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Abstract

Background: Germline chromothripsis causes complex genomic rearrangements that are likely to affect multiple
genes and their regulatory contexts. The contribution of individual rearrangements and affected genes to the
phenotypes of patients with complex germline genomic rearrangements is generally unknown.

Methods: To dissect the impact of germline chromothripsis in a relevant developmental context, we performed
trio-based RNA expression analysis on blood cells, induced pluripotent stem cells (iPSCs), and iPSC-derived neuronal
cells from a patient with de novo germline chromothripsis and both healthy parents. In addition, Hi-C and 4C-seq
experiments were performed to determine the effects of the genomic rearrangements on transcription regulation
of genes in the proximity of the breakpoint junctions.

Results: Sixty-seven genes are located within 1 Mb of the complex chromothripsis rearrangements involving
17 breakpoints on four chromosomes. We find that three of these genes (FOXP1, DPYD, and TWIST1) are both
associated with developmental disorders and differentially expressed in the patient. Interestingly, the effect on
TWIST1 expression was exclusively detectable in the patient’s iPSC-derived neuronal cells, stressing the need for
studying developmental disorders in the biologically relevant context. Chromosome conformation capture analyses
show that TWIST1 lost genomic interactions with several enhancers due to the chromothripsis event, which likely
led to deregulation of TWIST1 expression and contributed to the patient’s craniosynostosis phenotype.

Conclusions: We demonstrate that a combination of patient-derived iPSC differentiation and trio-based molecular
profiling is a powerful approach to improve the interpretation of pathogenic complex genomic rearrangements.
Here we have applied this approach to identify misexpression of TWIST1, FOXP1, and DPYD as key contributors to
the complex congenital phenotype resulting from germline chromothripsis rearrangements.
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Background
Disruption of the genomic architecture by structural re-
arrangements such as translocations, deletions, duplica-
tions, and inversions is an important cause of congenital
disease [1]. It has been estimated that approximately
15% of patients with multiple congenital abnormalities
and/or mental retardation (MCA/MR) have a clinically
relevant structural genomic rearrangement [2–5]. Some
of these patients have very complex combinations of
structural variants resulting from chromothripsis, the
local shattering and reassembly of one or a few chromo-
somes in a single event [6–8]. Chromothripsis can occur
in both somatic cells, where it can contribute to cancer,
and germline cells, where it can lead to congenital disor-
ders [6, 9, 10]. Congenital chromothripsis cases with up
to 57 breakpoints involving one to five chromosomes
have been described [7, 11]. Determining the molecular
and phenotypic consequences of genomic rearrange-
ments is a major challenge, especially for patients with
complex rearrangements that involve large genomic re-
gions of several megabases on multiple chromosomes
containing many genes and regulatory elements [12,
13]. Structural rearrangements may lead to altered gene
expression, gene fusions, disruption of regulatory ele-
ments such as enhancers and boundaries of topologic-
ally associated domains (TADs), and/or unmasking of
recessive mutations in the unaffected allele [12–16].
Due to the large number of potentially affected genes in
patients with complex rearrangements, the molecular
mechanisms that have contributed to their congenital
phenotypes are often unknown. Transcriptome analysis
is a powerful method to determine the functional mo-
lecular consequences of structural rearrangements
[17–20]. Patients’ blood cells are commonly used as
the source for RNA-seq analysis because of the rela-
tively easy accessibility of this material. However,
genes potentially involved in the disease of a patient
may be expressed differently or not at all in blood
compared to the disease-relevant tissue [21, 22]. In
addition, congenital disorders are typically the result
of defects in developmental programs and it is ques-
tionable whether deregulation of developmental gene
expression patterns persists in adult tissues. One ap-
proach that circumvents these concerns is to recap-
itulate certain developmental processes by generating
induced pluripotent stem cells (iPSCs) from patients
and differentiate these towards disease-relevant cell
types [23–25]. This strategy has been applied success-
fully to improve our understanding of the molecular
mechanisms underlying several (neuro-)developmental
diseases such as schizophrenia and Rett syndrome
[26, 27].
We previously performed RNA-seq on blood samples

of patients with germline chromothripsis and identified

several molecular phenotypes caused by the genomic
rearrangements [19]. These included a hyper-activated
trophoblast-specific miRNA cluster that interferes with
embryonic brain development when ectopically expressed
[19]. However, in a second patient with MCA/MR the
relevance of the identified molecular effects to the pheno-
type could not be entirely resolved due to the complexity
of the rearrangements [19]. In this study we further dis-
sected the molecular consequences of chromothripsis by
analyzing RNA expression and genome architecture in
disease-relevant cell types derived from iPSCs from this
patient and both parents.

