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Abstract 

Background  Salmonella enterica subspecies enterica serovar Typhi (abbreviated as ‘Typhi’) is the bacterial agent 
of typhoid fever. Effective antimicrobial therapy reduces complications and mortality; however, antimicrobial 
resistance (AMR) is a major problem in many endemic countries. Prevention through vaccination is possible 
through recently-licensed typhoid conjugate vaccines (TCVs). National immunisation programs are currently being 
considered or deployed in several countries where AMR prevalence is known to be high, and the Gavi vaccine alli-
ance has provided financial support for their introduction. Pathogen whole genome sequence data are a rich source 
of information on Typhi variants (genotypes or lineages), AMR prevalence, and mechanisms. However, this informa-
tion is currently not readily accessible to non-genomics experts, including those driving vaccine implementation 
or empirical therapy guidance.

Results  We developed TyphiNET (https://​www.​typhi.​net), an interactive online dashboard for exploring Typhi geno-
type and AMR distributions derived from publicly available pathogen genome sequences. TyphiNET allows users 
to explore country-level summaries such as the frequency of pathogen lineages, temporal trends in resistance to clini-
cally relevant antimicrobials, and the specific variants and mechanisms underlying emergent AMR trends. User-driven 
plots and session reports can be downloaded for ease of sharing. Importantly, TyphiNET is populated by high-quality 
genome data curated by the Global Typhoid Pathogen Genomics Consortium, analysed using the Pathogenwatch 
platform, and identified as coming from non-targeted sampling frames that are suitable for estimating AMR preva-
lence amongst Typhi infections (no personal data is included in the platform). As of February 2024, data from a total 
of n = 11,836 genomes from 101 countries are available in TyphiNET. We outline case studies illustrating how the dash-
board can be used to explore these data and gain insights of relevance to both researchers and public health 
policy-makers.

Conclusions  The TyphiNET dashboard provides an interactive platform for accessing genome-derived data on path-
ogen variant frequencies to inform typhoid control and intervention strategies. The platform is extensible in terms 
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of both data and features, and provides a model for making complex bacterial genome-derived data accessible 
to a wide audience.

Keywords  Typhoid fever, Salmonella Typhi, Antimicrobial Resistance, Whole Genome Sequencing, Genomics, Genetic 
epidemiology, Surveillance, Dashboard, Web application

Background
Salmonella enterica subspecies enterica serovar Typhi 
(abbreviated as ‘Typhi’) is the bacterial agent of typhoid 
fever [1], a faeco-orally transmitted systemic bacterial 
infection, which sickens an estimated nine million peo-
ple each year [2]. Most illnesses occur in low- to middle-
income countries (LMIC) in settings with insufficient 
sanitation infrastructure, microbiologically unsafe water 
and food, and poor hygiene, where the disease burden 
is highest among children [3]. Effective antimicrobial 
therapy hastens the resolution of typhoid symptoms 
[4–6], reduces the risk of complications [7], and reduces 
mortality from ~ 10% to 1% [8, 9]. Formal diagnosis and 
susceptibility testing requires blood culture that has low 
sensitivity (< 60%) and is often limited or unavailable in 
high-burden settings [10, 11]. Therefore, therapy is often 
empiric, and guided by local antimicrobial resistance 
(AMR) patterns rather than direct testing. For exam-
ple, the World Health Organization (WHO) ‘AWaRe 
(Access, Watch, Reserve) Antibiotic Book’ [12] recom-
mends treating suspected typhoid with ciprofloxacin if 
the local prevalence of resistance is low, and oral azithro-
mycin for uncomplicated disease or intravenous ceftriax-
one for severe disease if local prevalence of ciprofloxacin 
resistance is high. The former first-line drugs ampicillin, 
chloramphenicol, and trimethoprim-sulfamethoxazole 
have not been recommended by the WHO for typhoid 
fever since the 1990 s, when multidrug resistance (MDR, 
defined as resistance to these three agents) became com-
mon [5, 13]. Extensively drug resistant (XDR) strains 
have been reported and these are MDR strains that are 
resistant to ciprofloxacin and ceftriaxone. Patients with 
uncomplicated disease due to XDR Typhi may be treated 
with azithromycin, and carbapenems are used for severe 
disease but are problematic due to cost and the need for 
intravenous administration.

While vaccines to prevent typhoid have been availa-
ble for decades, they have not been widely implemented 
in endemic regions. The situation is changing now due 
to the prequalification of typhoid conjugate vaccines 
(TCVs) by the World Health Organization (WHO) in 
2018. TCVs are safe and effective in children and in 
infants as young as six months of age [13]. TCVs are 
now eligible for Gavi support, providing a potentially 
affordable route for low-income countries to invest in 
typhoid prevention through national immunisation 

programs [14]. As AMR has an impact on the clinical 
outcomes of Typhi infections, it is not only the burden 
of typhoid fever but also the prevalence of AMR that 
needs to be considered when weighing the costs and 
benefits of disease prevention through vaccination [15]. 
Indeed, TCV was the first vaccine to be recommended 
by the WHO based partially on pathogen-specific AMR 
concerns. For example, XDR typhoid outbreaks in 
Pakistan and ciprofloxacin resistant (CipR) outbreaks 
in Zimbabwe prompted responsive TCV roll-out in 
affected areas, which were effective in reducing local 
disease incidence [16–21]. Such responses have since 
been followed by introduction of national immunisa-
tion programs, with Pakistan being the first country to 
introduce TCV into its routine immunisation schedule.

