Multiplex immunofluorescence staining was performed 
via a 5-colour manual according to the manufacturer’s 
protocol. ESCC sections were incubated with primary 
antibodies after deparaffinization, hydration, antigen 
unmasking, and quenching. The following primary anti-
bodies were used: rabbit monoclonal anti-CD4 (1:200, 
Cell Signaling Technology, #48274), rabbit monoclonal 
anti-CD8α (1:200, Cell Signaling Technology, #85336), 
rabbit monoclonal anti-CD56 (1:100, Cell Signaling 
Technology, #99746), and rabbit monoclonal anti-CD163 
(1:400, Cell Signaling Technology, #93498). Spectral 
DAPI and TSA Opal 570, 620, 690, and 780 fluorophores 
were incubated with moisture at room temperature for 
10 min. Seven samples from each of the S1 and S3 sub-
types were randomly chosen for multiplex immunofluo-
rescence analysis. The number of positive cells in various 
fluorescence channels was quantitated via ImageJ [49] 
software.

Immunohistochemistry (IHC)
The sections were deparaffinized, rehydrated, and boiled 
for 3 min in citrate buffer (pH 6.0). The slides were 
blocked with 5% goat serum for 1 h and incubated with 
primary antibody overnight. Then, the slides were incu-
bated with a secondary antibody conjugated with HRP 
for 1 h (PV6001, PV6002, Zsbio), followed by incubation 
with 3% hydrogen peroxide solution for 15 min and DAB 
(ZLI9018, Zsbio) for 1 min. Aperio Image Scope [50] 
software was used for analysis.

Animal experiments
All mice were fed under specific pathogen-free con-
ditions with unlimited access to food and water. The 
housing conditions included a 12-h light/dark cycle, a 
temperature range of 22–26 °C, and a humidity range 

Contribution =

|coefficient of this feature|

�|coefficient of this feature|
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of 45–65%. The animal experiments were approved by 
the Ethics Committee of Shanxi Medical University 
(SYDL2023040). The mice were given creatine-contain-
ing water (100 mM, 400 ml/time, once per day) or control 
water by oral gavage two weeks before the tumour cells 
were injected, and the treatments were continued until 
the termination of the studies. At the termination of the 
study, the mice were euthanized by intraperitoneal injec-
tion of sodium pentobarbital at a dosage of 150 mg/kg, 
followed by confirmation of death through cessation of 
heartbeat and respiration.

For the mouse xenograft model, the experiments 
were randomized. Six mice were set up for each differ-
ent treatment condition to establish subcutaneous xeno-
graft models. Subcutaneous tumours were established by 
injecting 4 × 106 mEC25 cells combined with Matrigel 
into wild-type and Hk3 knockout C57BL/6 mice. A 
total of 2 × 106 KYSE-150, TE-1, or mEC25 cells were 
implanted into NTG mice. One week after the tumour 
cells were injected, the mice were peritumorally injected 
with 300 mL of 100 mM creatine injection solution 3 
times a week, while the control group mice were injected 
with the same volume of stroke-physiological saline solu-
tion in the same manner.

Flow cytometry
Subcutaneous tumour tissues were minced into small 
fragments with scalpels and fractionated into a single-cell 
suspension using an enzyme mixture consisting of col-
lagenase II, collagenase IV, hyaluronidase II, and DNase 
I (Solarbio). Red blood cells were lysed with red blood 
cell lysis buffer (R1010, Solarbio), and tumour-infiltrating 
leukocytes were isolated with a percoll density gradient. 
Specific surface or intracellular antibodies were used 
to stain the cells in a cell staining buffer (E-CK-A107, 
Elabscience). The antibodies used were anti-CD45 Elab 
Fluor Red 780, anti-F4/80 PE-Cy7, anti-CD11b FITC, 
anti-MHC-II PE-Cy5, anti-CD86 PE and anti-CD206 PE 
(Elabscience). The cells were captured on a CytoFLEX 
flow cytometer (Beckman Coulter), and the resulting 
data were analysed with FlowJo V10 software [51].

Chemotaxis assays
Chemotaxis assays were performed using transwell plates 
(8 µm, Corning, Inc.). RAW264.7 cells with or with-
out polarization stimulus were pretreated for three days 
under different conditions, after which 5 × 104 RAW264.7 
cells were placed in the upper chamber, while 1 × 105 
mEC25 cells were placed in the lower chamber. After 48 
h of coculture, the non-migrated cells were removed, and 
the migrated cells were fixed and stained. All chemotaxis 

assays were independently repeated three times, with 
consistent trends observed across biological replicates. 
For each group, the number of migrated cells was quanti-
fied by counting cells in five non-overlapping 100 × mag-
nification fields randomly selected to avoid positional 
bias. Data are presented as bar graphs showing the mean 
values, with error bars indicating the standard deviation 
(s.d).

RNA extraction and real‑time PCR
Total RNA was extracted from RAW264.7 cell lines 
via an RNAiso plus kit (Takara, Dalian, China). Com-
plementary DNA (cDNA) synthesis was performed 
using the PrimeScript® Reverse-Transcription reagent 
Kit with gDNA Eraser (Takara, Dalian, China), and 
real-time-qPCR was carried out using the TB Green® 
Premix Ex Taq® II Kit (Takara, Dalian, China). The 
sequences of primers used in this study are listed in 
Table  S2 (Additional file  2). Gapdh was used for nor-
malization, and calculations were performed via the 
2-ΔΔCt method.

Cell migration and invasion assays
Migration and invasion assays were performed using 
transwell plates with a size of 8 μm (Corning, Inc.). 
For migration assays, a total of 50,000–70,000 KYSE-
150 cells or mEC25 cells per well were seeded into the 
upper compartment and cultured in a 200 μL serum-
free medium. The lower compartment was filled with 
600 μL complete medium (10% FBS). After 24 or 36 h, 
the cells in the upper chamber were discarded. The cells 
that migrated through the membrane were fixed with 
4% paraformaldehyde and stained with 0.1% crystal vio-
let dye. Transmigrated cells in five random fields per 
membrane were counted under 100 × magnification. 
For invasion assays, the upper chamber was precoated 
with BD Matrigel Matrix diluted 1:8 in serum-free 
medium, and the number of cells was increased to 
100,000 cells per well. All other conditions were main-
tained as in the migration assays.

Targeted metabolomics
The LC–MS segment of the platform was established 
via a Shimadzu Nexera X2 LC-30 AD system coupled 
with an ACQUITY UPLC BEH Amide column (1.7 μm, 
2.1 mm × 100 mm, Waters) and a triple quadrupole 
mass spectrometer (QTRAP 5500, AB SCIEX). Two-
microliter samples were successively injected using 
an LC autosampler. The ACQUITY UPLC BEH amide 
column (1.7 μm, 2.1 mm × 100 mm, Waters) was ther-
mostatic at 45 °C and flowed at a rate of 300 μL/min. 
Compound separation was carried out using a gradient 
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consisting of 20 mM ammonium acetate and 5% ace-
tonitrile at pH 9.45 (solvent A) in addition to 100% ace-
tonitrile (solvent B). The gradient started at 5% solvent 
A for 1 min, gradually increased to 45% solvent A over 
12 min, then to 60% solvent A over 1 min, followed by a 
2-min retention before returning to the initial mixture 
for 0.1 min and a subsequent 3-min re-equilibration. 
During data acquisition, quality control samples were 
interspersed every six or eight samples.