Methods
Derivation and cultivation of iPSCs
Peripheral blood samples were obtained from a family
trio consisting of the patient (child) with germline
chromothripsis and both parents who served as con-
trols. Peripheral blood mononuclear cells (PBMCs)
were isolated by separation on a Ficoll-Paque TM PLUS
gradient (GE Healthcare) with a density of 1.077 g/ml.
Subsequently, CD34-positive cells were magnetically la-
beled with CD34-microbeads and purified with a CD34
Microbead kit (Miltenyi). The purified CD34-positive
cells were resuspended in PBMC medium consisting of
Iscove’s modified Dulbecco’s medium (ThermoFisher
Scientific) with 5% fetal calf serum, 50 ng/ml stem cell
factor, 50 ng/ml FLT3-ligand, 50 μM β-mercaptoethanol,
10 μg/ml penicillin, 10 μg/ml streptomycin, and 2 mM L
glutamine, and plated in flat bottom 96-well ultra-low at-
tachment plates. After 5 days, cells were passaged and the
PBMC medium was further supplemented with 20 ng/ml
interleukin (IL)-6 and 20 ng/ml thrombopoietin (TPO).
After 7 days, cells were spin-transduced with 1 ml OSKM-
dTOMATO lentivirus [28] supplemented with 8 μg/ml
polybrene, 50 ng/ml stem cell factor, 50 ng/ml FLT3-
ligand, 20 ng/ml IL-6, and 20 ng/ml TPO at 1800 rpm at
32 °C for 100 minutes. Cells were subsequently incubated
for 3 h, after which medium was changed to PBMC
medium supplemented with IL-6 and TPO. The spin-
transductions were repeated at day 9 and day 10 and
cultures continued in PBMC medium supplemented
with IL-6 and TPO. Subsequently all cells were seeded
on irradiated mouse embryonic fibroblasts (Amsbio)
and cultured in human embryonic stem cell (hESC)
medium consisting of DMEM-F12 supplemented with
20% knock-out serum replacement, 10 μg/ml penicillin,
10 μg/ml streptomycin, 2 mM L-glutamine, 0.1 mM
MEM-NEAA, 0.1 mM β-mercapthoethanol, and 10 ng/
ml basic fibroblast growth factor. The hESC medium
was refreshed daily. Three clonal iPSC lines were de-
rived from the patient, two lines from the father and
one from the mother. The iPSCs were subsequently
adapted to and cultured on Geltrex-coated plastic
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(ThermoFisher Scientific) in serum- and feeder-free
Essential-8 medium (ThermoFisher Scientific) with 1×
penicillin-streptomycin (ThermoFisher Scientific). All
cell lines were free of mycoplasm contamination.

Differentiation of iPSCs towards the neural lineage
Differentiation of the iPSCs to neural progenitors was
performed according to the protocol by Shi et al. [29]
with several modifications. iPSCs were prepared for
neural induction by culturing cells in three wells of a
six-well plate to 90% confluency on Vitronectin-coated
plates using the Essential-8 medium, after which cells
were passaged in a 1:2 ratio to Geltrex-coated six-well
plates. Cells were then cultured until 95–100% confluency,
upon which the medium was switched to neural induction
medium. Neural induction medium was prepared with a
1:1 mixture of DMEM/F-12-Glutamax (Life Technologies)
and Neurobasal medium (Life Technologies) with
added 1× N-2 supplement (Life Technologies), 1× B-27
supplement (Life Technologies), 5 μg/ml insulin
(Sigma), 2 mM L-glutamine (Life Technologies), 1×
non-essential amino acids (Life Technologies), 100 μM
β-mercaptoethanol (Life Technologies), 1 μM dorso-
morphin (Sigma), and 10 μM SB431242 (Tocris Bio-
science). Medium was replaced daily. RNA was
collected at days 0, 7, and 10 of differentiation. At day
10, cells were passaged to laminin-coated coverslips for
later immunofluorescent staining. Medium was then
switched to neural maintenance medium (neural induc-
tion medium without dorsomorphin and SB431242), in
which cells were cultured until formation of neural ro-
settes on day 15 after neural induction.

Immunofluorescent labeling of cultured cells
For immunofluorescent staining, cells were grown on cov-
erslips, after which they were fixed in 4% paraformalde-
hyde for 15 minutes at room temperature (RT). Coverslips
were then washed briefly in PBST (90% phosphate-
buffered saline (PBS), 10% fetal bovine serum (FBS), 0.05%
Triton X-100), permeabilized in permeabilization buffer
(90% PBS, 10% FBS, 0.5% Triton X-100) for 15 minutes
and blocked in PBST at RT for 1 h. Cover slips were incu-
bated with primary antibody solution at RT for 1 hr. Pri-
mary antibodies were diluted in PBST to a concentration
of 2 μg/ml. The primary antibodies used were mouse anti-
NANOG (MABD24, EMD Millipore), Goat anti-OCT3/4
(sc-8628, Santa Cruz), Rabbit anti-SOX2 (AB5603, Chemi-
con), and Goat anti-PAX6 (PRB-278P-100, Covance Inc.).
The coverslips were then washed three times with PBST
at RT for 10 minutes. Next, the secondary antibody di-
luted in PBST to a concentration of 2 μg/ml was added
and the samples were incubated in the dark at RT for 1 h.
Secondary antibodies used are donkey anti-rabbit 488 (A-
21206, Invitrogen), donkey anti-goat 568 (A-11057,

Invitrogen), goat anti-mouse 633 (A-21050, Invitrogen)
and rabbit anti-goat 488 (A-11055, Invitrogen). The cover-
slips were again washed three times with PBST at RT for
10 minutes. Finally, the coverslips were mounted using
3 μl Vectashield mounting medium with DAPI (H-1200,
Vectorlabs), after which fluorescence was detected by con-
focal microscopy (Leica TCS SPE). The same acquisition
settings were used for all samples throughout each
experiment.