Country-level AMR prevalence data are important 
to inform both empiric treatment of typhoid fever, and 
make the case for investment in national immunisation 
programs. Salmonella enterica is included in the WHO 
Global Antimicrobial Resistance and Use Surveillance 
System (GLASS) [22], but is not currently disaggregated 
by serovar. Local data on Typhi AMR remain scarce in 
most LMICs, and are mostly gathered in the context of 
time-limited research studies, outbreak investigations, 
or from travellers returning to other countries that have 
routine surveillance [23]. While informative, these data 
are not collected consistently, are predominantly based 
on phenotypic testing, and methods and interpretive 
criteria can vary by country and over time, which com-
plicates reporting and interpretation. Whole genome 
sequencing (WGS) data are increasingly adopted as the 
standard for strain characterisation of Typhi [24–26], 
and a hierarchical genotyping and nomenclature scheme 
(GenoTyphi) has been developed to aid the detection and 
tracking of lineage variants [27, 28]. The genetic determi-
nants of AMR in Typhi are well understood [5, 24, 29], 
such that AMR phenotypes can also be predicted from 
WGS data, with a recent study demonstrating 99.9% 
concordance between AMR genotypes and phenotypes 
assessed in the English reference laboratory [26]. Con-
sequently, WGS is now a standard method of charac-
terisation in routine surveillance of typhoid in reference 
laboratories in many high-income countries [23, 26, 30, 
31], as well as in research studies globally, making WGS 
data a rich source of information on Typhi pathogen 
diversity and local AMR patterns [24].
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As AMR continues to evolve and spread, WGS-based 
pathogen surveillance has the potential to inform pub-
lic health policies for typhoid such as empirical therapy 
guidelines [32]; water, sanitation, and hygiene (WASH) 
interventions that could impact pathogen transmission 
[33]; and national vaccine introduction decision making 
[34, 35]. However, at present, these data are not univer-
sally accessible to decision-makers at different levels of 
public health policy nor presented in a format that can 
inform on national prevalence of AMR. Typhi genome 
data are browsable in various public databases includ-
ing the National Center for Biotechnology Information 
(NCBI) Pathogen Detection portal [36], Enterobase [37, 
38], BIGSdb [39], and Pathogenwatch [29]. However, 
these databases (i) are designed for a user base with 
expertise in genomics, bioinformatics, and WGS analy-
sis; (ii) include WGS data from heterogeneous sources, 
including many that are not suitable for surveillance 
of AMR prevalence (e.g., outbreak investigations [40], 
or studies that specifically sequence resistant strains 
to ascertain mechanisms [41]); and (iii) do not provide 
country-level summaries of key variables such as geno-
type and AMR prevalences since uncurated bundles of 
input data are not suitable for this.

Here, we present the TyphiNET genomic surveillance 
dashboard for typhoid (available at: https://​www.​typhi.​
net), which aims to make genome-derived data on Typhi 
genotypes and AMR accessible to a broad user-base. 
TyphiNET is powered by existing informatics solutions 
for Typhi genomic analysis (including the GenoTyphi 
framework and Pathogenwatch platform), and lever-
ages contextual metadata collected and curated by the 
Global Typhoid Genomics Consortium (GTGC), to fil-
ter and analyse raw heterogeneous public genome data 
and extract meaningful AMR and genotype (variant) 
prevalences. Where sufficient input data are available, the 
dashboard also allows visualisation of temporal trends, 
and users can interrogate the association of specific AMR 
determinants with genotype backgrounds.

Implementation
Dashboard architecture
TyphiNET was developed as an open-source MERN 
(MongoDB, Express, React, Node) stack JavaScript 
application (Fig.  1). Front-end visualisations are imple-
mented via ReactJS libraries, while back-end operations 
are implemented using ExpressJS and NodeJS. Genome-
derived AMR and genotype data, and curated contextual 
metadata (see below), are retrieved from the collaborat-
ing Pathogenwatch platform [29] via an automatic robot 
for web scraping, dubbed Spyder v2.0 [42], and injected 
into the TyphiNET MongoDB Atlas via the back-end. 
The web application is deployed using the Heroku 

platform. All code is freely available under a GNU-GPL 
3.0 licence via GitHub, the version described in this man-
uscript is v1.6, DOI: 10.5281/zenodo.14887041, which 
includes data updated on February 17 th 2024 [43]. We 
recommend viewing TyphiNET using Google Chrome 
v131.0.6778.140 or greater for best performance.

Data curation and processing
In 2021 the GTGC was established to provide a commu-
nity that could routinely aggregate Typhi WGS data to 
facilitate monitoring the emergence and spread of AMR 
and inform targeted public health action against typhoid 
fever. Soon after its establishment, the GTGC aggregated 
all publicly available Typhi sequence data and metadata 
generated to date. Data owners identified from profes-
sional networks, literature searches, and Nucleotide 
Sequence Database Collaboration (INSDC) databases 
(i.e., NCBI, EMBL-EBI, DDBJ) were contacted to pro-
vide corresponding source information captured using 
a standardised metadata template (detailed below). Sub-
sequently, WGS data generated by research or public 
health laboratories and deposited in INSDC databases 
are assembled and quality filtered by the GTGC [24], 
and uploaded to Pathogenwatch [29] for analysis (Fig. 1). 
Typhi Pathogenwatch screens assemblies for known 
determinants of AMR [29] and carries out lineage assign-
ment according to the GenoTyphi genotyping framework 
[28, 44]. Full details on GTGC data collection approaches 
are provided in Carey et al. 2023 [24].

The GTGC curates contextual metadata (i.e., source 
data) associated with each Typhi genome sequence, 
to enhance the re-usability of the WGS data. This is 
done via requesting data generators (most of whom are 
GTGC members) to complete a standardised metadata 
template [24]. Key fields in the GTGC metadata tem-
plate that are not commonly or consistently included 
in metadata submitted to INSDC or supporting publi-
cations, but which are important for re-using genome 
data for AMR surveillance, are (i) travel information 
(Travel Associated: yes or no, Country of Travel); (ii) 
purpose of sampling (Targeted: Cluster Investigation, 
AMR investigation, Other; or Non Targeted: Reference 
lab, Surveillance Study, Routine diagnostics, Other); 
(iii) identifying repeat isolates; and (iv) data to confirm 
case status (Host Health State: Symptomatic or Asymp-
tomatic Carrier; Source: Blood, Stool, Environment or 
Food). Repeat isolates, defined as those that represent 
the same occurrence of typhoid infection, are excluded 
such that only a single ’primary’ isolate (either the first, 
or the best quality genome, for each unique case) are 
included in the GTGC data set [24]. ‘Country of origin’ 
is defined as the country where the pathogen was iso-
lated, or for travel-associated infections, the country 

https://www.typhi.net
https://www.typhi.net
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recorded as the presumed country of infection based 
on travel history [23, 45–47]. The GTGC-curated meta-
data (including ‘Country of Origin’, and with repeat 
isolates removed) is processed and uploaded to Patho-
genwatch along with the sequence data, to generate 
curated ‘Collections’ in Pathogenwatch (one for each 
source study or public health lab). The Spyder API [42] 
is then used to retrieve data files from Pathogenwatch 
for the GTGC-curated collections, for injection into the 
TyphiNET database.

In the TyphiNET dashboard, genomes are further fil-
tered to include only those recorded as coming from 
non-targeted sampling frames (Reference lab, Surveil-
lance Study, Routine diagnostics, Other). Those from 
targeted sampling frames (Cluster investigation, AMR 
focused, Other) or unspecified sampling frames are 
excluded from dashboard analyses and visualisations to 
prevent biases in prevalence estimates (although they 
are included in the database download, for complete-
ness and for use in other analyses outside the dashboard). 