The MS parameters were configured as follows: 
source temperature was set to 550 °C, ion source gas 1 
(GAS1) was set to 40, ion source gas 2 (GAS2) was set 
to 50, curtain gas (CUR) was set to 35, and ion spray 
voltage floating (ISVF) was set to − 4500 V. The mass 
spectrometer operated with a dwell time of 200 ms. To 
create the metabolite MRM library, each metabolite 
standard (50 mg/mL) was initially analysed to deter-
mine the optimal MRM transition parameters. Next, 
the retention times of 40 energy-related metabolites 
were determined by measuring their corresponding 
MRM (Q1/Q3) transitions individually. A reference 
standard containing the 40 energy-related metabolites 
was prepared for LC–MS analysis by diluting a series of 
samples.

The raw MRM data files were processed via MultiQuant 
[52] software for peak identification, alignment, extraction, 
and filtration.

Statistics
For categorical variables versus categorical variables, Fish-
er’s exact test was used in a 2 × 2 contingency table; other-
wise, the chi-square test was used. The Wilcoxon rank-sum 
test was used to identify the DEPs between normal adja-
cent tissues and tumours or between patients with different 
mutation statuses and CNAs. The Kruskal‒Wallis test was 
used to test whether protein abundance, metabolite abun-
dance and gene expression were differentially expressed 
among the three subtypes or among the other subgroups. 
To account for multiple testing, the P values were adjusted 
via Benjamini‒Hochberg FDR correction. Overall survival 
and progression-free survival outcomes were depicted 
using Kaplan–Meier plots and log-rank tests. Adjustment 

of P-values was performed via the Benjamini–Hochberg 
FDR correction. Univariate Cox proportional hazards 
regression models were used to identify variables associ-
ated with overall survival. Benjamini–Hochberg false dis-
covery rate was used to correct the P values. In both in vivo 
and in  vitro experimental settings, statistical analyses to 
determine group differences were conducted employing a 
T-test or, where appropriate, an ANOVA. For chemotaxis 
assays, the results were presented as the mean ± standard 
deviation (s.d.). Spearman’s rank correlation test was used 
to evaluate all correlations. Statistical analysis was per-
formed via R [53] software (version 4.0.4) unless otherwise 
indicated. P values less than 0.05, 0.01, and 0.001 are indi-
cated with *, **, and ***, respectively.

Results
Proteomic characteristics of ESCC tissues compared 
with those of normal adjacent tissues
This study selected surgically resected primary ESCC 
tissues and paired NATs from treatment-naive Chinese 
patients, with 127 samples used for proteomics and 136 
samples used for metabolomics. Among these, 120 sam-
ples had previously been included in other multi-omics 
studies, encompassing genomics (80 samples analysed by 
WGS and 40 samples by WES), and transcriptomics anal-
ysis [13, 16]. A schematic of the experimental design and 
sample distribution is shown in Fig. 1A and Fig. S1A–C 
(Additional file  1). In summary, 126 tumour samples 
were subjected to both metabolomics and proteomics 
analyses, and 120 tumour samples were shared across all 
four omics (metabolomics, proteomics, transcriptomics, 
and genomics). The detailed clinicopathological informa-
tion of all patients is summarized in Table S1 (Additional 
file 2).

For proteomic analysis, Fusion Lumos was used to 
acquire mass spectrometry (MS) data for 254 samples 
in DIA mode. The quality of the DIA data was evalu-
ated on the basis of the intragroup coefficient of vari-
ation (CV), principal component analysis (PCA) and 
quantitative correlation of the samples. The quality 
control (QC) group, a mixture of all the samples, was 
intermittently injected to monitor the stability and 

Fig. 1  Overview of the experimental strategy, and proteomic landscape of oesophageal squamous cell carcinoma (ESCC) compared 
with NATs. A Overview of the experimental strategy, image created with BioRender.com, with permission. B Principal component analysis (PCA) 
of the proteome. Red, tumours; blue, NATs. C Number of proteins identified in tumours (red dots) and NATs (blue dots). The 95% confidence 
intervals are shown by the hidden region. D Heatmap showing the differentially expressed proteins in tumours and NATs. Significantly up-regulated 
and down-regulated pathways are shown on the right. E Heatmap showing the proteins associated with patient survival in these significantly 
changed pathways, and log2-based hazard ratio are shown on the right. HR: hazard ratio for OS. F Representative proteins of four biological 
pathways and their relationship with prognosis (FDR-corrected log-rank P values). The cut-off values of each protein are as follows: SNRPB (18.1421), 
SF3A1 (16.6450), EIF2S1 (18.6551), DNAJC10 (13.1860), DLD (17.6574), BCKDHA (15.9849), COX6B1 (17.2751), UQCRC1 (18.0475). See also Fig. S1, S2 
and Table S1, S3, S4

(See figure on next page.)
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reproducibility of the proteomics data. The median 
CV% for the QC samples was less than 20%, and PCA 
revealed distinct profiles between the QC, tumour and 
nontumour samples (Additional file  1: Fig. S2A, B). 
The average Spearman’s correlation coefficient among 
the control samples was 0.93, demonstrating the con-
sistent stability of the MS platform. The correlations 
of tumour samples were between 0.62 and 0.96 (mean 
= 0.85) (Additional file 1: Fig. S2 C). The results of the 
quality control process indicated that our proteomic 
analysis system was robust. Additionally, off-column 
fractionation with data-dependent acquisition (DDA) 
was employed to generate spectral libraries for data 
extraction. The unique peptide distribution, protein 
mass distribution and protein coverage distribution 
in the spectral library are shown in Fig. S2D–F (Addi-
tional file 1), respectively.

Proteomics identified 6415 proteins in tumours and 
6201 in NATs, with tumour samples showing higher 
proteomic complexity (Additional file  2: Table  S3). 
On average, 4210 protein groups were identified per 
sample, ranging from a minimum of 3074 in NATs to 
a maximum of 5107 in tumours. Principal component 
analysis revealed that the nonneoplastic oesophageal 
tissues were aggregated together and obviously sepa-
rated from the ESCC tissues (Fig. 1B), highlighting pro-
found proteomic remodelling during carcinogenesis. A 
case-by-case analysis revealed that the number of pro-
teins identified in the ESCC tissues was significantly 
greater than that identified in the NATs (Fig.  1C). We 
identified 2318 differentially expressed proteins (1696 
upregulated, 622 downregulated; FDR < 0.05, fold 
change > 1.5) between ESCC and NATs (Additional 
file  2: Table  S4). These proteins were predominantly 
localized to the cytoplasm (42.1%), nucleus (19.7%) and 
extracellular region (10.1%) (Additional file 1: Fig. S2G). 
Pathway enrichment analysis revealed that spliceo-
some, DNA replication, cell cycle, base excision repair, 
NOD-like receptor signalling pathway, lysosome, and 
phagosome, among others, were overrepresented 
among upregulated proteins. Downregulated proteins 
were enriched mainly in metabolic pathways, includ-
ing branched-chain amino acid (BCAA) degradation, 