RNA extraction and sequencing
Samples for RNA sequencing were collected at days 0,
7, and 10 of neural differentiation of cell lines
UMCU14 and UMCU15 from the patient, UMCU30
from the mother, and UMCU23 (with technical repli-
cate) and UMCU32 from the father. RNA extraction
was performed with Trizol (Life Technologies) accord-
ing to the manufacturer’s protocol. The isolated RNA
was poly(A) selected with the MicroPoly(A) Purist Kit
(Life Technologies) and a subsequent CAP-selection
was performed with the mRNA ONLY Eukaryotic
mRNA isolation kit (Epicentre/Illumina). Next, the
RNA was heat sheared followed by hybridization and
ligation to the SOLID adapters according to the SOLID
sequencing protocol. The RNA was subsequently re-
verse transcribed using the SOLID RT primer. After
size-selection of the complementary DNA, it was amp-
lified using a SOLID PCR primer and a unique barcod-
ing primer for each library. Samples were sequenced
on a SOLID Wildfire. RNA sequencing of patient and
parental blood samples was performed previously [19].

Analysis of RNA sequencing data
Reads were mapped to the human reference genome
(GRCh37/hg19) using Burrows-Wheeler Aligner (BWA)
[30]. The R package GenomicAlignments v1.6.3 was
used to count reads overlapping exons [31]. DESeq
v1.22.1 was used to normalize read counts for library
size and differential expression was calculated using the
DESeq nBinomtest function [32]. Hierarchical clustering
based on the expression of the 500 genes with highest
variance between all iPSC and neural progenitor cell
(NPC) samples was performed using heatmap.2 from the
gplots R package v2.17.0 (https://cran.r-project.org/web/
packages/gplots/). Expression profiles of day 7 and day
10 NPCs clustered together and were therefore merged
for downstream analysis (Additional file 1: Figure S1).
Genes with more than ten normalized counts were con-
sidered expressed genes. Molecular effects were defined as
gene expression differences of at least twofold between pa-
tient and parents. Circos plots for data visualization were
generated using Circos software [33].
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Hi-C data generation and analysis
iPSC-derived NPCs of the patient (lines UMCU14 and
UMCU15) and the father (UMCU23 and UMCU32)
were crosslinked with 2% formaldehyde for 10 minutes.
The crosslinking reaction was quenched by 0.125 M
glycine. Following the crosslinking procedure, samples
were centrifuged at 400 g at 4 °C for 8 minutes. Pelleted
cells were washed with PBS and centrifuged again at 400 g
at 4 °C for 5 minutes. Cells were lysed in 1 mL freshly pre-
pared lysis buffer (50 mM Tris pH 7.5, 150 mM NaCl,
5 mM EDTA, 0.5% NP-40, 1% Triton X-100, and 1×
complete EDTA-free Protease Inhibitor Cocktail (Roche))
on ice for 10 minutes. Nuclei were washed twice in cold
PBS after completion of the cell lysis.
Isolated and cross-linked NPC nuclei were digested

with the DpnII restriction enzyme (New England Bio-
labs). Subsequently, the proximity ligation of interact-
ing fragments was performed using T4 DNA ligase
(Roche) to produce the 3C template, according to a
previously described protocol by Simonis et al. [34].
After reverse crosslinking and precipitation, 10 μg of
the template was sheared in microtubes (AFA Fiber
Pre-Slit Snap-Cap 6 × 16 mm, 520045) using the Cov-
aris S2 sonicator (1 cycle of 25 s; duty cycle 5%, inten-
sity 3, 200 cycles per burst, frequency sweeping).
Fragments that ranged in size from 500 to 1500 bp
were selected using a 2% agarose gel. Size-selected
fragments (1.1 μg) were used as the input for the
TruSeq DNA Low Sample (LS) protocol (Illumina).
Constructed libraries were size-selected using a Lab-
Chip XT DNA 750 Assay Kit (Caliper), resulting in
libraries between 800 and 950 bp. These Hi-C librar-
ies were sequenced in a paired-end manner on the
Illumina HiSeq 2500, resulting in 2 × 100-bp reads.
Sequenced read pairs were mapped independently
using Burrows-Wheeler Aligner (BWA-0.7.5a; settings
were bwa mem -c 100 -M) [30] to the human refer-
ence genome (hg19). Reads were further processed as
previously described [35].

4C-seq
4C-seq libraries were generated from crosslinked iPSC-
derived NPCs of the patient (lines UMCU14 and
UMCU15) and the father (UMCU23 and UMCU32) as
previously described [36]. DpnII was used as primary re-
striction enzyme and NlaIII as secondary restriction en-
zyme. We PCR amplified 1.6 μg of each 4C template for
each of the viewpoints using the primers listed in Add-
itional file 2: Table S1. The amplified 4C libraries were
pooled, spiked with 30% Phi X 174 DNA, and sequenced
on the Illumina NextSeq500 platform in paired-end
mode. Data were processed as previously described [37].
The 4C-seq reads were normalized based on the total

number of captured reads per sample. We analyzed 1.3
to 4.3 million mapped reads per viewpoint.
Locations of TADs in H1-hESC cells were deter-

mined by Dixon et al. [38] and obtained from http://
promoter.bx.psu.edu/hi-c/download.html. Enhancer ac-
tivity determined by expanded 18-state ChromHMM
analysis of H1-derived NPCs (E007) and primary
foreskin fibroblasts (E056) was obtained from the
Roadmap Epigenomics Mapping Consortium (http://
egg2.wustl.edu/roadmap/data/byFileType/chromhmm
Segmentations/ChmmModels/core_K27ac/jointModel/
final). The dataset for the primary foreskin fibroblasts
(E056) was selected because these cells have the highest
TWIST1 RNA expression of all cell types analyzed by the
Roadmap Consortium (data not shown).