Fig. 1  TyphiNET data curation and dashboard architecture. A The Global Typhoid Genomics Consortium (GTGC) aggregates and curates Typhi 
genome data and metadata, using Pathogenwatch as both an analysis platform (calling genotypes and AMR determinants from genome 
assemblies) and publicly accessible data store. Metadata that are not typically available in NCBI/ENA but are collected and curated by the GTGC 
include purpose of sampling (to tag datasets that are suitable for estimating AMR/genotype prevalence) and information on country-of-travel 
for travel-associated isolates (to identify country of origin). B A web-scraper is used to pull the latest versions of genotypes, AMR determinants, 
and metadata files from GTGC-curated Typhi collections in Pathogenwatch, which are used to populate the TyphiNET database. C The TyphiNET 
dashboard is implemented as a MERN (MongoDB, Express, React, Node) stack JavaScript application as illustrated. Genome data are filtered 
to exclude low-quality genome sequences, and data sets whose sampling frames make them unsuitable for AMR surveillance (such as those 
targeted towards sequencing of resistant strains only, or outbreak investigations), before calculating national/annual prevalences of AMR 
and genotypes to display in interactive plots. ReactJS is used to provide user interface layouts suitable for viewing the interactive plots on a range 
of devices (computer, tablet, phone). Users can also download static images of current plot displays (PNG), static reports with all current plots (PDF 
format), or a copy of the TyphiNET database (CSV format)
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The TyphiNET dashboard also filters out cases recorded 
as asymptomatic carriers (n = 119) or coming from gall-
bladder (n = 1) or environmental (n = 14) samples; the 
rest are assumed to represent acute illness (including n = 
9,039 recorded explicitly as blood isolates and/or symp-
tomatic typhoid assumed to be acute).

Statistical and design considerations
Typhoid intervention strategies such as immunisa-
tion programs and changes in empirical therapy are 
typically implemented at a country level, by national 
immunisation technical advisory groups (NITAGs) and 
ministries of health [48]. The TyphiNET dashboard 
therefore focuses on country as the geographical unit, 
to report national annual prevalences of genotypes 
and AMR aggregated from all available data sources 
for that country. Prevalence estimates are simple pro-
portions (expressed as percentages), calculated from 
the data in the curated TyphiNET database (i.e. non-
repeat assumed-acute cases from non-targeted sam-
pling frames, as outlined above). Where multiple data 
sources are available for a given country, the preva-
lence is a simple weighted pooled estimate calculated 
by summing the numerators and denominators across 
all available data for the given country and the selected 
time period. The minimum sample size to report a 

national annual prevalence is N ≥ 10 (equivalent to 
current WHO GLASS reports [22], which require 
data from 10 individuals in order to report a national 
prevalence rate). The minimum sample size to report 
a national prevalence on the map is N ≥ 20. The num-
ber of samples, and number and scope of available data 
sources, varies substantially by country; however, pre-
vious robustness analyses reported by the GTGC show 
that, for countries with multiple data sources (e.g., 
burden studies in different cities, and returning travel-
ler data collected in other countries), the per-data-set 
prevalence estimates are largely concordant with the 
pooled country-wide estimates [24].

Unless otherwise stated, statistical analyses presented 
in case studies were conducted using base R (v4.4.1).

AMR definitions
Binary variables representing predicted resistance phe-
notypes are calculated from the AMR genes and Single 
Nucleotide Polymorphisms (SNPs) reported by Patho-
genwatch [29], as summarised in Table  1. Note that 
there are limited data to assess the clinical significance 
of acrB mutations on treatment response to azithromy-
cin, for simplicity we refer to isolates carrying these as 
azithromycin resistant [41].

Table 1  Definitions used to calculate AMR variables. Genetic determinants reported by Pathogenwatch are used to calculate binary 
resistance prediction variables in TyphiNET

a ESBL = extended spectrum beta-lactamase gene (those currently detected in the Typhi genomes are blaCTX-M-12, blaCTX-M-15, blaCTX-M-55, blaOXA-134, blaSHV-12)
b QRDR = quinolone resistance determining region mutations tracked by Pathogenwatch [29] (these are currently gyrA S83 and D87, gyrB S464, parC S80 and E84)

Predicted Resistance Genetic determinants

Ampicillin/amoxicillin bla gene

Azithromycin acrB-R717Q or acrB-R717L mutation

Ceftriaxone  ≥ 1 ESBL genea

Chloramphenicol catA1 or cml1 gene

Ciprofloxacin non-susceptible (CipNS)
(MIC, > 0.06 mg/L) [49–51]

 ≥ 1 QRDRb mutation,
and/or ≥ 1 qnr gene

Ciprofloxacin resistant (CipR)
(MIC, > 0.5 mg/L) [49–51]

 ≥ 3 QRDRb mutations,
or ≥ 1 QRDRb plus ≥ 1 qnr genec

Sulphonamides  ≥ 1 sul gene

Tetracyclines  ≥ 1 tetA gene

Trimethoprim  ≥ 1 dfrA gene

Trimethoprim-sulfamethoxazole  ≥ 1 sul gene
Plus ≥ 1 dfrA gene

Multidrug resistant
(MDR; resistance to chloramphenicol plus ampicillin plus trimethoprim-sulfamethoxazole)

catA1 or cml1 gene
Plus bla gene
Plus ≥ 1 sul gene
Plus ≥ 1 dfrA gene

Extensively drug resistant
(XDR; MDR plus CipR plus ceftriaxone resistant)

As for MDR
Plus CipR
Plus ≥ 1 ESBL gene

Pansusceptible
(No AMR determinants detected)

None



Page 6 of 18Dyson et al. Genome Medicine           (2025) 17:51 

Global map view
The first visualisation panel summarises country-level 
data on a world map developed using the react-simple-
maps JavaScript library [52]. Users can choose to col-
our countries in the map by: (i) national prevalences of 
clinically relevant AMR profiles including MDR, XDR, 
CipNS, CipR, AziR, pansusceptible (see Table  1), (ii) 
national prevalence of genotypes (lineage variants), 
including the dominant genotype per country and the 
prevalence of genotype 4.3.1; or (iii) number of samples 
available. By default, the map view shows values enu-
merated from all Typhi isolates, sampled both locally 
in-country and travel-associated cases captured in other 
countries. Users can choose to filter to either local or 
travel data only (via a toggle button) and/or to filter on a 
specified time window (by selecting start and end years). 
These filters apply to all dashboard plots, not just the 
map.