carbon metabolism, oxidative phosphorylation, and 
tyrosine metabolism (Fig.  1D). The representative dif-
ferentially expressed proteins of the above pathways 
and the corresponding hazard ratios are shown in 
Fig. 1E. Key prognostic proteins included spliceosome-
associated SNRPB (FDR = 0.025) and SF3A1 (FDR 
= 0.027), endoplasmic reticulum stress regulators 
EIF2S1 (FDR = 0.022) and DNAJC10 (FDR = 0.034), 
which were elevated in ESCC and linked to poor 
patient outcomes. Conversely, oxidative phosphoryla-
tion components COX6B1 (FDR = 0.019) and UQCRC1 
(FDR = 0.024), along with BCAA degradation enzymes 
DLD (FDR = 0.028) and BCKDHA (FDR = 0.043), were 
reduced in ESCC and associated with favourable prog-
nosis (Fig.  1F). Combined with the published prot-
eomic data of Liu’s [54] and Li’s [55] studies in ESCC, 
only 93 and 218 proteins were consistently upregulated 
and downregulated, respectively, in the three datasets, 
suggesting that different proteomic research strate-
gies might have different specificities and sensitivities 
(Additional file 1: Fig. S2H, Additional file 2: Table S4).

Metabolomic landscape of ESCC highlights amino acid 
reprogramming
Metabolomic analysis on 136 ESCC patients demon-
strated robust platform reproducibility, evidenced by 
overlapping base-peak chromatograms (BPC), tight 
quality control (QC) clustering in PCA, and CV ratios 
exceeding 90% (Additional file 1: Fig. S2I–M). An exten-
sive BLAST search revealed a total of 2418 annotated 
metabolites in the positive and negative ionization modes 
(Additional file  3: Table  S5). These metabolites mainly 
included lipids (20.2%), amino acids and derivatives 
(16.3%), benzene and derivatives (11.7%), and carboxylic 
acids and derivatives (8.7%) (Fig.  2A). OPLS-DA clearly 
distinguished between ESCC and NATs (Additional 
file 1: Fig. S2N, O). A total of 1081 metabolites displayed 
differential abundance between ESCC and normal tis-
sue samples (629 with increased abundance and 452 with 
decreased abundance in ESCC) (VIP ≥ 1, fold change 
> 1.2, FDR < 0.05) (Fig.  2B). Moreover, we performed 
KEGG pathway-based analysis of differentially abun-
dant metabolites in which the differential abundance 

(See figure on next page.)
Fig. 2  The metabolomic landscape of oesophageal squamous cell carcinoma. A Proportions of annotated metabolites identified in our study. 
B Volcano plots of the annotated metabolites. C A pathway-based analysis of metabolomic changes between tumour and NATs. The DA score 
captures the average, gross changes for all metabolites in a pathway. A score of 1 indicates that all measured metabolites in the pathway 
increase in the tumour compared to normal tissues, and a score of −1 indicates that all measured metabolites in a pathway decrease. Pathways 
with no fewer than three measured metabolites were used for the DA score calculation. D Pathway abundance (PA) scores between tumour 
and NATs. The PA score was calculated as the mean log2 fold change in the abundances of the measured metabolites in this pathway. E A metabolic 
map profiling the synthesis and degradation of several amino acids, based on metabolomics data. See also Fig. S2 and Table S5
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(DA) score was calculated to represent the tendency of 
increased/decreased metabolites in a pathway relative to 
the normal tissue. The analysis revealed that among the 
59 metabolic pathways in which at least three metabolites 
were detected, 17 had DA scores greater than 0.5, and 
8 had DA scores less than − 0.5 (Fig.  2C). Interestingly, 
the majority of enriched metabolic pathways in ESCC 
patients primarily related to amino acid metabolism, 
while most downregulated pathways in these patients 
were involved in carbohydrate metabolism (Fig.  2C). 
Notably, amino acid metabolism, including phenylala-
nine metabolism, tryptophan metabolism, and tyrosine 
metabolism, was significantly increased in the ESCC 
samples. The biosynthesis of unsaturated fatty acids, the 
pentose phosphate pathway and glutathione metabolism 
were also enriched among the upregulated metabolites. 
In contrast, the metabolites of galactose metabolism and 
glycolytic gluconeogenesis were significantly decreased 
in ESCC patients (FDR < 0.05) (Fig. 2D). A metabolic net-
work map further delineated perturbations in glycolysis 
and amino acid synthesis/degradation pathways in ESCC 
(Fig. 2E).

Integrated multi‑omics analyses of ESCC
Integrated transcriptomic-proteomic analysis revealed 
moderate mRNA-protein correlation in tumours (Spear-
man’s ρ = 0.399) but weak correlation in NATs (ρ = 0.145, 
Additional file 1: Fig. S3A, B). There were 5938 common 
genes identified in the transcriptome and proteome, 
which can be divided into strongly correlated and weakly 
correlated genes. Genes with strong correlations were 
enriched mainly in glutathione metabolism, pyrimidine 
metabolism and arginine and proline metabolism. Con-
versely, genes displaying weak or negative correlations 
were mainly involved in ribosome, endocytosis, and 
spliceosome pathways, which were mostly consistent in 
ESCC and NATs (Additional file 1: Fig. S3A, B). We sub-
sequently compared the prognostic power of individual 
genes (log-rank test, P < 0.01, FDR < 0.05) in the two 

datasets (transcriptomic and proteomic data). Prognostic 
analysis identified 411 transcript-specific and 441 pro-
tein-specific survival-associated genes. Of these, 95 genes 
were common to both datasets, with 51 genes exhibit-
ing opposite associations. Only 44 genes and their cor-
responding proteins showed similar prognostic trends at 
the mRNA and protein levels, suggesting the role of these 
genes in the prognostic monitoring of ESCC patients 
(Additional file 1: Fig. S3C, Additional file 3: Table S6).

We subsequently associated somatic driver muta-
tions with mRNA and protein expression, observing cis-
acting (acting on the gene within 1 million base pairs of 
the mutation) and trans-acting (acting on other genes 
outside) events of significantly mutated genes (SMGs) in 
ESCC [10–12]. We detected obvious cis effects of TP53 
and NOTCH1 mutations on increasing the expression of 
these genes at both the RNA and protein levels, which is 
consistent with the known conclusion that TP53 muta-
tion can increase protein stability [56]. Cis-effects of 
PIK3CA and FAT1 mutations were also observed, with 
significant increases and decreases in the expression 
of these proteins, respectively. Trans-effects included 
NFE2L2 mutation-associated spliceosome activation and 
CDKN2A mutation-associated cell cycle dysregulation, 
suggesting the importance of these driver mutations for 
pathway activation. Moreover, NOTCH1-altered samples 
exhibited elevated levels of associated proteins, including 
PSMA2, PSMA3, PSMA7, PSMB1, PSMB2, PSMB8, and 
PSMD10 (Fig. 3A).