Molecular cloning
CNTN3 was amplified from a CNTN3-containing plas-
mid (RG221979 Origene). An In Fusion cloning kit
(Clontech) was used to clone the amplicon into an
empty plasmid with a pCAG promoter. High expression
and proper cellular localization of CNTN3 were con-
firmed by transfection of the pCAG CNTN3 plasmid
into HEK293 cells followed by western blotting and im-
munofluorescence with an antibody that recognizes
CNTN3 (AF5539; R&D Systems; data not shown).

In utero electroporations of CNTN3 overexpression
plasmids
Animal use and care was in accordance with institutional
and national guidelines (Dierexperimentencommissie). At
E14.5, pregnant C57Bl/6 mice were anesthetized using iso-
flurane (induction 3–4%, surgery 1.5–2%) and sedated
with 0.05 mg/kg buprenorfin hydrochloride in saline.
The abdominal cavity was opened and the uterine
horns containing the embryos were carefully exposed.
The lateral ventricles of the embryos were injected with
linearized pCAG-CNTN3 or control DNA (linearized
Nes714tk/lacZ) vectors dissolved in 0.05% Fast Green
using glass micro-pipettes (Harvard Apparatus).
Nes714tk/lacZ was a gift from Urban Lendahl
(Addgene plasmid #47614) [39]. pCAG-GFP was co-
injected with the vectors to identify successfully elec-
troporated cells. Developing cortices were targeted by
electroporation with an ECM 830 Electro-Square-
Porator (Harvard Apparatus) set to five unipolar pulses
of 50 ms at 30 V (950-ms interval) using a platinum
tweezer electrode holding the head (negative poles) and
a third gold-plated Genepaddle electrode (positive pole)
on top of the head (Fisher Scientific). Embryos were
placed back into the abdomen and abdominal muscles
and skin were sutured separately.
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Immunofluorescent staining and analysis of brain
sections
In utero electroporated embryos were collected at E16.5
and heads were fixed in 4% paraformaldehyde and sub-
merged in 30% sucrose followed by freezing in 2-
methylbutane. Sections of 20 μm were cut on a cryostat,
mounted on Superfrost Plus slides (Fisher Scientific),
air-dried, and stored at −20 °C until used for immuno-
fluorescence. The sections were then blocked with 3%
bovine serum albumin in PBS and 0.1% Triton, followed
by an overnight incubation in rabbit anti-GFP (A11122,
ThermoFisher Scientific) diluted in blocking solution.
After washing with PBS the sections were incubated in
goat anti-rabbit 488 diluted in blocking solution. Finally,
the sections were counterstained with Hoechst and em-
bedded in Fluorsafe before mounting on the coverslips.
Cortices were imaged using conventional confocal mi-
croscopy using a Zeiss confocal microscope. Adobe Il-
lustrator was used to place consistent rectangles divided
in eight equal square bins on top of the acquired images,
so that bin 1 starts at the ventricle border of the tissue
and bin 8 ends at the pial surface. The number of GFP-
positive cells were counted in each bin and divided by
the total amount of cells in the rectangle.

Results
Complex genomic rearrangements caused by
chromothripsis in an MCA/MR patient
Previously we performed RNA-seq on blood samples of
an MCA/MR patient with germline chromothripsis and
both parents. The phenotype of this patient includes
craniosynostosis (premature fusion of one or more cra-
nial sutures), facial dysmorphisms, duplication of the
right thumb, pre- and postnatal growth retardation, and

intellectual disability. Mate-pair and breakpoint junc-
tion sequencing showed that the genome of the patient
contains 17 breakpoints on chromosomes 1, 3, 7, and
12 (Fig. 1a) [7]. Molecular phenotypes detected in
blood could not entirely explain the patient's pheno-
type. Not all genes in proximity to the breakpoints were
expressed in the patient’s blood samples, so we hypoth-
esized that essential molecular effects that may have
contributed to the patient phenotype were undetectable
in the patient blood samples.
To obtain cell types relevant for the disease pheno-

type we generated three iPSC lines from the germline
chromothripsis patient and differentiated two of these
to the neural lineage (Fig. 1b). iPSCs were generated by
reprogramming CD34-positive peripheral blood mono-
nuclear cells (PBMCs) by transduction of a multicistro-
nic lentiviral construct containing the canonical
reprogramming factors [28, 40]. We also successfully
generated two control iPSC lines from the father and
one line from the mother. Karyotyping confirmed the
presence of all four derivative chromosomes in the pa-
tient’s iPSC lines (Additional file 1: Figure S2). One of
the patient’s cell lines contained a duplication of deriva-
tive chromosome 1 (Additional file 1: Figure S2b). The
paternal lines contained normal chromosome numbers,
but the cell line of the mother has a translocation be-
tween chromosome 20 and part of chromosome 1
(Additional file 1: Figure S2c). Because these karyotype
abnormalities are distant from the breakpoints and be-
cause three of the five lines had the expected karyo-
types, we concluded that these lines were suitable to
study the effects of the rearrangements within 1 Mb of
the breakpoints. All iPSCs expressed the pluripotency-
associated factors OCT4, SOX2, and NANOG, as