AMR prevalences per country are indicated visually on 
the world map, using increasing colour intensity to signal 
categorical prevalence ranges of escalating concern with 
respect to use of the drug for empiric therapy: (i) 0, no 
resistance detected; (ii) > 0 and ≤ 2%, resistance present 
but rare; (iii) > 2 and ≤ 10%, resistance uncommon; (iv) 
> 10% and ≤ 50%, resistance common; (v) > 50%, estab-
lished resistance. The ‘sensitive to all drugs’ plot (selected 
via the ‘map view’ dropdown menu) is coloured differ-
ently, to draw attention to countries with low prevalence 
of pansusceptible strains and thus where choice of anti-
microbial is most important: (i) < 10% pansusceptible; (ii) 
> 10 and ≤ 20%; (iii) > 20 and ≤ 50%; (iv) > 50 and ≤ 90%; 
and (v) > 90%. Prevalence estimates are visualised where 
≥ 20 sequences are available for a given country and 
timeframe, otherwise “Insufficient data” is shown (light 
grey; Additional File 1 Fig. S1a).

Users can interact with the map by hovering the mouse 
cursor over a country, to view a tool-tip displaying the 
name of the country and the number (N) and percentage 
of genomes from that country that are resistant (or pan-
susceptible or H58/4.3.1, depending on the ‘map view’ 
variable selected); numbers shown always reflect the cur-
rent choice of local/travel and temporal filters. Selecting 
‘No. Samples’ as the ‘map view’ variable to plot colours 
the map according to number of samples available using 
the current filters; in this view, hovering over a country 
reveals a tool-tip displaying the name of the country, 
number of samples and genotypes, and prevalence of 
H58/4.3.1 and each of the AMR categories.

Detailed plots (for country‑level data)
The second visualisation panel includes four additional 
data plots designed to highlight annual trends in geno-
type and AMR prevalences, AMR prevalence within 

genotype, and molecular mechanisms underlying AMR. 
Upon loading the dashboard, these plots are populated 
by the full dataset (i.e., all countries), however, they were 
designed mainly for the purpose of showing detail for a 
single country of interest. Users can select a country by 
clicking it on the map, or selecting its name from the 
‘select country’ dropdown menu below the map. The 
data plots are then populated by filtering the database to 
include only samples from the selected country of ori-
gin (along with applying any local/travel and time filters 
selected in the map panel).

The ‘Drug resistance trends’ plot (Additional file 1: Fig. 
S1c) shows annual pooled global prevalence of genomi-
cally-predicted resistance to the drugs listed in Table  1 
(as well as prevalence of genomes identified as pansus-
ceptible). By default, trend lines are plotted for the most 
currently relevant AMR categories (MDR, XDR, CipR, 
CipNS, AziR, CefR, Trimethoprim-sulfamethoxazole 
resistant, pansusceptible), but individual variables can 
be hidden or displayed via the dropdown menu ‘Select 
drugs/classes to display’. For the remaining three plots 
(Additional File 1: Fig. S1b,d,e), users can visualise data 
as either counts or percentages using dropdown menus. 
For the ‘Resistance frequencies within genotypes’ and 
‘Resistance determinants within genotypes’ plots, per-
centages are shown by default to highlight the most 
resistant pathogen variants. By default, the ‘Resistance 
frequencies within genotypes’ plot shows the top five 
most-resistant genotypes in the currently-selected coun-
try, but other genotypes can be selected via ‘data view’ 
dropdown menu. The ‘Resistance determinants within 
genotypes’ plot shows the genetic determinants under-
lying resistance in up to the 10 most-resistant genotypes 
for the currently-selected filters and a selected drug cat-
egory. The default view is of determinants conferring 
non-susceptibility to ciprofloxacin, as this is the most rel-
evant to empiric treatment choice, however other drugs 
can be selected from the ‘drug class’ dropdown menu. For 
the ‘Genotype distributions’ plot, counts are shown by 
default to mimic epidemic curves used in epidemiologi-
cal investigations for case counts. As for the map views, 
hovering the mouse cursor over these plots reveals a 
tool-tip displaying the raw data count (N) and prevalence 
(%) underlying each data point.

Static outputs
User-generated visualisations can be downloaded indi-
vidually as portable network graphics (PNG) files, and 
a report of all current data visualisations can be down-
loaded as a portable documents format (PDF) file (Addi-
tional file  1: Fig. S1f; example output in Additional 
file 2). If a country is selected, the report includes a list 
of publications (PubMed IDs) for genomes included in 
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the current view, to facilitate proper citation and prov-
enance-tracking of constituent datasets (otherwise the 
report refers readers to download the database for this 
information). A plain text line list (comma separated 
values, CSV) of the full TyphiNET database is also avail-
able for download (example output in Additional file 3). 
This file contains the GTGC-curated sample metadata 
(including country of origin, year of isolation, purpose 
of sampling, travel association; provenance information 
for individual genomes such as originating lab, primary 
publication PubMed ID, sequence data accession num-
bers), as well as genome-derived AMR determinants and 
pathogen genotypes assigned by Pathogenwatch. This file 
is intended to facilitate provenance-tracking of individual 
genome sequences, and to allow expert users to further 
explore the data using other tools.

Results and discussion
Version 1.6 of the TyphiNET database (February 2024) 
included data derived from 12,671 genomes curated 
by the GTGC, including those described in the initial 
GTGC publication [24] and more recent published data-
sets from Kenya [53] and Fiji [54]. The TyphiNET dash-
board displays data from genomes from assumed-acute 
typhoid cases from non-targeted sampling frames (see 
Implementation), resulting in a total of n = 11,836 Typhi 
in version v1.6. The filtered database contains data from 
101 countries, however as the map view of sample counts 
shows (Fig.  2a), most countries are represented by very 
few samples. Prevalence estimates are calculated only for 
countries represented by ≥ 20 sequences, currently n = 
30 countries (see e.g., map of XDR prevalence, Fig. 2b). 
The database currently includes samples from 1958–
2021, with the majority from 2010 onwards (n = 10,382, 
87.7%). High-burden countries in South Asia are well 
represented with ≥ 1,300 genomes each (Bangladesh, n = 
1,664; India, n = 2,327; Nepal, n = 1,300; Pakistan, n = 
1,526), including both local data from large-scale disease-
burden studies [55, 56] and travel-associated infection 
isolates sequenced in other countries (Bangladesh, 14.1%; 
India, 45.2%; Nepal, 1.8%; Pakistan, 39.6%) [23, 26]. Afri-
can countries are currently represented by low numbers 
of genomes, with ten countries exceeding 20 genomes 
(Malawi n = 568; Kenya n = 824; Nigeria n = 170; Ghana 
n = 69; Rwanda n = 52; South Africa n = 312; Uganda 
n = 36; Tanzania n = 33; Cameroon n = 27; Gambia n = 
24). This highlights the need for culture-based surveil-
lance studies in typhoid endemic countries in Africa [57]. 
Notably TyphiNET and the GTGC provide a mecha-
nism for continued updating of the database as new 
genomes are released from such efforts, as well as from 
travel-associated infections captured in other countries. 
For example, Nigeria is currently represented by n = 28 

travel-associated infections and n = 142 local infections, 
which reflect the same general trends in terms of domi-
nance by genotypes 3.1.1 and 2.3.1, with higher preva-
lence of MDR in 3.1.1 highlighted by both data sources 
(Additional file 1: Fig. S2).