We also examined the regulatory effects of 17,850 
somatic copy number alterations (CNAs) in ESCC on 
mRNA and protein expression. CNAs can affect the 
expression of these genes positively or negatively in cis 
or trans mode, respectively. As demonstrated in Fig. 3B, 
the cis-effects of CNAs on mRNAs and proteins (diago-
nal lines) were obvious, and the strong trans-regulatory 
effects of CNAs (vertical stripes) at the RNA and pro-
tein levels were highly consistent. A total of 9,702 CNA 
cis-affected mRNAs (53%) and 954 CNA cis-affected 

Fig. 3  Effects of mutations and copy number alterations (CNAs) on mRNA and protein abundance. A Functional effect of mutations on mRNA 
and proteins. The y-axis shows significant mutant genes in ESCC, and the x-axis is cis- or trans- effected genes and related pathways. B Correlation 
of CNA to mRNAs and protein abundance. Positive and negative correlations are indicated in red and blue, respectively. Genes are ordered 
by chromosomal location on the x and y axes. The diagonal lines indicate the cis-effects of CNA on mRNAs or proteins. C Overlap of cis-effects 
observed at mRNA and proteins (FDR < 0.05). D KEGG pathway enrichment analysis of overlapped RNA and proteins in C. E CNA frequency 
diagram. Red for amplification, blue for deletion. F Volcano plot showing log2-based hazard ratio for each significant CNA peak regions. G 
Kaplan–Meier curves for overall survival analysis of patients with 1p34 gain or 13q22 gain (P value from log-rank test). H Heatmap showing 
the normalized expression of cis- and trans-effecting proteins and mRNAs significantly associated with copy number amplification in the 1p34 
region (left) and log2-based hazard ratio (right). HR: hazard ratio for OS. The P-values were adjusted using Benjamini–Hochberg false discovery rate 
(FDR) correction. I Left: Heatmap showing the score of the proteasome pathway and the normalized expression of associated proteins. Centre: 
Log2-based hazard ratios and FDR of these proteins. Right: Spearman’s correlation coefficients of these proteins with PPCS expression (blue) 
and proteasome pathway score (red). HR: hazard ratio for OS. See also Fig. S3 and Table S7

(See figure on next page.)
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proteins (22%) were observed, with 725 overlapping 
genes showing significant cis-effects across both omics 
analyses (Fig.  3C, Additional file  3: Table  S7). Among 
these 725 genes, 270 DEGs at the protein level were sig-
nificantly enriched in the spliceosome, N-glycan biosyn-
thesis, arginine and proline metabolism, and fatty acid 
degradation pathways (Fig. 3D). CNA analysis using Gis-
tic2.0 revealed the most frequent gains in chromosomes 
1q, 3q, 5p, 7p, 7q, 8q, 14q, and 20q, as well as losses on 
chromosomes 3p, 4p, 4q, 5q, 9p, 9q, 11p, 11q, 13q, 18q, 
and 21q (Additional file 1: Fig. S3D). These findings were 
consistent with previous studies conducted on ESCC 
and TCGA cohorts [9, 12]. We detected amplifications 
of several driver oncogenes, including NFE2L2, MYC, 
FAM84B, ERBB2, and CCND1, and deletions of key 
tumour suppressors, such as FAT1, CDKN2A/B, PTEN, 
RB1, and KMT2D (Additional file  1: Fig. S3E). Patients 
with 1p34 or 13q22 gain alone exhibited a poor progno-
sis, while those with a combined gain at both 1p34 and 
13q22 had an even worse prognosis (P = 0.0035, Fig. 3E–
G). On chromosome 1p34, we identified significant cis-
acting CNA genes that had a significant impact on the 
overall survival time of the patients (Fig.  3H). PPCS, a 
cis-acting gene at the protein level, encodes phosphopan-
tothenoylcysteine synthetase, responsible for the CoA 
biosynthesis pathway by converting phosphopantothen-
ate to phosphopantothenoylcysteine. Through further 
analysis focused on proteins significantly correlated with 
PPCS, we observed that the proteins—especially those 
positively related to PPCS—were mainly enriched in the 
proteasome pathway. Moreover, the protein expression 
of PPCS was positively correlated with the proteasome 
pathway score (Fig. 3I; Spearman’s ρ = 0.360, P = 3.266*e 
− 05). These associated proteins were predominantly 
unfavourable prognostic factors for ESCC patients.

In regard to connecting metabolites with genomic fea-
tures, we assessed relationships between 18 frequently 
mutated genes in ESCCs [11, 12] and metabolite lev-
els via a linear regression model (accounting for poten-
tial confounders) (Additional file 1: Fig. S4A, Additional 
file  3: Table  S8). The pairs of genes/metabolites were 
identified via the Recon3D database [40]. The cancer-
related altered genes with the highest mutation frequency 

(such as TP53, NOTCH1, and FAT1) showed minimal 
metabolite associations. Notably, EP300 mutations were 
inversely correlated with the abundance of prostaglan-
din J2 (PGJ2) (FDR = 0.016), while PTEN mutations were 
inversely correlated with L-threonine abundance (FDR 
= 0.071) (Additional file 1: Fig. S4A, B), which was con-
sistent with the findings in the database.

When copy number alterations were examined, the 
connections between CNAs and metabolites were gen-
erally weak, with only a small number of ESCC-specific 
CNA peaks showing a relationship with metabolite levels 
(Additional file  1: Fig. S4C, Additional file  3: Table  S9). 
For example, 13q14.11 chromosomal region (RB1 
located) copy number deletion correlated with elevated 
prednisone (FDR = 0.016, Additional file 1: Fig. S4D). In 
addition, the 19p13.3 region deletion, which includes the 
gene encoding GAMT/DOT1L, mediates methyl trans-
port in organisms. The results revealed a positive correla-
tion between copy number deletion in the 19p13.3 region 
and the abundance of S-adenosylhomocysteine (SAH) 
(FDR = 0.028, Additional file 1: Fig. S4D). In conclusion, 
investigating the relationships between genetic traits and 
metabolites may shed light on the mechanisms underly-
ing metabolic reprogramming in ESCC.