Fig. 1 Overview of complex chromosomal rearrangements in the patient with MCA/MR and study design. a The breakpoint locations and
genomic rearrangements on the four affected chromosomes in the germline chromothripsis patient determined by mate-pair and breakpoint
fusion sequencing. Inversions are depicted with dashed lines beneath the derivative chromosomes. The four deleted fragments are shown below
the derivative chromosomes. This illustration is adapted from van Heesch et al. [19]. b Overview of the experimental setup of this study. Molecular
effects of the chromosomal rearrangements on deleted, truncated, and fused genes and genes within 1 Mb of the rearrangements were determined
by trio-based RNA-seq of iPSCs and iPSC-derived neuronal cells from the patient and both parents. These data were compared with previously
generated expression data of blood samples of the patient and parents to identify molecular phenotypes that contribute to the patient’s phenotype
but are not detectable in blood [19]
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determined by immunofluorescence and western blot-
ting (Additional file 1: Figure S3a, b). RNA-seq con-
firmed high expression of pluripotency factors in the
iPSCs (Additional file 1: Figure S3c). Neural progenitor
cells (NPCs) derived from the patient’s and parents’
iPSCs formed neural rosettes and expressed early
neural markers such as PAX6, OTX1, OTX2, SOX1, and
SOX11 (Additional file 1: Figure S4).

Molecular profiling of iPSC-derived neural progenitors
To identify molecular consequences of the chromothripsis
rearrangements we performed RNA-seq on the iPSC lines
and the iPSC-derived NPCs of the patient and the parents.
We systematically analyzed the expression patterns of
deleted genes, genes with disrupted coding sequences, and
differentially expressed genes in close proximity to the

breakpoints. Sixty-seven protein-coding genes are lo-
cated across or within 1 Mb from the rearrangements
(Fig. 2; Additional file 3: Table S2). Sixty (89%) of these
are expressed in at least one of the samples. Ten genes
are located on three deleted fragments (Fig. 3; Additional
file 1: Figure S5). Four of these hemizygously deleted genes
(SNX13 (OMIM:606589), TMEM106B (OMIM:613413),
AHR (OMIM:600253) and ARL4A (OMIM:604786)) show
a consistent reduced expression in all patient’s samples
compared to the parents’ samples (Fig. 3; Additional file 1:
Figure S5). Although in theory the loss of these genes
on the affected paternal alleles may have contributed to
the patient’s phenotype through haploinsufficiency,
none of these genes have previously been associated
with any of the patient’s symptoms in the literature and
were therefore considered unlikely to have played a

Fig. 2 Impact of chromothripsis on expression of genes in proximity to rearrangements. Circos plot showing the regions affected by
chromothripsis on patient chromosomes 1, 3, 7, and 12. The lines in the center of the plot visualize the 17 breakpoint junctions in the patient
genome. In total, 67 genes, listed in the outer ring, are located on or within 1 Mb of the rearrangements. Exons are depicted as black bars
beneath the chromosome ideograms. The inside, center, and outside bar graphs show the log2 fold expression differences (ranging from 2 to −2)
between the patient and the parents in the iPSC-derived neural progenitors, the iPSCs, and the blood cells, respectively. Log2 fold expression
differences of at least 1 between the patient and the parents are highlighted with blue (higher expression in patient) and red (lower expression in
patient) bars. Grey bars indicate no or small (less than 1 log2 fold) expression differences between the patient and the parent. No bars are shown
for genes with less than ten normalized read counts
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major role in disturbing the development of the patient
(Fig. 3; Additional file 4: Table S3).

Expression-dependent molecular effects on broken genes
The coding sequences of six genes have been interrupted
by the rearrangements (Fig. 4). Of these six disrupted
genes, only AGMO (TMEM195) is not expressed in any
of the assessed cell types. The 5′ part of FOXP1 is fused
to an inverted region on chromosome 7 containing parts
of the HDAC9 gene. The two disrupted genes are fused
in opposite orientation and therefore do not directly
form a fusion protein. However, we previously showed
that there is read-through transcription from the 5′ part
of FOXP1 to the other strand of chromosome 7, leading
to expression of a short fusion protein [19]. The 5′ fused
part of FOXP1 is expressed at higher levels in the cells
derived from the patient in comparison with the cells of

the parents (Fig. 4a). In contrast, the 3′ fragment of
FOXP1 shows a reduction in expression of 55% on aver-
age in the patient’s cells (Fig. 4a). The 3′ part of ETV1 is
fused to the 5′ part of DPYD and this DPYD-ETV1
fusion gene shows strong expression in blood cells [19]
but not in the iPSCs and iPSC-derived neural progeni-
tors (Fig. 4b, c). The expression of DPYD-ETV1 is driven
by the activity of the DPYD promoter, which is strong in
blood but low in iPSCs and neural progenitors. The un-
affected maternal ETV1 allele is only expressed in the
iPSCs and iPSC-derived neural progenitors, but at the
RNA level expression of this allele cannot completely
compensate for the loss of the paternal allele in these
cell types (Fig. 4c). Both DPYD and HDAC9 are dis-
rupted by two breakpoints, but these breakpoints only
have a minor impact on the expression of these genes in
the assessed cell types [19] (Fig. 4b, d).