We conducted an informal assessment of dashboard 
useability by asking untrained users from different geog-
raphies to explore the dashboard and use it to answer 10 
multiple-choice questions. Questions were designed to 
assess whether users could successfully interact with the 
dashboard in order to find the answers to specific ques-
tions regarding the prevalence, trends, and determinants 
of typhoid fever resistance in specific countries and time 
periods (Table  2). Our goal was to assess the ability of 
users who are generally familiar with typhoid and AMR 
to find the specific information they need, rather than to 
assess comprehension or understanding of typhoid and 
AMR. Therefore, the audience for the quiz was mem-
bers of the Global Typhoid Genomics Consortium and 
their colleagues at academic and public health institu-
tions, and we did not track the professional background 
or expertise of individual respondents, nor did we pro-
vide any training or background to typhoid fever or the 
concepts employed in the dashboard. The results (from 
n = 42 respondents) suggest the dashboard is sufficiently 
intuitive for users who are familiar with the concepts, but 
not familiar with the dashboard interface, to find the cor-
rect answers to these types of questions (> 90% correct 
responses to 8/10 questions, see Table 2).

In the following sections, we present three case stud-
ies that highlight the utility of the TyphiNET dashboard 
as a tool for understanding national AMR trends and the 
underlying mechanisms and pathogen genotypes. The 
case studies were developed to illustrate previously docu-
mented shifts in local Typhi populations in African and 
Asian countries, each associated with different types of 
changes in AMR patterns (emergence or decline of resist-
ance, and lineage replacement) that have implications for 
local typhoid control.

Case study 1 : emergence and clonal expansion of XDR 
typhoid in Pakistan
Selecting ‘Extensively drug resistant’ from the dropdown 
menu in the map, it is clear that Pakistan has many XDR 
cases (Fig.  2b). Toggling the ‘Local’ and ‘Travel’ filters 
shows that this high prevalence is evident in data from 
both sources. Clicking on Pakistan in the world map 
allows exploration of the genotypes, resistance mecha-
nisms and annual trends underlying the high prevalence 
of XDR in the country. With the filter set to ‘All’ (i.e., 
including local and travel data) and year range from 2010 
to 2021, the ‘Resistance trends’ plot shows there is suffi-
cient data (N ≥ 10) per year from 2014–2020 to calculate 
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annual prevalence values. The plot shows the first emer-
gence of XDR in Pakistan in 2016 (Additional file 1: Fig. 
S3a), against a background of persistently high CipNS 
prevalence (> 96% throughout 2014–2020) and MDR (~ 
60% in 2014–2017, rising to 84% in 2020; p = 0.02 two 
proportions z-test). The ‘Resistance frequencies within 
genotypes’ plot shows MDR focused in the 4.3.1.1 geno-
type background, with CefR, CipR and XDR (ie the com-
bination of MDR + CefR + CipR) localised in the derived 
genotype 4.3.1.1.P1 (Fig.  3a, Additional file  1: Fig. S3b). 
The ‘Genotype distribution’ plot, with data view set to 

‘Percentage per year’, shows the first appearance of gen-
otype 4.3.1.1.P1 in 2016 (Fig.  3b, Additional file  1: Fig. 
S3c). Mousing over the year 2016 brings up the tooltip, 
which clarifies that there is a single genome of 4.3.1.1.P1 
amongst total N = 96 for the year. The plot shows preva-
lence of 4.3.1.1.P1 increased in subsequent years, reach-
ing 87.5% in 2020, with the minor genotypes reducing in 
prevalence continuing to persist.

The ‘Resistance determinants within genotypes’ plot 
shows the genetic basis for XDR in 4.3.1.1.P1. The default 
view shows fluoroquinolone resistance determinants, and 

Fig. 2  Global views of data gaps and AMR prevalence. A Total sample counts per country. Top panels indicate the number of sequences 
and genotypes present in the TyphiNET dashboard as of February 2024. Left panel indicates controls for filtering the data visualised by data source 
(all data, locally collected cases, or travel-associated cases) and time period (by providing start and end years for the period). Countries on the map 
are coloured by the total number of samples as per the inset legend (top right of map). B National frequencies of XDR. Countries on the map are 
coloured by XDR frequency as per the inset legend (top right of map). Data are shown where there are ≥ 20 sequences available for the country 
of interest. Tool tip indicates summary statistics for Pakistan upon mouse over
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highlights that CipR in the genotype 4.3.1.1.P1 is due to 
the combination of a single QRDR mutation and a qnrS 
gene (Additional file 1: Fig. S3 d). Most other genotypes 
also have a single QRDR mutation (resulting in CipNS, 
shown in yellow), indicating that high-level resistance 
could emerge in any of these strain backgrounds through 
additional gyrA/parC mutations [58, 59] or plasmid-
mediated acquisition of qnr genes [41, 60, 61]. Interest-
ingly, the plot also highlights the presence of a variant 
with three QRDR mutations (resulting in CipR, shown 
in red), genotype 4.3.1.2.1, which emerged in India some 
decades ago [24, 62] (the genotype timeline shows this 
was detected in Pakistan between 2016–2019, in paral-
lel with XDR 4.3.1.1.P1). Selecting ‘Ceftriaxone’ from the 

dropdown menu shows resistance in 4.3.1.1.P1 is mainly 
due to blaCTX-M-15 (Additional file 1: Fig. S3e); the same 
gene is found in a single isolate of 4.3.1.1 and two of 4.3.1. 
Selecting ‘Trimethoprim-sulfamethoxazole’ from the 
dropdown menu shows resistance in 4.3.1.1.P1 is mostly 
due to dfrA7 plus sul1 and sul2, and that this combina-
tion is also common in the parent genotype 4.3.1.1 (Addi-
tional file 1: Fig. S3f ), consistent with emergence of XDR 
by acquisition of qnrS + blaCTX-M-15 within the locally cir-
culating MDR + QRDR 4.3.1.1 variant.

