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Abstract 

Background  Post-traumatic stress disorder (PTSD) is a common and disabling psychiatric disorder. PTSD involves 
multiple brain regions and is often comorbid with other psychiatric disorders, such as major depressive disorder 
(MDD). Recent genome-wide association studies (GWASs) have identified many PTSD risk loci and transcriptomics 
studies of postmortem brain have found differentially expressed genes associated with PTSD cases. In this study, we 
integrated genome-wide measures across modalities to identify convergent molecular effects in the PTSD brain.

Methods  We performed tandem mass spectrometry (MS/MS) on a large cohort of donors (N = 66) in two prefrontal cortical 
areas, dorsolateral prefrontal cortex (DLPFC), and subgenual prefrontal cortex (sgPFC). We also coupled the proteomics data 
with transcriptomics and microRNA (miRNA) profiling from RNA-seq and small-RNA sequencing, respectively for the same 
cohort. Additionally, we utilized published GWAS results of multiple psychiatric disorders for integrative analysis.

Results  We found differentially expressed proteins and co-expression protein modules disrupted by PTSD. Integrative 
analysis with transcriptomics and miRNA data from the same cohort pointed to hsa-mir-589 as a regulatory miRNA 
responsible for dysregulation of neuronal protein networks for PTSD, including the gamma-aminobutyric acid (GABA) 
vesicular transporter, SLC32A1. In addition, we identified significant enrichment of risk genes for other psychiatric 
disorders, such as autism spectrum disorder (ASD) and major depressive disorder (MDD) within PTSD protein co-
expression modules, suggesting shared molecular pathology.

Conclusions  We integrated genome-wide measures of mRNA and miRNA expression and proteomics profiling 
from PTSD, MDD, and control (CON) brains to identify convergent and divergent molecular processes across genomic 
modalities. We substantially expand the number of differentially expressed genes and proteins in PTSD and identify 
downregulation of GABAergic processes in the PTSD proteome. This provides a novel framework for future studies 
integrating proteomic profiling with transcriptomics and non-coding RNAs in the human brain studies.
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Background
Post-traumatic stress disorder (PTSD) is a severe men-
tal illness that affects millions of people worldwide [1, 
2]. Patients with PTSD typically have symptoms that 
include re-experiencing of traumatic memories [3, 4], 
hyperarousal, emotional numbing, dysphoric mood, and 
avoidance. In addition, PTSD is frequently comorbid 
with other psychiatric disorders, such as major depres-
sive disorder (MDD), which occurs in 51–82% of PTSD 
cases [5–7]. PTSD heritability estimates range from 30 to 
40% [8–10] and recent evidence suggests PTSD is highly 
polygenic [8, 11, 12].To date, only a few genomic loci have 
been implicated in the risk for PTSD. Recent large meta-
analyses by the Million Veteran Program and the Psychi-
atric Genomics Consortium revealed ~ 100 significant 
loci for PTSD diagnosis or PTSD quantitative symptom 
traits [8, 11–14]. Transcriptomic studies using human 
postmortem prefrontal cortex (PFC) tissue have linked 
dysregulation of biological processes to PTSD, including 
GABA signaling, inflammation and cytokine effects, and 
glucocorticoid signaling [15–18].

Tandem mass spectrometry (MS/MS) has become 
an indispensable tool for obtaining unbiased, high-res-
olution proteomic data. Whole-proteome analysis is 
essential for understanding the molecular facets of the 
human brain because proteins and their changes provide 
unique insight into the state of the cell. The entire neu-
roproteome can only be profiled using mass spectrom-
etry, which has comparable throughput and resolution 
of other functional genomic techniques. To fully under-
stand the functional and system-level roles of central 
nervous system (CNS) cells in disease, quantitative inves-
tigation of the thousands of proteins expressed in mul-
tiple neuronal and non-neuronal cell types is essential. 
The roles of post-transcriptional modifications and the 
trafficking of transcripts and proteins must be integrated 
with other functional genomic data to better understand 
the dynamics of disease alterations to RNA and protein 
expression. Despite the potential value, few studies have 
been conducted in human postmortem brains of donors 
with major psychiatric illness and fewer still have sought 
to integrate this data with other genomic modalities. 
Additionally, as the final step of the central dogma of 
molecular biology, protein sequence and abundance may 
be the most relevant genomic level to identify potential 
therapeutic points of intervention.

Systems-level analyses of multi-omics datasets are 
essential tools for identifying molecular targets of disease 
processes beyond what coding gene expression alone 
could reveal [19]. Therefore, we performed proteomic 
tandem mass spectrometry on postmortem brains from 
individuals with PTSD, a psychiatric comparison group 
(MDD), and neurotypical controls and coupled this with 

genome-wide expression profiling of mRNA and miR-
NAs. We examined tissue from two prefrontal cortical 
regions: dorsolateral prefrontal cortex (DLPFC; Brod-
mann area 9/46) and subgenual prefrontal cortex (sgPFC; 
Brodmann area 25). These two regions were chosen 
based on previous clinical evidence of functional engage-
ment in PTSD [20, 21]. We also developed a multi-modal 
bioinformatics analysis pipeline to link protein abun-
dance with miRNA and RNA expression changes in post-
mortem brain.

We identified PTSD-specific protein differential expres-
sion signatures and co-expression patterns, including 
downregulation of interneuron-specific modules contain-
ing GABAergic proteins SLC32A1 and NEGR1. These 
protein modules also exhibited significant enrichment of 
risk genes for autism spectrum disorder (ASD) and major 
depressive disorder (MDD), suggesting shared molecu-
lar pathology and risk. In addition, we found that several 
miRNAs were upregulated in the PTSD brain, including 
hsa-mir-589 and hsa-mir-6786 and integrative analysis 
identified miRNAs enriched for disease-associated pro-
teins and protein modules. Our findings highlight the use 
of large-scale multi-omics systems biology to unravel the 
effects of the neuroproteome in psychiatric disorders.

Methods
Human postmortem cohort
This study was conducted using frozen postmortem 
brain specimens from the University of Pittsburgh Medi-
cal Center. Individuals were a mix of European, Asian, 
and African American descent. Brain specimens were 
obtained during autopsies conducted at the Allegheny 
County Medical Examiner’s Office (Pittsburgh, PA, USA) 
after obtaining consent for donation from the next-of-
kin. An independent committee of experienced clini-
cians confirmed the presence or absence of psychiatric 
illness for each subject using an expanded psychologi-
cal autopsy approach [22]. The cohorts were matched 
for sex, age, PMI, and pH. A summary of sociodemo-
graphic and clinical details is listed in Additional file  1: 
Fig. S1 (the donors used in our proteomics experiments 
in Additional file  1: Fig. S1A, transcriptomics in Addi-
tional file 1: Fig. S1B and smRNA-seq in Additional file 1: 
Fig. S1C) and includes the presence of comorbid disor-
ders, tobacco use, manner of death, and presence of drug 
and/or alcohol abuse. A total of 57 individuals (19 PTSD: 
9 males, 10 females; 19 MDD: 9 males, 10 females and 
19 healthy controls: 10 males, 9 females, see Additional 
file  1: Fig. S1A) were recruited by design for proteom-
ics profiling and an expanded cohort of 66 individuals 
(22 PTSD: 11 males, 11 females; 22 MDD: 11 males, 11 
females; and 22 healthy controls: 11 males, 11 females, 
see Additional file 1: Fig. S1B) for RNA-seq, and a subset 
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of 57 individuals (17 PTSD: 8 males, 9 females; 22 MDD: 
11 male, 11 female; and 18 healthy controls: 11 males, 7 
females, see Additional file  1: Fig. S1C) for small RNA-
seq Fresh frozen tissue samples (25 mg) of PFC from the 
sgPFC (BA 25) and the DLPFC (BA 9/46) were utilized 
for each donor.