Fig. 3 Overview of molecular phenotypes and their association with the patient’s phenotype. Selection of the genes located near the
breakpoints with affected coding sequences and/or altered expression. The heatmap indicates the log2 fold expression differences between
the patient and the parents in the three different cell types. Expression changes of the truncated genes are split into separate boxes for each
gene fragment. Grey boxes are shown for genes with less than ten normalized read counts. More details are provided in Additional file 3: Table
S2 and Additional file 4: Table S3
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Of these six disrupted genes, FOXP1 (OMIM:605515)
and DPYD (OMIM:612779) are associated with
(neuro-)developmental disorders and may thus be
relevant for the patient phenotype (Fig. 3; Additional file
4: Table S3). FOXP1 is an essential transcription factor
involved in the development of many tissues, including
the brain [41]. Heterozygous disruptions of FOXP1 have
been found in several patients with neurodevelopmental
disorders, including intellectual disability, autism
spectrum disorder, and motor development delay [41].
DPYD encodes DPD (dihydropyrimidine dehydrogenase),
an enzyme involved in the catabolism of pyrimidine bases
[42]. Most carriers of heterozygous DPYD mutations are
healthy, but some patients with hemizygous deletions
affecting DPYD have neurodevelopmental disorders, in-
cluding autism spectrum disorders [43–45], schizophrenia
[46], epilepsy [47], and intellectual disability [42, 48, 49].
The disrupted coding sequences, altered expression, and
association with congenital disease make it likely that the
disruptions of FOXP1 and possibly DPYD contributed to
the developmental delay and intellectual disability of the
patient. However, none of the broken or deleted genes
have been associated with craniosynostosis, one of the

major phenotypic appearances of the patient (Fig. 3;
Additional file 4: Table S3).

Overexpression of TWIST1 and CNTN3 in the patient’s
iPSC-derived NPCs
Two genes that are located on inverted regions, but are
not deleted or truncated, TWIST1 and CNTN3, show a
more than twofold difference in RNA expression in the
NPCs derived from the patient in comparison to the
parental cells (Fig. 5). Both genes are hardly expressed
in blood cells and the coding sequences of these genes
are not disrupted by the rearrangements, indicating
that positional effects rather than gene dosage cause
their misexpression. CNTN3 (also known as contactin-3,
PANG, or BIG-1) is a member of the contactin family of
neural cell adhesion molecules, but little is known about
the specific functions of CNTN3 [50–52]. CNTN3 is
mainly expressed postnatally in specific subsets of neurons
and promotes neurite outgrowth in isolated rat neurons
[52, 53]. Copy number changes of close family members
CNTN4, CNTN5, and CNTN6 have been associated with
autism spectrum disorders [54, 55]. We hypothesized that
misexpression of CNTN3 in neural progenitor cells may

a b

c d

Fig. 4 Altered expression patterns of genes with disrupted coding sequences. Relative expression differences of disrupted genes a FOXP1
(NM_032682), b DPYD (NM_000110), c ETV1 (NM_001163152), and d HDAC9 (NM_001204144 and NM_178423) between the patient and parents
in the iPSC-derived NPCs, iPSCs, and blood cells. Gene structures of the RefSeq transcripts described above are shown below the graphs. Vertical
red lines indicate the breakpoint locations. Minus and plus signs indicate the DNA strand. Expression is not shown for fragments with less than ten
normalized read counts in the patient or the parents
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have affected the proper differentiation and migration of
the patient’s cortical neurons. To test this hypothesis we
performed in utero electroporations of CNTN3 overex-
pression plasmids in neural progenitors of the developing
mouse cortices. In this experiment we did not detect any
change in the migration of neurons in the cortical layers
(Additional file 1: Figure S6). We therefore consider it un-
likely that misexpression of CNTN3 has interfered with
this developmental process in the patient.

Deregulation of TWIST1 associated with patient’s phenotype
The other overexpressed gene located near the breakpoints
in the patient NPCs is TWIST1, a basic helix-loop-helix
(bHLH) factor essential for mesoderm and neural crest
development, including the morphology and migration
of head mesenchyme cells [56]. TWIST1 mutations and
deletions (OMIM: 601622) are the main cause of
Saethre–Chotzen syndrome (OMIM: 101400), charac-
terized by craniosynostosis and limb abnormalities, includ-
ing polydactyly, brachydactyly, and syndactyly [57, 58].
Several craniosynostosis patients with translocation
breakpoints near TWIST1 have been described [59–61].
The phenotypes of these patients largely resemble the
phenotype of the patient described in this study. Over-
expression of TWIST1 has been shown to inhibit osteo-
blast differentiation in vitro and overexpression of
Twist1 in mouse embryonic limbs lead to reduced limb
size [62–64]. Ectopic TWIST1 expression may disturb
the balance between TWIST1, its dimerization partners
such as HAND2 and TCF12, and its competitors for
binding partners [65–67]. In general, however, the phe-
notypes of patients with TWIST1 mutations and dele-
tions are linked to TWIST1 haploinsufficiency [58]. In
addition, trisomy of the 7p15.3pter locus including the
TWIST1 gene has been associated with delayed closure

of the fontanels, the opposite phenotype of the patient
described in this study and patients with TWIST1 hap-
loinsuffiency [68, 69].
The overexpression of TWIST1 in the NPCs derived