The TyphiNET dashboard conveys several key points 
about XDR typhoid, which reflect the emerging picture 
of the problem captured in the wider literature [40, 56, 

Table 2  Informal assessment of dashboard useability

a This question has no objective answer, as the prevalence of genotype 3.1.1 in Nigeria moves up and down between 2010–2020

Question Answers (*Correct) Correct responses N (%)

In which country is extensively drug-resistant (XDR) S. Typhi most prevalent (across all years)? India
Mexico
Pakistan *
United States

41 (98%)

How many total genomes are available from Nepal since 2010? 1100
1274 *
1484
1660

39 (93%)

How many of the genomes available from Nepal since 2010 are from travel data? 20 *
45
75
103

41 (98%)

What percentage of S. Typhi from Kenya isolated between 2010 and 2020 were multidrug resistant 
(MDR)?

23.45%
43.29%
78.41% *
100%

39 (93%)

What is the overall trend in Ciprofloxacin non-susceptibility (CipNS) in Kenya from 2010 to 2020? Increasing *
Decreasing
No change

41 (98%)

Which genotypes had the highest rates of Ciprofloxacin non-susceptibility (CipNS) in Kenya 
from 2010–2020? (two answers)

4.3.1.1.EA1
4.3.1.2.EA2 *
4.3.1.2.EA3 *
0.0.1
4.3.1.1.EA2
4.3.1.1.EA3

34 (81%) selected ONE 
or BOTH correct geno-
types

What was the most common genotype in Nigeria in 2013? 2.3.1
2.3.2
3.1.1 *
4.1

41 (98%)

aWhat is the overall trend in prevalence of this genotype in Nigeria between 2010 and 2020? Increasing
Decreasing
Stable

11 (26%)
17 (16%)
24 (57%)

What is the prevalence of trimethoprim resistance in this genotype in Nigeria between 2010 
and 2020?

45%
78%
89% *
100%

32 (76%)

Which resistance gene is responsible for the majority of trimethoprim resistance in this genotype 
in Nigeria between 2010 and 2020?

dfrA14 + sul2
dfrA15 *
dfrA1 + sul1
dfrA1 + sul1 + sul2

40 (95%)
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63–65]. These include (i) time of emergence of XDR 
typhoid; (ii) that XDR cases are due to emergence and 
dissemination of a single variant, genotype 4.3.1.1.P1; 
(iii) the underlying mechanisms of resistance; (iv) that 
this genotype shares with its parent, 4.3.1.1, the MDR 
genes and single QRDR mutation but has acquired 
qnrS and blaCTX-M-15 to become XDR; (v) that the XDR 
4.3.1.1.P1 has not established locally transmitting pop-
ulations outside Pakistan, at least not by 2020 (this is 
still true as of April 2024, however more recent data 
are sparse due to a decline in travel and prioritisation 
of SARS-CoV- 2 sequencing during the COVID19 pan-
demic). Intercontinental transmission of XDR typhoid 
associated with travel has been reported in several 
countries [23, 30, 46, 66–69], however, to date only a 
single report of a localised outbreak has occurred out-
side Pakistan [70]. TyphiNET will provide a means of 
monitoring the emergence of new XDR strains, as well 
as the persistence of XDR Typhi 4.3.1.1.P1 within Paki-
stan and its eventual spread to other settings which 
may motivate more widespread TCV use. The latter is 
of critical importance as recent surveillance data have 
shown that ancestral populations of genotype 4.3.1.1 
circulating in Pakistan have acquired acrB mutations 
conferring azithromycin resistance [71] (as can be seen 
by selecting ‘Azithromycin’ in the ‘Resistance determi-
nants within genotypes’ plot), suggesting that 4.3.1.1.P1 
may also be able to tolerate these mutations.

Case study 2: decline of MDR and emergence 
of azithromycin resistance in Bangladesh
Selecting ‘Multidrug resistant’ from the dropdown menu 
in the map, it can be seen that MDR infections are dis-
tributed throughout parts of sub-Saharan Africa, South-
eastern Asia and South Asia (Additional file 1: Fig. S4a). 
Toggling the ‘Local’ and ‘Travel’ filters reveal a high 
prevalence of MDR cases in Bangladesh from both data 
sources. Clicking on Bangladesh in the world map, or 
using the ‘select country’ dropdown menu, allows explo-
ration of country-level trends over time. With the filter 
set to ‘All’ (i.e., including local and travel data) and year 
range from 2005 to 2021, the ‘Resistance trends’ plot 
shows there are sufficient data (N ≥ 10 per year) to cal-
culate annual AMR prevalences from 2005–2019 (with 
the exception of 2006) (Fig. 4a, Additional file 1: Fig. S4b). 
Mousing over the year 2005 reveals MDR (deep red line) 
was common in 2005 (91%), declining in subsequent 
years to 8–30% between 2013 and 2019 (p = 9.5 × 10–9 
two proportions z-test). At the same time, CipNS (yel-
low line) remained high (> 92%) throughout 2005–2019 
(Additional file  1: Fig. S4b). The ‘Genotype distribution’ 
plot, with data view set to ‘Percentage per year’ shows that 
4.3.1 genotypes, including sublineages 4.3.1.1, 4.3.1.2, and 
4.3.1.3, have also been gradually declining over the same 
time period (Additional file 1: Fig. S4c). Mousing over the 
year 2005 demonstrates that 91% (n = 10/11) were 4.3.1 
genotypes (pink coloured bars), which declined to 20% 
(n = 8/40) in 2019 (p = 6.6 × 10–6 two proportions z-test). 