Psychiatric history and demographic information were 
obtained via an extensive psychological autopsy including 
medical record collection and review; structured diag-
nostic interviews (SCID-5-RV and SCID-5-PD) with the 
next-of-kin or other knowledgeable informant; review of 
neuropathology and toxicology reports; and a postmor-
tem diagnostic conference staffed by adult, child, and 
geriatric psychiatrists, clinical psychologists, and other 
senior psychiatric clinicians, that generates DSM-IV/5 
and ICD-10-CM diagnoses (or their absence) for all sub-
jects as previously described. Rates of depression were 
roughly equal between the cohorts with 47% comorbid 
for depression in the proteome cohort, and of the 22 
individuals with PTSD in the transcriptome cohort, 50% 
were comorbid for depression.

smRNA‑seq library preparation
RNA was isolated from 20 mg of frozen postmortem 
brain tissue using a RNeasy Mini Kit with genomic DNA 
elimination, as described by the manufacturer (Qiagen). 
The RIN and concentration were assessed using a Bioan-
alyzer (Agilent). smRNA libraries were constructed using 
a QiaSeq miRNA library kit (Qiagen) from 1 µg of RNA. 
Samples were barcoded and sequenced on a HiSeq2500 
(Illumina) at a read depth of 20M.

Tissue collection and preparation for LC–MS/MS
Tissue was lysed in RIPA buffer with protease and phos-
phatase inhibitors (100 × halt inhibitor cocktail, Ther-
mofisher) using a probe sonicator. Cellular debris was 
pelleted by centrifugation and the supernatant contain-
ing soluble proteins was collected. Soluble protein (20 
µg in 10 µl) was aliquoted from the supernatant, addi-
tional water was added to a final volume of 100 µL. Sam-
ples were then added to 200 µL of ice-cold acetone and 
protein was precipitated overnight. The pellet was air 
dried and resuspended in 20 µL 8  M urea, containing 
400 mM ammonium bicarbonate (pH 8) and reduced in 
dithiothreitol (DTT; 2 µL, 45 mM) at 37 °C for 30 min. 
Samples were alkylated with iodoacetamide (IAM; 2 µL, 
100 mM) at room temperature (in the dark) for 30 min. 
Additional water was added and samples were enzy-
matically digested with sequencing-grade trypsin (1:40 
trypsin:protein; Promega, Madison, WI, USA) at 37 °C 
for 16 h. The final volume was 80 µL. Digested proteins 
were acidified in 0.1% formic acid and desalted via col-
umn purification (C18 spin columns; The Nest Group, 

Inc; Southborough, MA, USA) and dried using a Speed-
Vac. Samples were stored in −80 °C until mass spectrom-
etry analysis.

Data‑independent acquisition (DIA) mass spectrometry 
(MS)
Purified samples were resuspended in 0.2% trifluoroacetic 
acid (TFA)/2% acetonitrile (ACN) in water. DIA LC–MS/
MS was carried out with a nano-ACQUITY UPLC sys-
tem (Waters Corporation, Milford, MA, USA) connected 
to an Orbitrap Fusion Tribrid (ThermoFisher Scientific, 
San Jose, CA, USA) mass spectrometer. Samples were 
injected and loaded into a trapping column (nanoAC-
QUITY UPLC Symmetry C18 Trap column, 180 µM × 20 
mm) at 5 µL/min. Peptides were subsequently separated 
using a C18 column (nanoACQUITY column Peptide 
BEH C18, 75 µm × 250 mm). Mobile phases consisted 
of Mobile Phase A (0.1% formic acid in water) or Mobile 
Phase B (0.1% formic acid in ACN). Peptides were eluted 
with 6–35% gradient Mobile Phase B for 90 min and 85% 
Mobile Phase B for 15 min at 300 nL/min, 37 °C. All sam-
ple injections were interspersed by column regeneration 
and three blank injections. Data were acquired under 
data-independent acquisition (DIA) mode with an isola-
tion window of 25 m/z. Full scan was in the 400–1000 m/z 
range, “Use Quadrupole Isolation” enabled at an Orbitrap 
resolution of 120,000 at 200 m/z and automatic gain con-
trol target value 4 × 105. MS2 fragment ions were gener-
ated in C-trap with higher-energy collision dissociation at 
28% and Orbitrap resolution of 60,000.

Quality control for proteomics data
DIA spectra were searched against a Homo sapiens 
brain proteome fractionated spectral library generated 
from Data-Dependent Acquisition (DDA) LC MS/MS 
spectra (collected from the same Orbitrap Fusion mass 
spectrometer with HDC fragmentation) using Scaffold 
DIA software v. 1.2.1 (Proteome Software, Portland, 
OR, USA) [23]. Within Scaffold DIA, raw files were first 
converted to the mzML format using ProteoWizard v. 
3.0.11748 [24]. The samples were then aligned by reten-
tion time and individually searched with a mass toler-
ance of 10 ppm and a fragment mass tolerance of 10 
ppm. The data acquisition type was set to “Overlapping 
margins of 2 Da,” and the maximum missed cleavages 
were set to 2. Fixed modifications included carbami-
domethylation of cysteine residues (+ 57.02). Dynamic 
modifications included phosphorylation of serine, threo-
nine, and tyrosine (+ 79.96), deamination of asparagine 
and glutamine (+ 0.98), oxidation of methionine and 
proline (+ 15.99), and acetylation of lysine (+ 42.01). 
Peptides with charge states between 2 and 4 and 6–30 
amino acids in length were considered for quantitation, 
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and the resulting peptides were filtered by Percolator (v. 
3.01) [25] at a threshold FDR of 0.01. Peptide quantifica-
tion was performed by EncyclopeDIA (v. 0.9.2) [23], and 
six of the highest quality fragment ions were selected for 
quantitation. Proteins containing redundant peptides 
were grouped to satisfy the principles of parsimony, and 
proteins were filtered at a threshold of two peptides per 
protein and an FDR of 1%. Five DLPFC samples (3 CON, 
1 MDD, and 1 PTSD) were excluded due to failed techni-
cal preparation.

Contribution of sociodemographic factors to the vari-
ation of protein abundance was assessed with princi-
pal component analysis (PCA) and variance partition 
analysis with R package variancePartition as previously 
described [26].

Differentially expressed proteins
Differential expression analysis for proteins was per-
formed with R package limma [27]. Proteins that were 
not registered UniProtKB/SwissProt [28] were filtered 
out. Any proteins with 0 peptides were also dropped. For 
each brain region, an empirical Bayes linear regression 
model was used to fit protein expression with PrimaryDx 
and covariates, including the age of death, ancestry, and 
sex. P-values were adjusted to control FDR.

Rank‑rank hypergeometric overlap analysis
A rank-rank hypergeometric overlap (RRHO) plot was 
made with R package RRHO2 [29, 30]. For each pair of 
conditions, log10 fold changes of corresponding proteins 
in different conditions were compared after ranking.

Quality control and data preprocessing for RNA‑seq 
and smRNA‑seq data
RNA-seq and smRNA-seq data in FASTQ files were 
mapped to the human reference genome and annota-
tion GTF file (GRCh38, release 104) downloaded from 
ENSEMBL [31] with software STAR​ (v2.5.3a) [32] and 
counted with featureCounts (v1.5.3) [33].

For transcriptomics data, default mapping parameters 
were used and ENSEMBL annotations were applied. 
ENSEMBL identities were mapped with gene annotation 
using the biomaRt package in R [34]. Samples with over-
expressed mitochondria genes that accounted for more 
than half of total counts were filtered out. Two PTSD 
sgPFC samples from the cohort were excluded from the 
following analysis.

For smRNA-seq, STAR​ parameter settings included 
outFilterMultimapScoreRange set to 0, outFilterMatch-
Nmin set to 16, and outFilterMatchNminOverLread 
and outFilterScoreMinOverLread set to 0.3. In feature-
Counts, counting was conducted on fragments with exon 

annotations on the transcript level, stranded, and mul-
tiple assignments allowed. In total, 1365 miRNAs were 
found across all samples. Four DLPFC samples (1 CON, 1 
MDD, and 2 PTSD) and 2 sgPFC samples (2 MDD) were 
excluded due to failed library preparation.

Differentially expressed genes
Differential expression analysis for transcriptomics was 
performed with R package DESeq2 [35] in a region-spe-
cific manner. In each region, genes with an average count 
less than 0.5 across all samples were filtered out. Then 
expression was modeled with PrimaryDx and covariates, 
including PMI (postmortem interval), sex, ancestry, the 
age of death, age square, RIN (RNA integrity number), 
and RIN square.

Differentially expressed miRNAs
miRNA expression counts were extracted from smRNA-
seq data. Differential expression analysis for miRNAs 
was performed with R package DESeq2 [35] in a region-
specific manner. In each region, miRNAs with an aver-
age count less than 0.5 across all samples were filtered 
out. Then expression was modeled with PrimaryDx and 
covariates, including the age of death, RIN (RNA integ-
rity number), and sex.