from the patient indicates a disturbed transcription regu-
lation. We hypothesized that this deregulation may have
led to decreased TWIST1 expression in neural crest and
mesodermal cell types, resulting in a phenotype parallel to
that of patients who have haploinsufficiency of this gene.
To test this hypothesis, we investigated the regulatory
landscape surrounding the TWIST1 gene. First we per-
formed Hi-C to determine the genomic interactions on
the derivative chromosomes in the patient. The topologic-
ally associated domain (TAD) structures of the unaffected
chromosomes of the patient and father are similar to the
previously published TAD structures by Dixon and col-
leagues [38] (Fig. 6; Additional file 1: Figure S7). Disrup-
tion of TAD boundaries can cause ectopic interactions
between gene promoters and enhancers and this may lead
to disease [16]. Thirteen TADs are directly affected by the
breakpoints in the patient and five TAD boundaries are
deleted (Fig. 6; Additional file 1: Figure S7). Many ectopic
genomic interactions cross the breakpoint junctions on
the derivative chromosomes of the patient. For example,
many interactions between the genomic regions of
chromosome 1, 3, and 7 that form derivative chromosome
3 in the patient are not present in the father (Fig. 6). We
could not precisely discern between reads of the unaffected
maternal and affected paternal alleles and therefore could
not specifically determine the genomic architecture of the
derivative chromosomes.
Secondly, we performed 4C-seq on the NPCs of the pa-

tient and the father using TWIST1 as bait to determine
potential gains and losses of genomic interactions of
TWIST1 in the patient. TWIST1 mostly interacts with a
region encompassing three putative TADs in the NPCs of
the father (Fig. 7a). These three TADs are disrupted by five
breakpoints in the patient and parts of these TADs are
inverted or translocated away from TWIST1. These dis-
rupted TWIST1 TADs contain several mesodermal en-
hancers active in cells with high TWIST1 expression and
known TWIST1 enhancers (Fig. 7a) [70–72]. The TWIST1
4C-seq shows that there are losses of interactions between
these enhancers and TWIST1 in the patient (Fig. 7a, red
highlights). These losses of contacts with several of its en-
hancers could lead to reduced TWIST1 expression in
neural crest-derived cells involved in craniosynostosis and
possibly contribute to the craniosynostosis phenotype [58].
In addition, the 4C-seq experiments show that

TWIST1 gained aberrant interactions with several en-
hancers active in neural progenitor cells (Fig. 7b, green
highlights; Additional file 1: Figure S8). It is likely that
these ectopic enhancer interactions drive the overex-
pression of TWIST1 in the NPCs of the patient. Thus,

Fig. 5 Overexpression of TWIST1 and CNTN3 exclusively detectable in
the iPSC-derived neural progenitors. Bar graphs of CNTN3 and TWIST1
normalized gene expression in the blood cells, iPSCs, and iPSC-derived
neural progenitors of the chromothripsis patient and the parents. The
dashed horizontal line indicates the expression threshold of ten
normalized read counts. Error bars indicate the standard error
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Fig. 6 Gains of genomic interactions on the derivative chromosomes of the patient. Hi-C chromatin interaction maps of the patient’s (cell line
UMCU15, bottom panels) and father’s (cell line UMCU23, top panels) chromosome 7 (left panels) and derivative chromosome 3 (right panels).
Interactions are shown at 100-kb resolution. The vertical black lines at the bases of the heatmaps depict the predicted TAD boundaries in hESCs as
determined by Dixon et al. [38]. Vertical red lines between the interaction maps indicate the breakpoint locations in the patient

Fig. 7 Gains and losses of enhancer interactions with the TWIST1 locus in the patient. a 4C-seq data show that TWIST1 mainly contacts a region
encompassing three TADs (termed TWIST1 TADs) in the NPCs of the father (cell line UMCU23). The y-axis indicates the number of normalized 4C-
seq reads cutoff at 500 normalized reads. TAD boundaries in H1-ESCs were determined by Hi-C analysis by Dixon et al. [38]. ChromHMM analysis
of Roadmap ChIP-seq data of primary fibroblasts with high TWIST1 expression indicates that these TWIST1 TADs contain multiple enhancers active
in mesodermal cells (shown in purple). The TWIST1 4C-seq data of the patient’s NPCs (UMCU15) shows that TWIST1 has reduced interactions with
several of these enhancers (red highlights), which likely had an impact on TWIST1 expression in the patient. b The 4C-seq data, depicted on the
derivative chromosome 3 in the patient, shows that TWIST1 gained several ectopic contacts with enhancers active in neural cells in the patient.
Enhancer activity was obtained from ChromHMM analysis of Roadmap ChIP-seq data of NPCs derived from differentiation of hESCs. 4C-seq using
two of these enhancers as baits confirms the ectopic interactions between the enhancers and TWIST1 (Additional file 1: Figure S8). These ectopic
interactions may explain the overexpression of TWIST1 in the patient’s NPCs
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chromosome conformation capture data suggest that
TWIST1 has lost interactions with mesodermal enhancers
and has gained new interactions with enhancers that are
active in neurons, which may explain deregulation of
TWIST1 expression in the patient. The resemblance with
phenotypes of patients with TWIST1 mutations, deletions,
and translocations strongly suggests a causative role of the
TWIST1 deregulation in the development of the pheno-
type of our patient. This important molecular phenotype
with a likely impact on the phenotype of the patient is
only detectable in the patient iPSC-derived NPCs.