Molecular subtyping based on integrated proteomics 
and metabolomics analysis
Based on integrated proteomics and metabolomics anal-
yses, we classified the observed three subtypes observed 
in ESCC as S1 (n = 47), S2 (n = 32), and S3 (n = 47), each 
with distinct molecular and clinical features (Fig.  4A). 
Notably, patients identified with the S3 subtype exhib-
ited the poorest overall survival (OS) (log-rank test, P = 
1.575*e − 6) and progression-free survival (PFS) (log-
rank test, P = 1.074*e − 6) outcomes compared to those 
with the S1 and S2 subtypes (Fig. 4B). Evaluation of the 
clinical characteristics of the three subtypes revealed 
a later clinical stage in S3 patients, and the proportion 
of patients with lymph node metastasis in S3 patients 
was significantly greater than that in S1 and S2 patients 
(Fig.  4C). With respect to subtype-specific proteins 
and metabolites, gene set enrichment analysis revealed 
that metabolism-related pathways, especially amino 

(See figure on next page.)
Fig. 4  ESCC molecular subtyping based on integrated proteomics and metabolomics analysis. A Heatmap with clinical characteristics of ESCC 
samples into three SNF-derived subtypes: S1 (n = 47), S2 (n = 32), and S3 (n = 47) based on integrated analysis of proteomics and metabolomics. 
Pathways are significantly enriched in each subtype. B Kaplan–Meier curves for overall survival and progression-free survival of different subtypes 
(P value from log-rank test). C Number of patients with lymphatic metastasis between three subtypes (P value from chi-square test). D Heatmap 
showing the median number of immune cell infiltration in NATs and three subtypes, and log2-based hazard ratio for each immune cell infiltration 
score. E Multiple immunofluorescence results and intensity statistical analysis. Box plots show the percentage of positive cells in subtypes S1 (n = 7) 
and S3 (n = 7). Data presented as mean ± s.d.; P values by two-tailed Student’s t test
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acid metabolism-related pathways (such as glutathione 
metabolism, arginine and proline metabolism, and tyros-
ine metabolism), were obviously upregulated in S3 ESCC 
patients. In contrast, immune-related pathways (such as 
the T-cell receptor signalling pathway, antigen process-
ing and presentation, and complement and coagulation 
cascades) were obviously downregulated in S3 patients, 
suggesting the regulation of metabolic remodelling in 
the immune microenvironment in these tumours. The 
ESCCs of subtypes S1 and S2 were both characterized by 
elevated levels of immune-related pathways, and S1 was 
also characterized by an increased number of protein 
processing pathways (such as lysosome and proteasome 
processes) (Fig.  4A). Consistent with pathway findings, 
ssGSEA confirmed reduced immune infiltration and ele-
vated tumour purity in the S3 subtype compared with the 
other two subtypes (Fig.  4D). Given the significant dif-
ferences in overall survival and progression-free survival 
between the S1 and S3 subtypes, and considering the lim-
ited availability of clinical samples, we focused on these 
two subtypes to conduct multiplex immunofluorescence 
(MIF) experiments to further validate the differences in 
immune cell infiltration. MIF validated diminished infil-
tration of CD8+ T cells (CD8+), CD4+ T cells (CD4+), 
and NK cells (CD56+) in the S3 subtype compared to the 
S1 subtype (Fig. 4E).

Subsequently, an examination of the subtype diagnos-
tic signatures that exhibited potential clinical application 
was conducted. This analysis identified four distinct pro-
teins (SEPTIN5, HK3, SCFD1, SSR1) and two metabolites 
(creatine and 2’-DG) as unique signatures. Notably, these 
signatures demonstrated favourable predictive perfor-
mance, with an area under the curve (AUC) of 0.909 in 
the training set and 0.915 in the test set (Fig. 5A, B). The 
expression of these signatures in each subtype is depicted 
in Fig.  5C. The prognostic value of these signatures in 
the subtype diagnostic model and their associations with 
clinical features are depicted in Fig. S5 (Additional file 1). 
Additionally, the subtype diagnostic model was vali-
dated by assessing the abundance of six signatures in an 

independent ESCC cohort (n = 52, cohort 2) via immu-
nohistochemistry (IHC) and mass spectrometry imaging 
(MSI). The model subsequently predicted 40 patients as 
subtype S1/S2 and 12 patients as subtype S3 (Additional 
file 3: Table S10). IHC revealed significantly higher inten-
sity of SEPTIN5 (P = 0.002) and SCFD1 (P = 2.19*e − 4) 
proteins, and significantly weaker intensity of HK3 pro-
tein (P = 0.010) in the S3 subtype (Fig. 5D). MSI analysis 
revealed that creatine was significantly more abundant in 
S3 than in the other two subtypes (P = 4.18*e − 7, Fig. 5E, 
F). Although not statistically significant, the expression 
trends of the additional SSR1 and 2’DG signatures in 
the S3 subtype were consistent with those in the train-
ing set. Moreover, Kaplan–Meier curves in cohort 2 con-
firmed significantly worse overall survival in S3 subtype 
versus S1/S2 subtype patients (log-rank test, P = 3.48*e 
− 7), demonstrating robust prognostic efficiency of our 
subtype diagnostic model in ESCC (Fig.  5G). Further 
correlation analysis between these signatures revealed 
a significant negative correlation between hexokinase 3 
(HK3) expression and creatine abundance (P = 4.15*e − 4, 
Fig. 5H), which was also confirmed in validation cohort 2 
(P = 3.87*e − 3, Fig. 5I). In fact, the combination of HK3 
and creatine also had good predictive performance for S3 
subtype diagnosis (AUC = 0.866 in the training set, AUC 
= 0.821 in the test set) (Fig.  5J). As expected, patients 
with high creatine and low HK3 expression had worse 
survival than those with low creatine and high HK3 
expression (Fig. 5K, L).

The role of the subtype diagnostic markers creatine 
and HK3 in mediating the immunosuppressive 
microenvironment
Creatine is a nitrogenous organic acid that is abundant 
in the human body. Exogenous creatine is obtained 
from diet uptake, and endogenous creatine is synthe-
sized from arginine (arginine also participates in the urea 
cycle) in two steps: arginine to guanidinoacetate cata-
lysed by L-arginine: glycine amidino-transferase (AGAT​
/GATM) and creatine production by guanidinoacetate 

Fig. 5  Molecular subtype validation in another independent cohort. A The contribution of six signatures to the subtype diagnostic model. B 
Receiver operating characteristic (ROC) curves with reported areas under the curve (AUCs) demonstrated the efficacy of the subtype diagnostic 
model in identifying subtypes of ESCC. C A abundance of the six signatures in three subtypes. Data presented as mean ± s.d.; P values by Wilcoxon 
rank-sum test. D IHC and intensity statistics of four characteristic proteins in the predicted S3 subtype (n = 12) and S1/2 subtype (n = 40) 
in the independent ESCC cohort 2 (P value from Wilcoxon rank-sum test). Data presented as mean ± s.d.; P values by Wilcoxon rank-sum test. E, 
F The intensity of creatine (E) and 2’DG (F) in the predicted S3 subtype (n = 12) and S1/2 (n = 40) subtype in cohort 2. Data presented as mean 
± s.d.; P values by Wilcoxon rank-sum test. G Kaplan–Meier curves for overall survival analysis of predicted S3 subtype and S1/2 subtype (P value 
from the log-rank test). H, I Spearman correlation analysis of the protein expression of HK3 protein and the intensity of creatine in our study (H) 
or in cohort 2 (I). J ROC curves with reported AUCs demonstrated the efficacy of the model containing only creatine and HK3 protein. K, L Kaplan–
Meier curves for overall survival analysis of the expression of HK3 protein (K) and the intensity of creatine in our study (L) (P value from log-rank test). 
See also Table S10