Pathway enrichment analysis
Pathway enrichment analysis of differentially expressed 
proteins (DEPs) was performed in QIAGEN IPA (QIA-
GEN Inc., https://digitalinsights.qiagen.com/ipa) [36]. A 
cutoff of P-value < 0.05 was used to define significantly 
changed pathways. Neuronal cell compartment pathway 
enrichment analysis of protein modules was conducted 
with SynGO (https://​www.​syngo​portal.​org/​index.​html) 
[37]. Threshold-free enrichment analysis was done using 
gene set enrichment analysis (GSEA) with R package 
clusterProfiler [38].

Protein co‑expression modules and network analysis
Protein co-expression modules were constructed with 
the R package WGCNA (Weighted Gene Co-expres-
sion Network Analysis) [39]. Control and MDD sam-
ples were used to construct MDD modules; control and 
PTSD samples were used to construct PTSD modules. 
The module-trait correlation was calculated between 
module eigengenes and sample traits, including Prima-
ryDx, age of death, PMI (postmortem interval), ancestry, 
and sex. Soft-threshold powers (6 for DLPFC condi-
tions and 4 for sgPFC conditions) were used to achieve 
approximate scale-free topology in each condition. Pro-
tein modules were built with the blockwiseModules 
function in WGCNA. Modules were labeled with ran-
dom colors. P-values were FDR-corrected to adjust for 

https://www.syngoportal.org/index.html
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multiple comparisons. TOMtype was set to “signed” and 
mergeCutHeight was set to 0.1. Minimum of module sizes 
was set to 20.

Protein–protein interaction networks were inferred 
from mutual information with protein expression using 
algorithm ARACNE [40] implemented by R package 
bnlearn. The network organization of modules was visu-
alized using the R package igraph [41]. Here each node 
represents a protein, and the lines between them show 
significant protein–protein co-expression. Finally, undi-
rected key driver analysis was performed in the local net-
works of protein modules with R package KDA (https://​
labs.​icahn.​mssm.​edu/​binzh​anglab/​resou​rces/) [42] to 
identify key driver proteins of the corresponding module.

Cell type‑specific enrichment analysis (CSEA)
R package pSI (http://​genet​ics.​wustl.​edu/​jdlab/​psi_​packa​
ge/) [43] was used to perform cell type-specific enrich-
ment analysis for each module (either MDD or PTSD). 
Cell type-specific gene expression profiles included 
neurons, astrocytes, microglia, oligodendrocytes, and 
endothelial cells, based on human data from Gene 
Expression Omnibus (GEO) with accession ID GSE73721 
[44]. Gene expression was log-transformed, and mean 
values were calculated for each cell type. Cell type-specific 
enrichment for the WGCNA module was conducted with 
function specificity.index in the pSI package. Fisher’s exact 
test was used to test the significance with a pSI threshold 
of 0.05. The obtained P-values were FDR-corrected.

Module preservation between MDD and PTSD
For each brain region and a given pair of MDD and PTSD 
modules, their module consistency was calculated using 
Fisher’s exact test to look for the overrepresentation of 
proteins of a paired module in the other. P-values were 
FDR-corrected, and module pairs were significantly pre-
served if FDR < 0.05. The enrichment score is represented 
by the odds ratio of protein overlap over the expected 
numbers.

Comparison between transcriptomics and proteomics
The consistency of transcriptomic and proteomic 
changes was compared. For each brain region and dis-
order, genes with a P-value < 0.05 for disease association 
on both RNA and protein levels were selected. Log2 fold 
changes (log2(FC)) were compared for each gene. Tran-
scriptomic log2(FC) were obtained from the previous 
transcriptomic study of MDD and PTSD from the same 
brain region [15].

Protein‑miRNA pairs
Correlations of protein-miRNA pairs were calculated 
based on protein and miRNA expression levels from the 
same individuals. Samples were selected with both pro-
teomics and miRNA measurement. For control-PTSD, 
there were 27 matched samples in DLPFC and 31 in 
sgPFC; for control-MDD, there were 14 in DLPFC and 
33 in sgPFC. miRNAs with average raw expression > 0.5 
were kept and transformed to FPKM. A correlation test 
was performed for each protein and miRNA pair with 
protein log10(intensity) and miRNA log2(FPKM). A sig-
nificant protein-miRNA connection is defined by P-value 
< 0.05.

miRNA enrichment of DEPs and protein modules
miRNAs’ enrichment of DEPs and protein modules was 
estimated based on protein-miRNA pairs described 
above. For each miRNA, the enrichment score was the 
odds ratio of overrepresentation of DEPs (defined by 
protein-disease association P-value < 0.05) among all the 
proteins connected with the miRNA. Fisher’s exact test 
was applied to the enrichment to get a P-value. Signifi-
cant DEP enrichment was defined by a P-value < 0.05.

miRNA-module enrichment was done similarly. For 
a given miRNA and a protein module, the enrichment 
score was the odds ratio of overrepresentation of the 
module membership among all the proteins connected 
with the miRNA. P-values were obtained from Fisher’s 
exact test. Significant enrichment of protein modules was 
defined as P-value < 0.05.

Protein module enrichment of multi‑trait TWAS results
GWAS summary statistics were downloaded from stud-
ies listed in Table  1. TWAS predictions for each trait 
were made with UTMOST [45] by joint analysis of indi-
vidual predictions from all cortical, brain, and body 
tissues listed in Genotype-Tissue Expression (GTEx) 
project release v6p and v8 [46, 47]. UTMOST performs 
gene expression imputation across tissues and gene-level 
association tests to identify trait-associated genes from 
GWAS summary statistics. The complete list of 44 tissues 
is on the GTEx website (https://​gtexp​ortal.​org/​home/). 
The top 200 predicted genes were used for each trait to 
balance different psychiatric disorders. A Fisher exact 
test was performed for each protein module to test for 
the overrepresentation of top UTMOST predicted genes 
in the module among all genes. Significant enrichment 
was marked by a P-value < 0.05.

https://labs.icahn.mssm.edu/binzhanglab/resources/
https://labs.icahn.mssm.edu/binzhanglab/resources/
http://genetics.wustl.edu/jdlab/psi_package/
http://genetics.wustl.edu/jdlab/psi_package/
https://gtexportal.org/home/
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Results
Differentially expressed proteins in PTSD and MDD cases 
versus controls
We analyzed postmortem brain samples from a large 
cohort (N = 57), including neurotypical control subjects 
(CON, N = 19), subjects with major depressive disorder 
(MDD, N = 19), and subjects with post-traumatic stress 
disorder (PTSD, N = 19). We obtained 109 samples in 
total for the two regions (DLPFC, N = 52, sgPFC, N = 57) 
after removal of technically failed library preparations 
(Fig. 1A,Additional file 1: Fig. S1A). We performed tan-
dem mass spectrometry (LC MS/MS) on the samples to 
measure protein abundance levels using data-independ-
ent acquisition (DIA) [48] (Fig. 1A). After extensive and 
rigorous quality control of LC MS/MS (see “ Methods”), 
we performed differential expression analysis for 109 
samples from 57 unique donors. Detailed sample infor-
mation with corresponding demographics is listed in 
Additional file  1: Fig. S1A. We initially identified 2775 
proteins and after rigorous quality control (see “  Meth-
ods”) 2598 remained. We compared protein to tran-
scripts levels generated from a partially overlapping 
RNA-seq dataset [15]. As expected, proteins with higher 
corresponding RNA expression levels were preferentially 
captured over lower expressed mRNAs (Fig. 1B). We per-
formed principal component analysis (PCA) to assess the 
effects of demographic confounders in protein expression 
variation. Regional differences in proteomic profiles were 
captured by PC1 (accounting for 29% of the variance) 
(Additional file 1: Fig. S1D). Previous characterization of 
the transcriptome of these donors identified significant 
differences between males and females [15]. Surprisingly, 
sex accounted for less of the expression variance (0.03%) 
at the proteomic levels using variance partitioning analy-
sis [26] (Additional file 1: Fig. S1E).