Fig. 3  Exploring the emergence of XDR Typhi in Pakistan with the TyphiNET dashboard. A ‘Resistance frequencies within genotypes’ plot shows 
frequencies of resistance to different drug classes, within common genotypes circulating in Pakistan. Bars are coloured according to the inset 
legend. B ‘Annual genotype distribution’ plot shows the frequencies of pathogen genotypes circulating in Pakistan per year. Genotypes are coloured 
as per the inset legend
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Over the same time period, genotype 3.3.2 (mid-blue col-
oured bars) persisted at low prevalence, and genotypes 
2.0.1 and 2.3.3 (green bars) emerged and proliferated. 
Viewing the ‘Resistance frequencies within genotypes’ 
plot with default settings (data view as ‘Percentage within 
genotype’) demonstrates that MDR was only present in 
genotype 4.3.1.1 (72%), whereas CipNS was prevalent 
among all genotypes displayed (Additional file 1: Fig. S4 
d). Selecting the local Bangladesh genotype ‘4.3.1.3.Bdq’ 
(Additional file  1: Fig. S4 d) from the dropdown menu, 
one can see this variant has a distinct AMR profile with 
resistance to ciprofloxacin, ampicillin, sulfonamides and 
tetracycline, but susceptibility to the older drugs chlo-
ramphenicol and trimethoprim as well as ceftriaxone. 
The ‘Resistance determinants within genotypes’ plot, 
when viewed with default settings (‘Select drug class’ set 
to ‘Ciprofloxacin’ and ‘Data view’ set to ‘Percentage per 
genotype’) reveals that most genotypes harbour a single 
QRDR mutation (yellow, resulting in CipNS), except for 
genotype 4.3.1.3.Bdq genomes which have acquired both 
a QRDR mutation and a qnrS gene (purple, resulting in 
CipR; Additional file  1: Fig. S4e). Despite being CipR, 
4.3.1.3.Bdq strains do not appear to have replaced other 
co-circulating CipNS strains, with both 4.3.1.3.Bdq and 
CipR remaining at frequencies of < 18% between 2005–
2019 (Additional file 1: Fig. S4c). It is tempting to specu-
late that this may be related in some way to the variant’s 
susceptibility to once commonly prescribed drugs chlo-
ramphenicol and trimethoprim, although it could also be 

due to a fitness cost associated with the IncFIB(K) plas-
mid it carries [60, 61].

The ‘Drug resistance trends’ plot also demonstrates the 
emergence of azithromycin resistance from 2014 onwards 
(Fig.  4a, Additional file  1: Fig. S4b; ≤ 5% of isolates per 
year up until 2019) in Bangladesh. The ‘Resistance fre-
quencies within genotypes plot’, with default settings, 
shows that azithromycin resistance does not appear to be 
associated with any specific genotype and is occurring in 
multiple genotype backgrounds (Fig. 4b, Additional file 1: 
Fig. S4f ). The molecular mechanisms driving azithro-
mycin resistance among different pathogen genotypes 
can be viewed in the ‘Resistance determinants within 
genotypes’ plot by using the ‘Select drug class’ dropdown 
menu to select ‘Azithromycin’. This reveals the mecha-
nism is a mix of non-synonymous mutations at acrB 
codon 717, with acrB-R717Q found in four genotypes 
and acrB-R717L in three genotypes (Fig.  4b, Additional 
file 1: Fig. S4f ), including a single example of each muta-
tion in genotype 2.3.3. Examining the global distribu-
tion of azithromycin resistance on the map, by selecting 
‘Azithromycin resistant’ from the ‘map view’ dropdown 
menu, highlights that the burden of resistant strains, at 
present, is low and largely concentrated among South 
Asian countries (Additional file 1: Fig. S5).

TyphiNET captures several key aspects of the popu-
lation dynamics and evolution of AMR among Typhi 
populations in Bangladesh observed across multiple sur-
veillance studies [41, 55, 56, 60, 61, 72]. These include 

Fig. 4  Azithromycin resistance emergence in Bangladesh is associated with different mutations in AcrB, arising in at least six different genotype 
backgrounds. A Resistance trends plot showing that ciprofloxacin non-susceptibility has remained near-universal since 2005, while MDR declined. 
Azithromycin emerged circa 2014, reaching 4–5% in 2017–2019. B Resistance determinants plot shows that two different types of azithromycin 
resistance mutations were detected (AcrB-R717L and AcrB-R717Q), in six different genotypes
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(i) the decline of MDR over the last two decades, coin-
ciding with a decline in 4.3.1 genotypes; (ii) a sustained 
high frequency of CipNS cases driven by a diverse range 
of pathogen genotypes, mostly carrying a single QRDR 
mutation; (iii) the continued presence of CipR geno-
type 4.3.1.3.Bdq; and (iv) the timeframe and molecular 
mechanisms driving the emergence of azithromycin non-
susceptibility due to mutations in acrB across multiple 
pathogen genotypes [41, 55, 56, 72]. Fortunately, there 
does not yet appear to be local establishment or geo-
graphical spread of any specific azithromycin-resistant 
variants (Additional file 1: Fig. S5), however the aggrega-
tion of genomic data from multiple sources in the Typhi-
NET dashboard could facilitate identifying and tracking 
the emergence of such clones in future.

Case study 3: replacement of susceptible genotypes 
in Malawi with MDR genotype 4.3.1.1
Choosing ‘Multidrug resistant’ from the map dropdown 
menu shows a few countries with MDR prevalence 
exceeding 50% (dark red), including Malawi. Setting the 
time window to 2010 onwards and hovering the mouse 
cursor over Malawi shows the estimated MDR prevalence 
for this period is 93% (Additional file  1: Fig. S6a). With 
the country set to Malawi, the travel filter set to ‘All’ (i.e., 
including local and travel data) and year range from 2010 
to 2019, the ‘Drug resistance trends’ plot shows that MDR 
prevalence (deep red line; Additional file 1: Fig. S6b) has 
risen steeply over this decade (this line can be seen more 
clearly by de-selecting ‘Trimethoprim-sulfamethoxazole’ 

from the ‘Drugs view’ menu). The proportion amongst 
the 19 isolates sequenced in 2010 was relatively low 
(21%), but reached 96% (n = 25/26) in 2012 and has been 
persistently high (> 95%) since then (p = 1.0 × 10–7 two 
proportions z-test). The ‘Genotype distribution’ plot 
shows that over the same period there was clonal replace-
ment, with the diverse genotypes that were present in 
2010 being replaced by genotype 4.3.1.1.EA1 (light pink 
bars; Additional file 1: Fig. S6c). Hovering the mouse over 
the graph shows that 4.3.1.1.EA1 prevalence rose from 
21% in 2010 to 96% in 2012, and has remained above 95% 
ever since (p = 1.0 × 10–7 two proportions z-test; Addi-
tional file 1: Fig. S6c). The ‘Resistance frequencies within 
genotypes’ plot demonstrates that resistance to first 
line drugs is almost entirely associated with genotype 
4.3.1.1.EA1 (Additional file 1: Fig. S6 d).