(See figure on next page.)
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N-methyltransferase (GAMT). Upon being transported 
into cells, creatine is converted to phosphocreatine by 
creatine kinase (CK) and is involved in ATP metabo-
lism as an energy buffer system. Interestingly, S3 subtype 

patients exhibited upregulated arginine to creatine 
enzymes and metabolites but suppressed the urea cycle 
components (Fig. 6A). It has been reported that creatine 
reprograms macrophage polarization by suppressing 

Fig. 5  (See legend on previous page.)
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Fig. 6  Analysis of immune infiltration associated with the abundance of creatine and HK3. A Changes in the abundance of metabolites, proteins 
and mRNAs of the creatine synthesis. The log2-fold changes of metabolites, proteins and mRNAs in S3 and S1 subtypes are colour-coded (*P < 
0.05; ** P < 0.01; *** P < 0.001, see also Fig. S6 A, Supporting Information). B Spearman’s correlation coefficients of the abundance of creatine 
synthesis-related molecules and each immune cell infiltration score (only shown FDR < 0.05). C Spearman’s correlation coefficients of immune score 
and the expression of HK3 protein and mRNA. D Spearman’s correlation coefficients of each immune cell infiltration score and the expression of HK3 
protein and mRNA (only shown P < 0.05). E Functional enrichment analysis of the proteins with a significant correlation (|Spearman’s correlation 
coefficient|> 0.3, FDR < 0.05) with the expression of HK3 in proteomics. Red: positive correlation. Blue: negative correlation. F Left: Heatmap showing 
the expression of immune-related proteins significantly positive correlation with the expression of HK3 in proteomics. Right: Log10-based hazard 
ratio and FDR-corrected P value of these immune-related proteins. HR: hazard ratio for OS. See also Fig. S6 and S7
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IFN-γ–JAK–STAT1-driven M1 activation while promot-
ing IL-4–STAT6-mediated M2 polarization via SWI/
SNF chromatin remodelling [57]. Consistently, our MIF 
results demonstrated that the infiltration of CD163+ 
M2-like tumour-associated macrophages (TAMs) was 
greater in the S3 subtype versus the S1 subtype (P = 
0.038, Fig.  4E). Additionally, the expression of several 
molecules related to creatine-remodelling macrophages 
also differed among the three subtypes (Additional file 1: 
Fig. S6A). Further analysis revealed that creatine metabo-
lism components, including transporters, metabolites, 
and enzymes, were negatively correlated with the infil-
tration of most immune cells. However, the involvement 
of JAK1/2 in M1 macrophage polarization, as shown in 
Fig. S6A (Additional file 1), showed positively correlated 
with the infiltration of most immune cells (Fig.  6A, B). 
Proteomics revealed creatine inversely correlated with 
complement activation and innate immune pathways 
(Spearman’s ρ > 0.3, FDR < 0.05), suggesting its role in 
suppressing antitumour immunity, which was consist-
ent with the observation that a higher creatine content 
in the S3 subtype was associated with less immune cell 
infiltration (Additional file  1: Fig. S6B). In line with the 
poor prognosis of S3 subtype patients with increased cre-
atine expression, many proteins and metabolites involved 
in creatine metabolism and macrophage polarization 
were also significantly and consistently related to the 
prognosis of ESCC patients (Additional file 1: Fig. S6C). 
The correlations between several stimulatory immune 
checkpoint molecules and creatine and the correspond-
ing hazard ratios are shown in Fig. S6D, E (Additional 
file  1). More interestingly, the greater the number of 
lymph node metastases and the later the clinical stage, 
the greater the creatine expression (Additional file 1: Fig. 
S7A, B). Patients with higher creatine levels had lower 
immune scores and stromal scores (Additional file 1: Fig. 
S7C). Lymph node metastatic progression intensified 
the negative correlation between creatine and immune 
cell infiltration, and the correlation with immune check-
points also increased (Additional file  1: Fig. S7D, E). 
MIF confirmed that creatine accumulation inversely 

correlated with cytotoxic immune cells (CD8+ T cells, 
CD4+ T cells and NK cells) but positively associated with 
M2-like TAMs (CD163+, Additional file 1: Fig. S7F), link-
ing metabolic shifts to immune evasion. Further in vitro 
and in vivo studies demonstrated that creatine treatment 
at different concentrations had no effect on the prolifera-
tion, invasion or migration of mouse- or human-derived 
ESCC cells (Additional file  1: Fig. S8A–C). A high-cre-
atine diet also failed to promote the growth of ESCC in 
subcutaneous xenograft models in severe immunodefi-
ciency mice (Additional file 1: Fig. S8D–F).

Given that creatine and HK3 are two effective predic-
tive markers for S3 subtypes and that they are signifi-
cantly negatively correlated, we further explored the role 
of HK3 in tumour immunity and its relationship with 
creatine. Hexokinase 3 (HK3) is one of four hexokinase 
isoenzymes. HK3 is the first rate-limiting enzyme in the 
glycolysis process and is responsible for the phosphoryla-
tion of glucose to 6-phosphate glucose in the presence of 
ATP. HK3 demonstrated significant positive associations 
with immune score and immune cell infiltration across 
a wide range of proteomic (P = 3.37*e − 5) and tran-
scriptomic data (P < 0.0001) for ESCC patients (Fig. 6C, 
D). Similarly, proteomics identified proteins, positively 
correlated with HK3 expression (Spearman’s ρ > 0.3, P < 
0.05, FDR < 0.1), and were obviously enriched in immune 
response pathways—including T-cell receptor signalling 
pathway, Fc-gamma receptor signalling pathway, innate 
immune response, positive regulation of T-cell prolif-
eration and IFN-γ-mediated signalling pathway—align-
ing with the immune-depleted phenotype in S3 subtype 
(Fig. 6E). Prognostically favourable HK3-related immune 
regulators were elevated in S1 but suppressed in S3 sub-
types (Fig. 6F).

Next, we explored the effects of HK3 and creatine on 
the tumour microenvironment and investigated whether 
there was a synergistic effect. We fed wild-type and Hk3 
knockout C57BL/6 mice a standard or high creatine diet. 
After two weeks of feeding, mEC25 cells were subcuta-
neously injected into the flanks of immunocompetent 
C57BL/6 mice. After continued feeding for 3–4 weeks, 

Fig. 7  Hk3 deficiency and creatine treatment reprogrammed macrophage polarization in vivo and in vitro. A Experimental design. Hk3-ko 
or WT mice were fed creatine-containing water or not. B, C Hk3-ko and creatine-containing diets promoted tumour growth in subcutaneously 
injected model mice (B). Boxplot showing the difference of tumour weight among different groups (C) (Data presented as mean ± s.d.; P values 
were calculated via two-tailed Student’s t test; n = 6). Dots refer to independent samples. D–F Representative flow cytometry analysis of tumour 
fractions from different groups. Barplot showing the discrepancy in pan TAMs (D, Cd45+F4/80+Cd11b+ cells), M2-like TAMs (E, Cd45+F4/80+Cd11b
+Cd206+ cells) and M1-like TAMs (F, Cd45+F4/80+Cd11b+Cd86+Mhc-II+cells) among different groups. Data presented as mean ± s.d.; P values were 
calculated via two-tailed Student’s t test; n = 3. G, H Effect of Hk3 knockdown (Hk3 sh) and 1 mM creatine pretreatment (+ Cr.) on the chemotactic 
ability of RAW264.7 cells, with IL-4 for 24 h (H) or not (G), co-cultured with mEC25 cells. Data presented as mean ± s.d.; P values were calculated 
via two-tailed Student’s t test; n = 5. I Hk3 knockdown (Hk3 sh) and 1 mM creatine pretreatment (+ Cr.) promoted M2-like TAM polarization 
in RAW264.7 cells. Data presented as mean ± s.d.; P values were calculated via two-tailed Student’s t test; n = 3. See also Fig. S8 and Table S2