Differential expression analysis identified disease- and 
brain region-specific proteins (P-value < 0.05, Fig.  1C). 
Overlap of differentially expressed proteins (DEPs) 
was moderate between MDD and PTSD from the same 

brain regions (28% DLPFC, 10.7% sgPFC) and was lower 
between different brain regions (5.3% and 2.8%) (Addi-
tional file  1: Fig. S2A). Rank-rank hypergeometric over-
lap (RRHO) [29, 30] showed convergent proteomic 
changes between MDD and PTSD from the same brain 
region but not across regions within the same diagnos-
tic cohort (Additional file  1: Fig. S2B). In DLPFC, one 
protein, MACD1, was significantly upregulated in PTSD 
(FDR = 0.043). Eight proteins were significantly changed 
in MDD after controlling for multiple comparisons (FDR 
< 0.05, Additional file  2: Table  S1), including GNB4, 
RAC1, and CNTFR (up) and LY6H, CNTN1, DPYSL4, 
LAP3, and SLC17A7 (down). MDD or PTSD protein 
levels were not significantly altered in the sgPFC at an 
FDR < 0.05 cut-off. Using a more liberal cutoff of P-value 
< 0.05, we identified 351 unique DEPs (DLPFC: 249, 
sgPFC: 112, 10 overlapping proteins) for PTSD. In MDD, 
we identified 361 unique DEPs (DLPFC: 243, sgPFC: 137, 
19 proteins overlapping). A list of all DEPs and statistics 
across models appears in Additional file 2: Table S1.

We performed pathway enrichment analysis with Inge-
nuity Pathway Analysis (IPA) [36] using a ranked list 
sorted by (P-value < 0.05) to identify up- and downreg-
ulated biological functions. In DLPFC, we noted down-
regulation of pathways related to synaptic signaling (P = 
4.90 × 10−9) and endocannabinoids (P = 8.51 × 10−4) indi-
cating DEP enrichment in neuronal cell types, as well as 
upregulation of corticotropin-releasing hormone (CRH) 
signaling consistent with glucocorticoid dysfunction in 
PTSD [12] (Fig. 1D). In sgPFC, we found enrichment of 
several pathways including oxidative phosphorylation 
(P = 4.57 × 10−4) and Aryl hydrocarbon Receptor Signal-
ing (P = 1.62 × 10−3). A full list of enriched pathways for 
PTSD is included in Additional file 3: Table S2.

Proteomic analysis reveals unique molecular signatures 
and functions for PTSD compared to MDD
The genetic overlap between PTSD and MDD is 
high (approximately 70–80%) [49]; however, recent 

Table 1  List of GWASs of neurodegenerative and psychiatric diseases

EUR European ancestry

Disease/disorders Reference Case Control N total Loci identified Ancestry group(s) and 
N of summary statistics 
used

Autism spectrum disorder (ASD) Grove et al. 2019 18,381 27,969 46,350 12 All (EUR)

Alzheimer’s disease (ALZ) Wightman et al. 2021 90,338 1,036,225 1,126,563 38 All (EUR/mixed)

Bipolar disorder (BIP) Mullins et al. 2021 41,917 371,549 413,466 64 All (EUR)

Major depressive disorder (MDD) Meng et al. 2024 88,316 902,757 991,073 53 novel All (multi-ancestry)

Posttraumatic stress disorder (PTSD) Nievergelt et al. 2024 150,760 1,130,173 1,280,933 95 EUR (N = 1,222,882)

Schizophrenia (SCZ) Lam et al. 2019 56,418 78,818 135,236 19 EUR (N = 77,096)
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postmortem transcriptomic evidence suggests distinct 
molecular pathologies between the two disorders [15, 
17]. Analysis of DEPs in MDD and PTSD postmortem 
brain tissue revealed moderate levels of overlap between 
the two diseases (Additional file  1: Fig. S3). In DLPFC, 
243 DEPs for PTSD and 249 for MDD share an overlap 
of 107 DEPs (28% of all 385 psychiatric DEPs across dis-
orders). While far fewer protein changes were observed 
in sgPFC, a similar trend was observed, with 19 overlap-
ping DEPs (18% of combined) between the 69 DEPs for 
PTSD and 57 in MDD. Overall, top regulated DEPs for 
PTSD have significant or nominally significant changes 
in MDD, especially in DLPFC. Forty-one of the top 50 
PTSD downregulated proteins (P < 0.05) nominally trend 
down (P-value < 0.1) in the MDD dataset. For top upreg-
ulated DEPs, a similar pattern was observed, with 32 of 
the top 50 upregulated PTSD proteins trending in MDD 

(P-value < 0.1). For these top 100 genes in PTSD, none of 
the MDD t-values carried an opposite sign.

Biological pathway enrichment results suggested 
shared and distinct molecular patterns between PTSD 
and MDD. MDD shared enrichment with PTSD for all 
the top 10 downregulated pathways, while only four of 
the top 10 upregulated pathways overlapped (Fig.  1D). 
Most converging pathway changes occurred in DLPFC 
(Additional file 1: Fig. S3). A full list of enriched pathways 
for MDD can also be found in Additional file 4: Table S2.

When PTSD was directly compared to MDD (not rela-
tive to a control group but to each other), we found many 
differences in the protein profiles (see Additional file  2: 
Table  S1). Thirty proteins including GBB4 and MACD1 
were significantly altered with MACD1 lower in MDD 
and GBB4 levels lower in PTSD. In DLPFC, pathway 
enrichment analysis of DEPs (P-value < 0.05) revealed 

Fig. 1  Multiomic data overview and differential expression analysis of proteins in PTSD. A A schematic overview of the study design and analysis 
with multiple -omics datasets employed in this study. Dashed lines indicate integration of data-inferred associations in disease. B Distribution 
of gene and protein expression (all transcripts; gray), protein-coding transcripts (black) and peptides (red). C Volcano plots showing DEPs in DLPFC 
(top) and sgPFC (bottom) of PTSD brains. Red (P < 0.05 and log fold change > 0) indicates upregulated proteins, and blue (P < 0.05 and log fold 
change < − 0.18) indicates downregulated proteins. D Top significantly enriched biological pathways in DLPFC and sgPFC for PTSD and MDD 
differentially expressed proteins
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dysregulation of glutamate biosynthesis (P = 2.52 × 10−3) 
as a top pathway (Additional file 3: Table S2). These data 
suggest there are differences in the proteomes of the 
PTSD and MDD cortex centering predominantly on vas-
cular and neurotransmitter processing.

We compared the results from this study to a previously 
published PTSD multi-omics one [50]. We compared 
proteomic differential expression results from both brain 
regions of this study and that of mPFC from Daskalakis 
et al. and found correlation in global proteomic changes 
(R2 ranging from 0.005 to 0.05, P-values ranging from 5.6 
× 10−4 to 2.2 × 10−16) that were moderate but significant 
(Additional file 1: Fig. S4). We also found a number of dif-
ferentially expressed proteins (DEPs) and pathways that 
overlapped. We found 105 overlapped DEPs between 
the two studies (see Additional file 4: Table S3), includ-
ing 65 overlapped proteins in PTSD and 40 proteins in 
MDD. The overlapped PTSD DEPs include downregu-
lated GABAergic genes SLC32A1, NEGR1, and PACSIN1 
(see Additional file 1: Fig. S4E,F), which we consider are 
high-confidence PTSD DEPs, especially NEGR1 which is 
also a risk gene for multiple psychiatric disorders includ-
ing MDD [51] and SCZ [52]. The 40 overlapped MDD 
DEPs also include SLC32A1 and NEGR1, along with 
the interneuron marker gene GAD2, indicating that the 

two studies had consistent findings and corroborate our 
observation of decreased GABAergic proteins in the 
frontal cortex of PTSD and MDD brains.