The ‘Drug resistance trends’ plot from 2010–2019 
(Additional file 1: Fig. S6b) demonstrated that CipNS was 
relatively low throughout this time period (< 16%; yellow 
line). However, there are two distinct periods within this 
time frame in which CipNS strains are observed; 2010–
2012 and 2018–2019. By adjusting the start and end 
years to 2010 and 2012, respectively, using the dropdown 
menus in the top panel, it is apparent from the ‘Resist-
ance frequencies within genotypes’ plot that CipNS 
during this early period was due to sporadic infections 
with CipNS genotypes 4.3.1.1 (n = 4) and 4.3.1.2 (n = 2) 
(Fig. 5a, Additional file 1: Fig. S6e). The ‘Resistance deter-
minants within genotypes’ plot (with ‘Select drug class’ 
set to ‘Ciprofloxacin’, and ‘Data view’ set to ‘Number of 

Fig. 5  Genotypes associated with Ciprofloxacin non-susceptibility in Malawi in different periods. A In 2010–2012, CipNS was detected in n = 
4 isolates of genotype 4.3.1.1 and n = 2 isolates of 4.3.1.2, which were susceptible to other drugs. B In 2018–2019, CipNS emerged in the MDR 
genotype 4.3.1.1.EA1 (n = 7 isolates)
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genomes’) shows that genomes from both these geno-
types carry one QRDR mutation (Additional file  1: Fig. 
S6f ). However, when viewing the later period of CipNS 
strains (by adjusting start and end years to 2018 and 2019, 
respectively) the same two plots reveal that more recent 
CipNS cases are driven by the emergence of 1–2 QRDR 
mutations in the locally dominant genotype 4.3.1.1.EA1 
(Fig. 5b, Additional file 1: Figs. S6 g-h). Strains that have 
acquired two QRDR mutations are of particular concern 
in this setting due to further elevating ciprofloxacin MIC, 
which is associated with increases in both fever clearance 
times and risk of clinical failures [29, 50, 61, 73].

The TyphiNET dashboard highlights the problem of 
MDR typhoid in Malawi, consistent with several recent 
genetic and phylogenetic studies [55, 74, 75]. These 
include (i) the time of MDR typhoid emergence; (ii) that 
MDR typhoid is associated with clonal replacement of 
local genotypes by 4.3.1.1.EA1, which now causes the 
majority of infections in this setting [55, 74]; and (iii) that 
CipNS is emerging in this setting, driven by the evolu-
tion of QRDR mutations in the now-endemic 4.3.1.EA1 
strains [75]. Malawi has recently launched a national 
TCV immunisation program, motivated in large part by 
the sustained resistance to first-line drugs, and it will be 
important to monitor the impact of this on the pathogen 
population. Given the clinical relevance of ciprofloxacin, 
it will be particularly important to monitor resistance in 
Malawi and neighbouring countries, which will be facili-
tated by local and international sequencing efforts and 
data aggregation in TyphiNET.

Limitations and future directions
The case studies presented here highlight how TyphiNET 
can be used to explore the Typhi populations in certain 
countries, capturing key aspects about the emergence 
and spread of AMR variants that are supported by cur-
rent literature. However, the platform is necessarily lim-
ited by the availability of source data. India, Pakistan, 
Bangladesh, Nepal, and Malawi are among the countries 
with the most Typhi genome data available (n = 2327, n = 
1526, n = 1664, n = 1300, n = 568, respectively), however, 
this is mainly from a handful of research studies [55, 56, 
60, 63, 74, 75] that may not be representative of typhoid 
fever in each country. Indeed, one use of the dashboard 
is to highlight data gaps, which may help to prioritise 
areas for new typhoid surveillance. Routine sequenc-
ing of travel-associated cases in the UK and US contrib-
uted appreciable data for Pakistan (n = 32–217 per year) 
and Bangladesh (n = 15–47 per year), but none from 
Malawi and very few from Africa in general [23, 24]. The 
importance of pathogen sequencing in supporting infec-
tious disease surveillance and public health response 
is increasingly recognised, including launch of the 

WHO-supported International Pathogen Surveillance 
Network (IPSN) [76] and the 2022–2032 WHO global 
genomic surveillance strategy for pathogens with pan-
demic and epidemic potential [77]. Regional and national 
efforts to strengthen WGS capacity in typhoid-endemic 
countries include Africa CDC’s Pathogen Genomics Ini-
tiative, regional PulseNet networks, and inclusion of 
WGS in national AMR surveillance in countries such 
as Pakistan, India, and the Philippines [78–80]. It can 
therefore be anticipated that the rate of Typhi sequenc-
ing is likely to increase, and the representation of cases 
from endemic areas will improve over time. However, the 
future utility of TyphiNET and other data aggregation 
efforts will depend on (i) the WGS data being shared, in 
a timeframe that is useful to inform and guide decision-
making; (ii) the WGS data being accompanied by suffi-
cient and accurate contextual metadata to be useful for 
epidemiological purposes; (iii) continuous curation of the 
AMR database hosted at Pathogenwatch; and (iv) ongo-
ing development in response to stakeholder and com-
munity feedback. To support these needs, the GTGC 
was formed in 2021 to support and standardise genera-
tion, analysis and sharing of Typhi genome data. A con-
textual metadata template was developed that includes 
fields to capture the purpose of sampling as well as coun-
try of origin for travel-associated cases, and this has been 
used by the Consortium to curate public genome data for 
Pathogenwatch and TyphiNET. However, the ongoing 
relevance of public genome data, and downstream tools 
that utilise it such as TyphiNET, will depend on meta-
data standards and data sharing practices being adopted 
widely by those generating pathogen genomic surveil-
lance data. We hope that this first version of TyphiNET 
illustrates a potential benefit of such data sharing, that 
might help encourage such practices. In the meantime, 
planned future developments to the dashboard include 
the addition of uncertainty measures (in addition to cur-
rent visuals, which facilitate understanding limitations of 
the data by showing the sample size and count data for all 
data points plotted), and planned activities of the GTGC 
include aggregation, curation and linkage of AST data 
to support the ongoing accuracy of AMR predictions 
from phenotype, as new mechanisms and determinants 
emerge. Stakeholder engagement and feature develop-
ment of TyphiNET, as well as extension to other typhoi-
dal and non-typhoidal pathogens, is also ongoing with 
funding support under the AMRnet project [81]. 

Conclusions
Against a backdrop of increasing AMR and vaccine roll-
outs in multiple countries, the TyphiNET dashboard 
provides an online resource for monitoring global and 
national genome-derived trends in AMR and pathogen 
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variants without bioinformatics expertise. These data are 
potentially informative for implementing and monitoring 
vaccination and empirical treatment policies for typhoid 
fever, as well as understanding local variant transmission, 
enabling improved targeting of costly WASH interven-
tions. As more Typhi WGS data become publicly avail-
able and curated by the GTGC, the TyphiNET database 
will be updated to provide a contemporary overview of 
ongoing and emerging trends in the pathogen population. 
Finally, the GTGC and TyphiNET approach provides a 
useful model for making pathogen genome-derived data 
broadly accessible that could be applied to other priority 
pathogens.
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