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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the spleen and tumour tissue of the mice were col-
lected for flow cytometry analysis (Fig.  7A). We found 
that the tumour volume in the high-creatine diet and 
HK3 knockout alone groups was significantly greater 
than that in the control group. Moreover, Hk3 knock-
out in combination with a high-creatine diet synergisti-
cally promoted tumour growth (Fig. 7B, C). The ratio of 
pan-TAMs, which was defined as Cd45+F4/80+Cd11b+, 
improved upon high-creatine diet/Hk3 knockout treat-
ment or in combination (Fig.  7D). We further observed 
that the effects of a high-creatine diet/HK3 knockout on 
increasing the percentage of M2-like TAMs (Cd45+F4/8
0+Cd11b+Cd206+ cells) and decreasing the percentage 
of M1-like TAMs (Cd45+F4/80+Cd11b+Cd86+Mhc-II+ 
cells) were strengthened by combined treatment (Fig. 7E, 
F). These results were consistent with the poor prognosis 
of S3-subtype ESCC patients and indicated that creatine 
and HK3 might affect the tumour microenvironment in a 
synergistic manner. Further study of 126 ESCC patients 
revealed that the creatine content in the HK3 high-
expression group was significantly lower than that in the 
HK3 low-expression group (Additional file  1: Fig. S8G). 
In vitro experiments revealed that creatine treatment and 
Hk3 knockdown synergistically promoted the chemo-
taxis of RAW264.7 macrophages and IL- 4-induced 
M2-like RAW264.7 cells cocultured with mEC25 cancer 
cells (Fig.  7G, H). Additionally, creatine treatment and 
Hk3 knockdown synergistically promoted M2-like TAM 
polarization and the secretion of associated effector 
factors such as ARG1, IL-10 and TGF-β (Fig.  7I). These 
results suggested that creatine and HK3 might mediate 
the immunosuppressive microenvironment of ESCC by 
promoting M2 macrophage polarization in the S3 ESCC 
subtype.

Both creatine and HK3 are crucial regulators of energy 
metabolism. To investigate how creatine metabolism and 
HK3-mediated glycolysis reshape energy metabolism to 
adapt to the microenvironment, we further investigated 
the effects of Hk3 knockdown and creatine treatment 
on energy metabolism in RAW264.7 cells via targeted 
metabolomics analysis. Compared to the normal control, 
Hk3 knockdown reduced glycolysis derived from glucose-
6-phosphate, pentose phosphate metabolism activity, 
and the tricarboxylic acid (TCA) cycle, reflecting Hk3’s 
role as a hexokinase. Following Hk3 knockdown, supple-
mentation with creatine significantly enhanced the TCA 
cycle and pentose phosphate metabolism, while glycoly-
sis was suppressed. The increased synthesis of UDP-glu-
cose and increased pentose phosphate pathway activity 
upon creatine supplementation led to greater produc-
tion of NADPH (Additional file 1: Fig. S9A, B; Additional 
file 3: Table S11). It has been reported that an increase in 
NADPH inhibits intracellular ROS production. Previous 

study indicates that an increase in NADPH reduces 
intracellular ROS production [58], which is significantly 
associated with decreased M1-like polarization in mac-
rophages. The increase in metabolites related to the TCA 
cycle could imply a key role for energy sources other than 
glycolysis in M2 macrophage polarization. Interestingly, 
supplementation with creatine also caused an increase in 
intracellular lactate levels, hinting at its potential effects 
on lactate metabolism. The metabolic reprogramming 
and energy transfer caused by the downregulation of Hk3 
combined with creatine supplementation may contrib-
ute to driving macrophages toward M2-like polarization. 
M2 polarization of TAMs may contribute to the forma-
tion of an immunosuppressive microenvironment and a 
poor prognosis for patients through inhibiting the pro-
liferation of CD8+ effector T lymphocytes, natural killer 
cells, etc. [59, 60]. In conclusion, our study highlights the 
pivotal roles of creatine and HK3 in mediating the immu-
nosuppressive microenvironment, suggesting that tar-
geting creatine metabolism might be an effective target 
for enhancing immunotherapy and targeted therapy for 
ESCC.

Discussion
Despite immunotherapy advances, ESCC remains 
greatly challenging due to its complex heterogeneity, 
which leads to varying therapeutic responses and drug 
resistance. Unlike other malignancies, ESCC lacks well-
defined molecular subtypes to direct treatment strategies 
[61–63]. Molecular subtyping on the basis of microen-
vironment heterogeneity holds particular promise for 
predicting immunotherapy responders and identifying 
novel therapeutic targets. Recent studies have reported 
molecular subtyping of ESCC. For example, an analysis of 
whole-genome sequencing data from 508 ESCC patients 
revealed three prognostically significant molecular sub-
types: NFE2L2 mutated, RTK-RAS-MYC amplified, and 
double negative [12]. Liu et  al. defined ESCC into two 
molecular subtypes based on proteomic analysis and 
provided a potential therapeutic outlook for ESCC [55]. 
Multi-omics analyses, including genomic, epigenomic, 
transcriptomic, and proteomic analyses, have classified 
ESCCs into four subtypes: cell cycle pathway activation, 
NRF2 oncogenic activation, immune suppression (IS) 
and immune modulation (IM). A classifier with 28 fea-
tures was developed to identify the IM subtype that could 
predict the response to anti-PD-1 therapy [13]. Nonethe-
less, current subtypes fail to encompass all patients and 
lack integration of metabolomics data, which is critical 
for understanding the impacts of metabolic remodelling 
on the immune microenvironment. Our study addresses 
these gaps through paired metabolomic and proteomic 
profiling of a large ESCC cohort, revealing three distinct 
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subtypes (S1, S2, and S3) with prognostic significance. 
The S3 subtype demonstrated the worst clinical out-
comes and an immunosuppressive microenvironment 
shaped by synergistic creatine accumulation and HK3 
deficiency-driven macrophage polarization.