Protein co‑expression analysis reveals disease‑specific 
modules and evidence for presynaptic alterations 
and interneuron dysfunction in PTSD and MDD
In addition to identifying disease-associated protein 
signatures, we also sought to understand the molecu-
lar organization of the PTSD proteome by examining 
whether and to what extent proteins co-expressed with 
each other. We applied WGCNA [39] to find modules 
based on protein co-expression across donors and diag-
nostic cohorts (Fig.  2A). Twenty-five modules were 
identified for MDD and 28 for PTSD in DLPFC. Mod-
ules PTSD-PM (Protein Module)-skyblue (correlation 
r = − 0.37) and PTSD-PM-red (correlation r = 0.34) were 
significantly associated with PTSD diagnosis (Fig.  2B) 
(FDR < 0.05), and modules MDD-PM-grey60 (correla-
tion r = − 0.42) and MDD-PM-darkred (correlation r = 
− 0.36) were significantly associated with MDD (FDR 
< 0.05) (Additional file 1: Fig. S5). PTSD protein module 
PTSD-PM-skyblue is mainly composed of downregulated 
proteins, including LY6H, CACNA2D1, CD59, CNTN1, 
NTM, NEGR1, and OPCML. OPCML has been identified 

Fig. 2  Network Co-expression analysis of proteomics data. A Module-trait correlation between protein expression correlations in the DLPFC 
of PTSD brains and demographic features (PrimaryDx, age of death, PMI, sex, ancestry). Color in each cell reflects correlation between module 
eigenprotein and PrimaryDx and the number represents significance (− log10(P-value)) of that correlation. Module names are abbreviated 
as color codes only. B Boxplots of eigenproteins and volcano plots of differential expression patterns of the proteins in PTSD-associated 
modules PTSD-PM-skyblue (left) and red (right) (vertical dash lines indicate log10(fold change) = ± 0.18. Module PTSD-PM-skyblue, P = 0.03; 
module PTSD-PM-red, P = 0.04. P indicates eigenprotein change significance between PTSD and CON. C Cell type enrichment analysis showing 
the enrichment of cell type markers in protein modules. Brown dashed line indicates significantly enriched markers, P < 0.05
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as a risk gene for PTSD [12] and NTM is a risk gene for 
autism [53] (Fig.  2B). NEGR1, NTM, and CACNA2D1 
are hub proteins in both PTSD module PTSD-PM-sky-
blue and MDD module MDD-PM-grey60 (Additional 
file 1: Fig. S6). Protein module information is included in 
Additional file 5: Table S4.

We next used cell type-specific enrichment analy-
ses (CSEA) [54] to identify cell types associated with 
functionally distinct protein modules. CSEA uses a cell 
type-specific reference profile generated with translating 
ribosomal affinity purification (TRAP) from transgenic 
BACarray reporter mice. Nine PTSD protein modules 
were found to be enriched for neuronal markers, includ-
ing modules PTSD-PM-skyblue and PTSD-PM-red in 
DLPFC (Fig.  2C). We also observed enrichment of cell 
type markers for astrocytes (2 modules), oligodendrocytes 
(1 module), and endothelial cells (1 module) (Fig. 2C).

Because protein function is largely based on its location 
in the cell, we hypothesize that PTSD DEPs would local-
ize to common compartments of the cell. Synaptic com-
partment enrichment analysis with synGO [37] found 
that modules PTSD-PM-skyblue and MDD-PM-grey60 
were enriched for proteins localized to the presynaptic 
compartment (Additional file  1: Fig. S7 and Additional 
file  6: Table  S5). The PTSD-associated protein module, 
PTSD-PM-red, includes GABAergic interneuron pro-
teins including SLC32A1 and PACSIN1, which are also 
members of MDD module MDD-PM-darkred (Addi-
tional file 1: Fig. S6). SLC32A1 encodes solute carrier fam-
ily 32 member 1, a GABA/glycine vesicular transporter. 
Decreased protein levels of SLC32A1 is consistent with 
previously reported decreases in its transcript levels in 
PTSD frontal cortex [15]. PACSIN1 (Protein Kinase C and 
Casein Kinase Substrate in Neurons 1 or syndapin) plays a 
key role in regulating synaptic development in hippocam-
pal interneurons [55, 56], and mediating the modulatory 
effect of antipsychotic drugs in response to N-methyl-D-
aspartate (NMDA) and glutamate [57]. Pathway analysis 
identified modules PTSD-PM-red and MDD-PM-darkred 
were also enriched for proteins in the presynaptic com-
partment (adjusted P-value 1.54 × 10−6 and 5.94 × 10−5, 
respectively) (Additional file 1: Fig. S7C,D).

Differentially expressed transcripts and co‑expressed gene 
modules in PTSD and MDD
In parallel with our proteomics characterization, we per-
formed RNA sequencing on the same brain regions and 
donors from this cohort to profile their transcriptomic 
changes. After rigorous quality control of these RNA-
seq samples, we removed 2 samples from sgPFC and 
performed differential expression analysis for 130 sam-
ples from 66 donors (DLPFC N = 66, sgPFC N = 64, see 

Additional file  1: Fig. S1B). PCA revealed that sex and 
brain region correlated with top principal components 
(Additional file  1: Fig. S8A,B) and accounted for most 
variance among all demographic factors (Additional 
file  1: Fig. S8A-D), which is consistent with previous 
characterizations that PTSD’s impact on brain transcrip-
tomes differs by brain region and sex [15]. PCs 1 and 2 
accounted for 41% and 14% of the variance in transcript 
expression.

Gene expression analysis of the transcriptome identi-
fied 30 differentially expressed genes (DEGs) in DLPFC 
and only one gene in sgPFC that were significantly 
changed between PTSD and CON groups (FDR < 0.05, 
see Fig.  3A). The most changed genes in PTSD were 
LINS1 (downregulated, adjusted P-value = 4.85 × 10−5, 
log2FC = − 0.44) in DLPFC, and NPAS4 (upregulated, 
adjusted P-value = 0.0496, log2FC = 3.40) in sgPFC. No 
DEGs were shared between the regions; however, in both 
regions, there were more upregulated DEGs (70% and 
100% in DLPFC and sgPFC, respectively) than downreg-
ulated ones. Gene set enrichment analysis of DEGs found 
enrichment of immune-related pathways in both brain 
regions, with moderate sharing of top dysregulated path-
ways between the two regions (Fig. 3B). Cell type-specific 
enrichment analysis (CSEA) [38] of DEGs pointed to 
enrichment of transcripts in microglia and endothelial 
cells (Fig. 3B).

To better understand the transcriptomic organiza-
tion of these cortical regions in PTSD, we performed 
WGCNA [39] to identify co-expression gene modules. 
We found 42 RNA co-expression modules in DLPFC and 
25 in sgPFC (Fig. 3C, Additional file 1: Fig. S9). Among 
DLPFC modules, seven were positively and six were neg-
atively associated with PTSD, while in sgPFC, two were 
positively and five were negatively associated. Of note, 
among PTSD-associated modules, two (DL(DLPFC)-
TM(transcriptome module)1 and DL-TM13) were 
enriched for neuronal cell markers and one (SG(sgPFC)-
TM4) was enriched for microglia markers (Fig.  3C, 
Additional file  1: Fig. S9). In both brain regions, most 
PTSD- and MDD-DEGs exhibited consistent changes 
(on average 58 and 55%, respectively) in direction and 
fold-change across both transcript and protein levels 
(Fig. 3D,E and Additional file 1: Fig. S10).

Comparison between RNA and protein coexpression 
modules showed high preservation levels between the 
two modalities. The majority of protein modules signifi-
cantly overlap with RNA modules: 18 out of 29 protein 
modules in DLPFC and 5 out of 7 protein modules in 
sgPFC (Additional file  1: Fig. S11 and Additional file  5: 
Table S4), exhibiting a similar level of coexpression mod-
ule preservation between RNA and protein as other pub-
lished multiomics studies [58].
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Differentially expressed miRNAs in PTSD and MDD
We investigated the upstream, posttranscriptional 
mechanisms linking proteomic changes with transcript 
changes in the brain, by measuring the abundance 
of miRNAs for the same cohort. We generated RNA 
sequencing libraries enriched for small non-coding RNAs 
(smRNA-seq) from 53 samples of DLPFC and 55 samples 
from sgPFC (Additional file 1: Fig. S1C). We found nota-
ble differences in both coverage and total expression lev-
els of all ncRNAs between bulk RNA-seq of total RNAs 
and small RNA-seq (Additional file 1: Fig. S12A). A total 
of 1365 miRNAs passed quality control, mapping, and 
filtering criteria for both brain regions. smRNA-seq pro-
vided higher sequencing coverage and deeper depth of 
shorter transcripts, especially miRNAs, than those from 
total RNAs, irrespective of region and diagnosis (see 
Fig. 4A). Supervised hierarchical clustering analysis [39] 
of these miRNA samples revealed stronger local clus-
tering patterns for primary diagnoses (PrimaryDx) and 
brain region than other demographic features (e.g., sex, 