Discussion
We determined the molecular effects of complex chromo-
somal rearrangements by transcriptome analyses on blood
cells, iPSCs, and iPSC-derived neural progenitors from an
MCA/MR patient with chromothripsis. In addition, we
performed chromosome conformation capture analyses
on the iPSC-derived neural progenitors to study the gen-
omic architecture of the derivative chromosomes. We
confirmed several previously identified direct effects of
the breakpoints on gene expression, such as reduced
expression of several hemizygously deleted genes and
misexpression of fused (DPYD-ETV1) and truncated
genes (FOXP1 and ETV1) [19]. In addition, some genes
that are located near the breakpoints but are not dir-
ectly affected by the breakpoints (TWIST1 and CNTN3)
were differentially regulated in the patient, indicating
effects of the rearrangements on the regulatory DNA
landscape. The altered expression of TWIST1, loss of
genomic interactions with several of its enhancers, and
the resemblance of the patient phenotype with TWIST1
+/− patients indicate that the TWIST1 deregulation is a
major cause of the patient phenotype. The effect on
TWIST1 expression was not detectable in the blood
cells of the patient, highlighting the importance of
using disease-relevant cell types for the interpretation
of the consequences of genomic rearrangements.
Although genomic rearrangements caused by chromo-

thripsis are non-recurrent, the effects of complex rear-
rangements on the phenotype of a patient may be inferred
from patients with similar phenotypes caused by less com-
plex genomic rearrangements. In this study, especially the
detected deregulation of TWIST1 expression, which was
only detected in the patient iPSC-derived NPCs, may ex-
plain a large part of the patient phenotype (the craniosyn-
ostosis and the doubling of the thumbs). The coding
sequence of TWIST1 is not affected by the rearrange-
ments, but translocations near TWIST1 have been found
before in patients with similar phenotypes [59–61]. Effects
on TWIST1 expression would have been difficult to pre-
dict by only studying the genomic variation of the patient,
which demonstrates the importance of transcriptome ana-
lysis by RNA-seq to detect such effects in disease-relevant

cell types. 4C-seq analyses showed that TWIST1 gained
and lost interactions with several enhancers, which
could have led to the deregulation of the normal gene
expression in different cell types. This example of
TWIST1 misexpression due to positional effects high-
lights the importance of not focusing solely on copy
number changes or truncated and fused genes when
studying the effects of chromosomal rearrangements
[14]. This is further underscored by our finding that
only half of the deleted genes in this patient show a
consistent reduced expression, suggesting dosage com-
pensation at the RNA level for the other half of the de-
leted genes. With our approach, we narrowed down a
list of 67 candidate genes within 1 Mb of the break-
points to a list of three genes that likely contribute to
the patient’s phenotype.
Only a minority of the TWIST1+/− patients show signs

of developmental delay and intellectual disability like
those observed for the patient described in this study. It
is very well possible that a combination of molecular ef-
fects led to the complex phenotype of the patient. For
example, the disrupted FOXP1 and DPYD genes are
known MCA/MR genes that may have contributed to
the intellectual disability and developmental delay in our
patient. We cannot exclude that there are additional mo-
lecular effects in other cell types that also have contrib-
uted to the phenotype.

Conclusions
By analyzing the transcriptomes of blood cells, iPSCs, and
iPSC-derived neuronal cells of a chromothripsis patient
and both parents we identified the functional effects of the
rearrangements that likely have contributed to the pa-
tient’s phenotype. In particular we observed a cell type-
specific effect of the rearrangements on the expression of
TWIST1, even though the coding sequence of this gene
was not disrupted by the rearrangements. This study
shows the power of transcriptome and chromosome con-
formation capture analyses to detect effects of structural
rearrangements on both coding sequences and regulatory
elements. We identified clinically relevant molecular ef-
fects specific to the iPSC-derived neuronal cells. These
findings underscore the importance of using disease-
relevant cell types to better understand the molecular ef-
fects of chromosomal rearrangements.
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Additional file 1: Document containing all supplemental figures and
legends. (PDF 30908 kb)

Additional file 2: Table S1. Primer sequences used for each viewpoint
in the 4C-seq experiments. Primer sequences are shown without the se-
quences of the sequencing primer and the P5 and P7 Illumina adaptors.
(XLSX 10 kb)
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Additional file 3: Table S2. Normalized RNA expression values for all
67 protein-coding genes located near the breakpoints. Expression levels
of fragments of genes disrupted by the chromothripsis breakpoints are
shown separately. Log2 fold expression changes between the patient
and parents of more than 1 or less than −1 and p values of less than 0.05
are highlighted in red. Differential expression was calculated using DESeq
nbinomTest. (XLSX 31 kb)

Additional file 4: Table S3. Associations of genes located near the
breakpoints with human and mouse disease phenotypes. Associations of
the genes with human disease phenotypes were obtained from the
MalaCards human disease database (http://www.malacards.org/; only
phenotypes with a score of more than 1 are included). Mouse embryonic
expression data were retrieved from the Gene Expression Database (GXD)
from Mouse Genome Informatics (http://www.informatics.jax.org/
expression.shtml) and the eMouseAtlas (http://www.emouseatlas.org/).
Phenotypes of homozygous mouse knockouts were obtained from
Mouse Genome Informatics (http://www.informatics.jax.org/). Data were
not available for all genes. (XLSX 23 kb)
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