The immunosuppressive tumour microenvironment 
remains a major barrier to immunotherapy success [64]. 
Its development involves intricate interactions among 
diverse immunosuppressive cells, cytokines, and signal-
ling molecules. Major immunosuppressive cells include 
myeloid-derived suppressor cells (MDSCs), regulatory 
T cells (Tregs), TAMs, tumour-associated neutrophils 
(TANs), and DCs [65]. Emerging strategies focus on 
microenvironment remodelling to enhance treatment 
efficacy. For instance, Gao et al. introduced an anti-PD-1 
antibody-conjugated nanoplatforms to mitigate the 
immunosuppressive effects on Tregs and DCs [66]; Hu 
et  al. recommended employing radiotherapy and PARP 
inhibition to reverse the immunosuppressive microenvi-
ronment caused by IDH1 mutations, thereby increasing 
the efficacy of immune checkpoint inhibitors [67]. The 
intersection of metabolic reprogramming and immuno-
suppression presents particularly promising therapeutic 
opportunities [68]. Additionally, some drugs target can-
cer metabolisms have been shown to assist in tumour 
immunotherapy. Clinical validation of metabolism-tar-
geting agents (e.g., glutaminase-1 inhibitors with PD-1 
blockade [69], IDO inhibitors in melanoma [70, 71]) 
underscores this potential. Given the scarcity of targeted 
metabolic drugs for ESCC, exploring the connection 
between metabolic changes and immune cell function-
ality, and employing metabolomics-based patient strati-
fication, can potentially facilitate greater benefits from 
immunotherapy and other targeted treatments for ESCC 
patients. In this study, we unveiled the remodelling effect 
of creatine and HK3 on the immunosuppressive microen-
vironment and propose creatine metabolism targeting as 
a novel strategy to potentiate immunotherapy for ESCC.

Creatine in mammals is transported into the cell by 
SLC6A8 and is involved in ATP metabolism as an energy 
buffer system by creatine kinases. While the classic role 
of creatine metabolism in energy reserve and energy 
buffer is established, its two-sided role in cancer biology 
remains underexplored [72]. Emerging evidence sug-
gests creatine enhances metastatic adaptability in distant 
organs [73], GATM-driven Smad2/3 activation promot-
ing colorectal cancer liver metastasis [74], and stromal-
induced creatine synthesis fuelling phosphocreatine/
ATP production for pancreatic cancer progression [75]. 
Conversely, adipocyte creatine inhibition suppresses 
obesity-associated breast cancer growth [76]. Beyond 
tumour cells, creatine modulates immune landscapes 
to regulate tumour growth. The creatine-mediated ATP 

buffering system affects the antitumour activity of CD8+ 
T cells in melanoma and colon cancer [77]. CKMT1A-
mediated creatine metabolism correlates inversely with 
CD8+ T cell infiltration and fibroblast abundance via 
glycolytic/gluconeogenesis pathway modulation [78]. In 
this study, we found that creatine was highly expressed 
in the S3 subtype, which has low infiltration of CD8+ T 
cells, CD4+ T cells, and NK cells and high infiltration of 
M2-type TAMs. Similarly, Ji et al. revealed that creatine 
reprogrammed macrophage polarization by suppressing 
M1 (IFN-γ) but promoting M2 (IL-4) effector functions, 
which was attributed to the role of suppressing IFN-γ-
JAK-STAT1 transcription factor signalling while sup-
porting IL-4-STAT6-activated arginase 1 expression [57]. 
M2-like macrophages participate in tumour immune 
escape by inhibiting the proliferation of cytotoxic T lym-
phocytes (CTLs), NK cells and other effector immune 
cells, resulting in poor patient prognosis [59, 60]. There-
fore, creatine may be an important metabolic modulator 
of the tumour immune microenvironment, but the rel-
evant mechanism is in its initial stage.

Notably, creatine and hexokinase 3 (HK3) emerged as 
co-predictors of the S3 subtype, exhibiting an inverse cor-
relation in multiple cohorts. HK3 is the first rate-limiting 
enzyme in glycolysis and is responsible for the phospho-
rylation of glucose to 6-phospho-glucose in the presence 
of ATP. In liver cancer and cervical cancer, HK3 plays a 
protective role by reducing oxidative stress and increas-
ing ATP levels [79]. In non-small cell lung cancer, HK3 
is correlated with immune infiltrates and predicts the 
response to immunotherapy [80]. In clear cell renal cell 
carcinoma, HK3 is highly correlated with the abundance 
of immune cells and specifically stimulates the infiltra-
tion of monocytes/macrophages, promoting malignant 
biological processes and immune escape [81]. Mechanis-
tically, macrophage polarization is regulated by metabo-
lites involved in glycolysis, the TCA cycle, and fatty acid 
metabolism [82]. In this study, our experiments reveal 
that HK3 knockdown synergizes with creatine supple-
mentation to promote tumour growth and macrophage 
M2-like polarization. Both HK3 and creatine are impor-
tant molecules involved in ATP metabolism. In colorec-
tal cancer, hexokinase and mitochondrial creatine kinase 
can bind to voltage-dependent anion channels (VDACs) 
in the outer membrane of mitochondria, thereby regu-
lating the distribution of high-energy phosphate and 
reshaping energy metabolism to adapt to microenvi-
ronmental changes [83]. In glucose-deprived p53 wild-
type mice, GAMT and creatine levels are significantly 
increased [84]. uMtCK enhances hexokinase-dependent 
glycolysis via the JNKMAPK/JUN signalling pathway 
and promotes cancer progression in gastric cancer [85]. 
In this study, metabolic analyses of RAW264.7 cells with 
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Hk3 knockdown revealed decreases in glycolysis, the 
TCA cycle, and ATP concentrations. However, creatine 
supplementation significantly enhanced mitochondrial 
energy metabolism and the pentose phosphate pathway 
without affecting ATP generation. Combined Hk3 knock-
down and creatine supplementation collectively induced 
alterations in the energy metabolism of macrophages 
toward M2 polarization. Therefore, creatine metabolism 
and glycolysis may jointly regulate the transfer network 
of energy metabolism that affects tumour-associated 
macrophage polarization, thereby affecting the immune 
microenvironment and antitumour response of other 
immune cells. While mechanistic details of creatine-HK3 
crosstalk require further study, our data nominate cre-
atine depletion or HK3 activation as actionable strategies 
to reprogram immunosuppressive microenvironment in 
S3 patients.

In addition, the current study broadened our under-
standing of the molecular characteristics of ESCC on the 
basis of metabolomics and proteomics combined with 
our previous genomics and transcriptomics data. Our 
proteomic landscape revealed the consistency between 
this study and other studies to some extent; for exam-
ple, the spliceosome, DNA replication, cell cycle and 
lysosome pathways were upregulated, whereas metabolic 
pathways such as tyrosine metabolism pathways were 
downregulated in ESCC. However, some proteins were 
not identified in this study or had inconsistent expres-
sion patterns, which might be attributed to different 
proteomic research strategies with different specifici-
ties and sensitivities. Our metabolomics data revealed 
that tryptophan metabolism, tyrosine metabolism, and 
branched-chain amino acid metabolism were signifi-
cantly associated with ESCC.

Conclusions
Our integrated analysis reveals molecular variation and 
defines ESCC subtypes with distinct metabolic-immune 
features, offering actionable targets to disrupt immuno-
suppression. Creatine accumulation and HK3 protein 
deficiency synergistically promoted M2 polarization of 
macrophages and participated in the formation of an 
immunosuppressive microenvironment. Targeted cre-
atine metabolism might be an effective target for enhanc-
ing immunotherapy and targeted therapy for ESCC.
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