age at death, ancestry) and technical sequencing vari-
ables (RNA integrity number (RIN), postmortem interval 
(PMI)) (Additional file 1: Fig. S12B), consistent with PCA 
showing high correlation of brain region with top PCs 
(Additional file 1: Fig. S12C). Next, we performed differ-
ential expression analysis of miRNAs to identify changes 
in PTSD cases vs. controls. We identified seven miRNAs 
(six in DLPFC including hsa-mir-24–2, hsa-let-7a1, hsa-
mir-218–1, hsa-mir-216a, hsa-mir-211, and hsa-mir-425 
and two in sgPFC including hsa-let-7a1 and hsa-mir-
181a2) surviving stringent correction for multiple test-
ing. We identified 21 differentially expressed miRNAs 
in MDD. Three miRNAs (hsa-let-7a1, hsa-mir-24–2, 
hsa-mir-181a2) overlapped with PTSD in direction and 
magnitude (Fig. 4B, Additional file 7: Table S6). Analysis 
of differential miRNA expression revealed brain region-
specific changes (Additional file  1: Fig. S13A). Gene 
set enrichment analysis (GSEA) [38] of differentially 
expressed miRNAs identified more suppressed (down-
regulated) pathways than activated (upregulated) ones 

Fig. 3  Gene expression and transcriptome network analysis of PTSD cortical regions. A Volcano plots showing DEGs in DLPFC (left) and sgPFC 
(right) of PTSD cortical regions. Red (P < 0.05) indicate upregulated genes and blue (P < 0.05) indicate downregulated ones. Red lines indicate 
P-value = 0.05 and black lines indicate |log fold change| > 0.18. B Pathway enrichment analysis of differentially expressed genes in PTSD and MDD 
DLPFC and their overlap with sgPFC. C Enrichment of DEGs and cell types in gene modules constructed by WGCNA for DLPFC (top) and sgPFC 
(bottom). Color indicates significance of enrichment (−log10(P-value)). Module names are abbreviated as indices only. Comparison of transcriptional 
and protein differential expression are shown in PTSD DLPFC (D) and sgPFC (E))
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for PTSD in both DLPFC and sgPFC, including suppres-
sion of miRNAs regulating cardiac muscle hypertrophy 
(Additional file 1: Fig. S14 and Additional file 8: Table S7). 
It is interesting to note that cardiac hypertrophy signal-
ing was a regulated pathway in PTSD and MDD (Fig. 1D, 
Additional file 3: Table S2). We found specific decreases 
in RAC1 and RHOB protein and increases in RHOT1 
protein which are among the targets of hsa-mir-19a, 

hsa-mir-19B, and hsa-mir-17 and are all downregulated 
further suggesting PTSD directed changes to protein 
expression through miRNA mechanisms.

To investigate whether there are miRNA co-expression 
patterns, we performed WGCNA on our miRNA dataset 
(Additional file  1: Fig. S13B). We identified six miRNA 
co-expression modules with significant trait relationships 
(Additional file 1: Fig. S13B). One miRNA co-expression 

Fig. 4  miRNA dysregulation in PTSD and its effect on the proteome. A Comparison of miRNA abundance captured using bulk mRNA-seq 
and smRNA-seq results. B Volcano plots showing differential expression patterns of miRNAs in PTSD DLPFC and sgPFC regions. Dashed lines: 
log2(fold change) = ± 0.5 and P-value = 0.05. C Examples of correlations between miRNA MIR589 and disease-associated protein LY6H. D miRNA 
enrichment analysis of DEPs to identify regulatory miRNAs and their targets. Bar heights (signed − logP) indicate significances of enrichment
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module, MiM(miRNA module)-turquoise, had signifi-
cant association with PTSD (Additional file 1: Fig. S13C), 
indicating the enrichment of PTSD-associated miRNAs 
in this module. We identified 18 up- and seven down-
regulated miRNAs within module MiM-turquoise with a 
P-value < 0.05 (Additional file 1: Fig. S13D). Among the 
most significantly regulated miRNAs was hsa-mir-589 
(upregulated 1.56-fold in DLPFC), which has previously 
been implicated in MDD pathophysiology [59].

miRNA integration with PTSD DEPs prioritizes hsa‑mir‑589 
and hsa‑mir‑6786
Because miRNAs are known to regulate protein trans-
lation (normally through inhibition), we hypothesized 
that protein-mRNA pairs with fold changes in opposite 
directions in PTSD (Fig.  3D,E) might be regulated by 
disease-associated miRNAs. We found that 12 out of 15 
DLPFC DEPs (ACADVL, CACNA2D1, CD59, CYB5B, 
DPP6, EXOC7, FRRS1L, RAC1, RHOB, TPM3, WDFY1, 
YWHAE) and five out of nine sgPFC DEPs (APOA1, 
NDRG2, PABPC1, RAB5B, RPS8) were associated with 
both expression and target 3′-UTR sequences of PTSD 
regulated miRNAs (Additional file  9: Table  S8). To bet-
ter understand the relationship between protein expres-
sion and miRNA function we integrated these two 
datasets. First, we performed Pearson’s correlation test 
between the normalized expression levels of the protein 
(in log10LFQ intensity) and the miRNA (in log2FPKM). 
An example of miRNA to protein correlation is provided 
in Fig.  4C for proteins LY6H with miRNA hsa-mir-589. 
Second, for each miRNA, we calculated an enrichment 
score for DEPs among all the proteins associated with 
the miRNA using Fisher’s exact test. Using this approach, 
we identified miRNA changes that were PTSD- or MDD-
specific or associated with both disorders (Fig. 4D, Addi-
tional file 1: Fig. S15).

In DLPFC, 21 miRNAs had enrichment for PTSD DEPs 
(Fig.  4D), MDD DEPs (Additional file  1: Fig. S15B), or 
both. In the sgPFC, four miRNAs had enrichment for 
PTSD DEPs (Additional file  1: Fig. S15C). The miRNA 
with the most significant enrichment (P = 2.15 × 10−9) 
for PTSD-specific DEPs was hsa-mir-103a1, which was 
previously shown to be downregulated in blood plasma 
of patients with childhood traumatization [60]. The miR-
NAs that were most significantly enriched for both MDD 
and PTSD DEPs included hsa-mir-6786 (P = 3.22 × 10−6 
(PTSD) and 1.38 × 10−11 (MDD)) and hsa-mir-589 (P = 
9.85 × 10−6 (PTSD) and 3.95 × 10−9 (MDD)). While lit-
tle is known about the function of hsa-mir-6786, hsa-
mir-589 has been previously implicated in depression 
[61] and was a member of the PTSD-associated miRNA 
module MiM-turquoise (Additional file 1: Fig. S13D). In 
addition, one of its predicted targets from TargetScan is 

the GABA vesicular transporter protein SLC32A1, which 
is significantly downregulated in PTSD DLPFC. We iden-
tified nine miRNAs exhibiting significant enrichment 
for associated DEPs (nominally significance of P < 0.05) 
in sgPFC (Fig. 4D). hsa-mir-181a2 was the most signifi-
cantly enriched miRNA for PTSD DEPs (P-value = 1.94 
× 10−4), while hsa-mir-24–2 (P-value = 2.81 × 10−5) and 
hsa-mir-9–3 (P-value = 3.41 × 10−5) had the most signifi-
cant enrichment MDD-specific DEPs. In addition, hsa-
mir-125b1 was enriched for both MDD and PTSD DEPs 
(P-values are 3.44 × 10−3 and 4.90 × 10−4, respectively). 
Taken together, these findings suggest direct pathological 
changes in protein levels by individual miRNAs specific 
to PTSD cortical regions.

Integrative analysis identifies converging regulatory 
mechanisms in PTSD protein organization
While our initial analysis suggested individual miRNA to 
protein dysregulation is occurring, we hypothesized that 
miRNAs may be regulating groups of proteins in a coor-
dinated fashion. Therefore, we sought to identify whether 
specific miRNAs regulate PTSD proteomic co-expression 
modules by using Fisher’s exact test to identify enrich-
ment of miRNA-associated proteins within each protein 
module. A significant enrichment score (P-value < 0.05) 
indicated overrepresentation of protein targets of a par-
ticular miRNA within each protein module, and thus 
a higher likelihood of regulation of the network by the 
miRNA. We found five differentially expressed miRNAs 
were significantly (P < 0.05) correlated with protein abun-
dance in the PTSD-associated module PTSD-PM-skyblue 
(Fig.  5A). hsa-mir-6786 and hsa-mir-589 were corre-
lated (P-value < 0.05) with approximately 50% of proteins 
(13/30) in module PTSD-PM-skyblue and a majority of 
these pairs were negatively correlated (21 out of 22). We 
compared our miRNA-protein pairs with those predicted 
by TargetScan [62, 63] and found that the DEPs LY6H and 
ATP6V0A1 are targets of hsa-mir-6786. TargetScan also 
identified six proteins present in skyblue that were nega-
tively associated with hsa-mir-589 expression, includ-
ing CACNA2D1, CNTN1, THY1, OPCML, CD59, and 
NEGR1 (Fig. 5A,B, Additional file10: Table S9). Because 
miRNAs generally act to reduce translation of proteins, 
we predicted negative correlations between miRNAs and 
their regulated protein targets. Both CACNA2D1 and 
CNTN1 were also confirmed in an independent miRNA 
database MirBase [64, 65] as targets of hsa-mir-589.

Shared and unique miRNAs were enriched for MDD 
modules as well. In module MDD-PM-grey60, six miR-
NAs were significantly enriched (P-value < 0.05), and 
three were negatively correlated with expression of 
eight out of nine pairs of the proteins in module MDD-
PM-grey60, including hsa-mir-6786, hsa-mir-589, and 



Page 13 of 19Wang et al. Genome Medicine           (2025) 17:43 	

Fig. 5  miRNA-regulated disease-associated protein modules. A Correlations between miRNAs with PTSD-associated protein module 
PTSD-PM-skyblue. Colors in heatmap indicate the correlation levels between miRNAs and proteins. miRNA-protein pairs with P-value < 0.05 are 
plotted. B Disease-specific protein abundances (log10 Intensity) of hsa-mir-589 targets (CACNA2D1, NEGR1, OPCML, CNTN1), and hsa-mir-6786 
targets (ATP6V0A1, LY6H) in module PTSD-PM-skyblue. C Comparison of transcriptional and protein differential expression in PTSD module 
PTSD-PM-skyblue and grouped linear regression by proteins association with miRNAs. Red, proteins without miRNA association; blue, proteins 
with miRNA association. D Key driver analysis (KDA) plot of PTSD protein module PTSD-PM-skyblue (top) and MDD protein module MDD-PM-grey60 
(bottom). Pink circles indicate key drivers. Colors of individual slices refer to putative miRNA regulation of the protein. E Top: enrichment of GWAS 
risk genes from TWAS analysis in the proteomic modules of PTSD (top) and MDD (bottom), including Alzheimer’s disease (ALZ), autism spectrum 
disorder (ASD), bipolar disorder (BIP), major depressive disorder (MDD), post-traumatic stress disorder (PTSD) and schizophrenia (SCZ). Bolded 
proteins are DEPs (P-value < 0.05) in DLPFC. Colors of bars correspond to their module names. miRNA name abbreviations: MIR103A1, hsa-mir-103a1; 
MIR218 -1, hsa-mir-218–1; MIR379, hsa-mir- 379; MIR589, has-mir-589; MIR6786, hsa-mir-6786. PM- indicates protein module
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hsa-mir-4745 (Additional file  1: Fig. S16A). Both hsa-
mir-6786 and hsa-mir-589 were shared with PTSD. 
Similar to module PTSD-PM-skyblue, module MDD-
PM-grey60 included predicted targets of hsa-mir-6786, 
including ATP6V0A1, GPC1, ICAM5, and LY6H, and 
those of hsa-mir-589, including CACNA2D1, NEGR1, 
OPCML, CD59, LSAMP, and SH3GLB2. The regula-
tory pairs of hsa-mir-589-CACNA2D1 and hsa-mir-
6786-ICAM5 were also confirmed by MirBase. Module 
MDD-PM-grey60 also included the predicted targets of 
hsa-mir-4745, including CNTFR, CD59, NEGR1, and 
SH3GLB2. In the module MDD-PM-darkred, only hsa-
mir-4745 was found to be enriched and negatively cor-
related with 8 associated proteins (Additional file  10: 
Table  S9). This module contained predicted targets of 
hsa-mir-4745, including GPRIN1, PACSIN1, and MAPT 
(Additional file  1: Fig. S6). Among these, the regulation 
of PACSIN1 by hsa-mir-4745 was confirmed in MirBase. 
The full miRNA-module enrichment results are anno-
tated in Additional file1: Fig. S16B.

We further investigated if miRNAs could be contrib-
uting to the divergence between differential abundance 
changes of transcripts and proteins. Groupwise regres-
sion analysis showed opposite correlations (rmiRNA = 
− 0.14 and rno miRNA = 0.027) between transcript and 
protein changes in proteins with or without predicted 
miRNA regulation (Fig.  5C). We performed this analy-
sis on module MDD-PM-grey60 and miRNA-targeted 
proteins showed similar negative correlations in contrast 
with non-target proteins (Additional file 1: Fig. S17). Key 
driver analysis [42] confirmed our hypothesis that pro-
teins targeted by putative regulating miRNAs are closely 
connected to hub proteins NEGR1, CACNA2D1, and 
NTM (9 of 11 targets of hsa-miR-589 and hsa-miR-6786 
are directly connected) in module PTSD-PM-skyblue. 
Similar patterns were observed in module MDD-PM-
grey60 (Fig.  5D). Taken together, these analyses identify 
specific miRNA-protein pairs that likely play significant 
roles in PTSD pathophysiology by controlling protein 
abundances across coordinated proteomic networks.

Integrative analysis identified pan‑psychiatric genetic risks 
in PTSD protein modules
Finally, we tested for enrichment of genetic risk signals 
for other neurological and neuropsychiatric disorders in 
protein module PTSD-PM-skyblue and protein module 
MDD-PM-grey60 (Fig.  5E). Several studies have iden-
tified high genetic and transcriptomic overlap among 
these disorders, thus we reasoned this was likely [15, 66]. 
We included the latest GWAS results for Alzheimer’s 
disease (ALZ) [67], autism spectrum disorder (ASD) 
[53], bipolar disorder (BIP) [68], schizophrenia (SCZ) 
[69], MDD [70], and PTSD [14]. Specific details of each 

GWAS summary statistics are listed in Table 1. We used 
UTMOST (unified test for molecular signatures) [45], a 
cross-tissue transcriptome-wide association algorithm 
based on genotype-tissue expression (GTEx) v6p [46], 
to integrate gene expression across all brain tissues to 
infer disease-specific genes implicated from GWAS sum-
mary statistics of each disease. For each protein module 
in PTSD and MDD (Fig.  5E), we calculated an enrich-
ment score for the top UTMOST-inferred genes with 
Fisher’s exact test. PTSD module PTSD-PM-blue was 
enriched for PTSD risk signals. Interestingly, we found 
the PTSD module PTSD-PM-skyblue was enriched for 
both ASD (P-value = 0.022) and MDD (P-value = 0.033) 
(Fig.  5E, top), containing transcriptome-wide associ-
ated genes including DEPs NEGR1, and LY6H for MDD 
and NTM and NEGR1 for ASD. We also identified one 
protein module (PTSD-PM-midnightblue) with highly 
significant enrichment (P-value = 0.017) for ALZ risk 
variants. We found evidence for enrichment of psychiat-
ric risk genes in MDD modules as well (Fig. 5E, bottom). 
We found MDD module MDD-PM-grey60 is enriched 
for MDD risks (P-value = 0.030) and similar to PTSD, 
module MDD-PM-grey60 was also enriched for ASD risk 
(P-value = 0.017). Module enrichment results from joint 
analysis of all tissues also found enrichment of disease-
associated modules in multiple psychiatric traits, includ-
ing module PTSD-PM-skyblue and MDD-PM-grey60 
enrichment for ASD (P-value = 0.046 and 0.009, respec-
tively) and BIP (P-value = 0.035 and 0.041, respectively), 
and MDD module MDD-PM-darkred enriched for SCZ 
(P-value = 0.010) (Additional file 1: Fig. S18A,B). To take 
advantage of the latest release of GTEx, we updated the 
UTMOST package and performed both joint analy-
sis of brain tissue and cortical region TWAS using 
GTEx release v8. We found no additional enrichment 
of psychiatric disorder risk genes within our joint brain 
region analysis (Additional file 1: Fig. S18C,D) or within 
our joint cortical region analysis (Additional file  1: Fig. 
S18E,F). However, we did find significant risk for MDD 
enrichment in MDD-PM-darkred and identified DEPs 
AKAP5, ACTN4, PACSIN1, and MYH14. Taken together 
these data suggest that risk signals are harbored within 
dysregulated proteomic networks of PTSD and MDD 
and suggest a possible mechanism by which patients with 
stress disorders are at greater risk for developing other 
neuropsychiatric disorders.

Discussion
In this study, we present a comprehensive, multi-omic 
evaluation of the neuroproteome of the human prefron-
tal cortex across neurotypical controls, MDD, and PTSD 
donors. Our investigation centered on two frontal corti-
cal regions implicated in stress disorders: the DLPFC 
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and sgPFC. This is one of the largest postmortem case/
control proteomics cohorts for PTSD. It shares the find-
ings of a number of differentially expressed proteins and 
enriched pathways from other large PTSD multiomics 
studies of other cortical regions but also provides unique 
insight of additional genomic mechanisms of miRNAs 
regulating the proteome in PTSD and MDD brain. By 
integrating protein, mRNA, and miRNA profiles from 
the same donors, we deeply characterize the mechanisms 
that control PTSD and MDD-related alterations on pro-
tein levels associated with the pathophysiology of these 
disorders. In addition, we identify dysregulated protein 
networks harboring risk signals for the development of 
other psychiatric disorders.

One model of PTSD neurobiology suggests top-
down impairment of the fear circuitry of the brain [71]. 
Decreased prefrontal cortical activity has been observed 
in PTSD patients [72–76] and this likely results in the 
hyper-activation of subcortical regions (e.g., amygdala) 
resulting in exaggerated responses to fearful stimuli, a 
hallmark of PTSD. We have also identified the PTSD-
associated protein module PTSD-PM-red that includes 
the downregulated interneuron protein SLC32A1, a 
vesicular GABA transporter that loads GABA neuro-
transmitter into synaptic vesicles. Further, SLC32A1 
transcript is a putative target of hsa-mir-589 (Additional 
file  7: Table  S6). We previously found that SLC32A1 
transcript was closely connected to expression of other 
interneuron molecular key drivers in PTSD postmor-
tem brain tissues and was downregulated in the DLPFC. 
Both the PTSD-PM-skyblue and PTSD-PM-red, and the 
MDD-PM-grey60 and MDD-PM-darkred, are also signif-
icantly enriched for proteins specific to the presynaptic 
compartment (Additional file  1: Fig. S7 and Additional 
file  6: Table  S5) including LY6H, which regulates neu-
rotransmitter trafficking [77]. hsa-mir-589 expression is 
negatively correlated with several proteins in these mod-
ules including CACNA2D1, CACNA2D3, NEGR1, and 
OPCML and regulates expression of the GABA trans-
porter SLC32A1 which is significantly downregulated in 
PTSD. We hypothesize that PTSD-associated miRNA, 
hsa-mir- 589, acts through its effector protein network 
(protein module PTSD-PM-skyblue), which is likely 
involved in neuronal plasticity and interneuron func-
tion, to disrupt synaptic transmission in the prefrontal 
cortex to other fear centers of the brain. Taken together 
these findings point to impaired GABAergic function in 
the cortex of PTSD patients and represent one possible 
molecular mechanism by which prefrontal activity inhi-
bition manifests in PTSD.

Significant progress has been made to identify cross-
disorder overlap in the genomic signals among psychi-
atric disorders. Recently, Gandal  et al. [66] identified 

significant correlations in the transcriptomes of prefron-
tal cortical regions among schizophrenia (SCZ), autism 
spectrum disorder (ASD), and bipolar disorder (BIP) and 
some overlap with MDD and alcohol use disorder. In our 
previous work [15], we compared the DLPFC transcrip-
tome of PTSD to these same disorders and after uniform 
processing of our data, identified significant transcrip-
tomic correlation between PTSD versus SCZ, ASD and 
BIP. However, those findings did not identify significant 
correlation between PTSD and MDD. In this study, we 
likewise found only moderate overlap in DEPs and regu-
lated miRNAs between the two disorders but there was 
some convergence in protein co-expression patterns. 
Both the PTSD module PTSD-PM-skyblue and MDD 
module MDD-PM-grey60 are also enriched for ASD and 
MDD GWAS signals (Fig. 5E). The PTSD-associated neu-
ronal module, PTSD-PM-skyblue, contains 30 proteins, 
including downregulated DEPs, CACNA2D1, OPCML, 
and NEGR1, which are shared by the MDD-associated 
neuronal module MDD-PM-grey60. OPCML is an opi-
oid receptor that has been previously reported as a PTSD 
risk gene [12]. OPCML has also been shown to be asso-
ciated with susceptibility for ASD, SCZ, and MDD [78–
80]. NEGR1 regulates neural growth [81], connectivity, 
and cognitive functions [82] and has been reported as a 
genetic risk gene for MDD [83–86] and other comorbid 
disorders such as anxiety [87] and autism [82]. CAC-
NA2D1 encodes the α2δ −1 subunit of the voltage-gated 
calcium channel and affects multiple brain disorders 
including ASD and SCZ [88]. These findings point to 
common disruption of cell adhesion and neural connec-
tivity processes among PTSD, MDD, and multiple other 
psychiatric disorders.

Multi-omic profiling of the same cohort of donors has 
enabled us to uncover the mechanisms by which PTSD 
and MDD affect the brain, providing novel insights into 
the alterations of molecular regulatory events in the 
stressed brain. In our study, we found links between 
upregulated miRNAs and targeted groups of decreased 
proteins, while transcripts levels remain unchanged, 
pointing to aberrant post-transcriptional regulations in 
the stressed brains. For example, miRNA has-mir-589 
shows negative associations with 30% of protein mem-
bers of PTSD module PTSD-PM-skyblue, and its key 
drivers are predicted targets from miRNA databases 
(Fig.  5B), pointing to a targeted disruption of synaptic 
protein expression in GABAergic interneurons due to 
miRNA dysregulation. We also compared our study to 
a recent large multi-omics study of the PTSD and MDD 
mPFC [50]. We found high correlation in global prot-
eomic abundance and moderate overlap in PTSD and 
MDD differentially expressed proteins. Importantly, we 
also observe an upregulation of CRH signaling in PTSD 
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brain highlighting the importance of glucocorticoid sign-
aling after traumatic stress [89–91]. We did find 65 over-
lapping proteins between DLPFC of this study and mPFC 
of the Daskalakis et al. for PTSD which we believe to be 
highly significant with important etiological relevance. 
Such integrative analysis of multiple data modalities 
and studies is necessary to understanding these diseases 
and provide likely points for therapeutic intervention of 
upstream regulators.

Conclusions
In conclusion, we present one of the largest human post-
mortem proteomics studies for PTSD and MDD. This 
work fills a critical gap bridging transcriptomic and pro-
teomic genomic signatures in postmortem molecular 
studies. We identified changes in key PTSD proteins and 
pathways such as GABAergic interneuron singing which 
included changes to the GABA transporter SLC32A1. 
Surprisingly, we found only moderate overlap in the prot-
eomic signatures between PTSD and MDD but identified 
co-expression patterns common to both disorders. Fur-
ther, we were able to confirm many miRNA-DEP inter-
actions that were predicted by TargetScan and miRbase 
including CACNA2D1, CNTN1, THY1, OPCML, CD59, 
NEGR1, and SLC32A1 as targets of the miRNA hsa-
mir-589. These results confirm GABAergic impairment 
and synaptic dysfunction identified in previous transcrip-
tomic and epigenetic studies of PTSD and highlight the 
key proteins involved, along with their paired regulatory 
miRNAs. Cross disorder analysis of our proteomics data-
set with recent GWAS studies also identified ASD and 
MDD risk variant enrichment in PTSD co-expression 
networks, suggesting pathophysiological convergence 
and common risk for these disorders. In addition, this 
large proteomics dataset serves as a rich resource for 
functional genomics and translational architecture in 
different human cortical brain regions. Together, these 
efforts will lead to progress in development of novel ther-
apeutics and treatments for PTSD and depression.
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